Показать сокращенную информацию

dc.contributor.authorMatysik, O.V.
dc.contributor.authorZabreiko, P.P.
dc.date.accessioned2020-09-18T06:27:03Z
dc.date.available2020-09-18T06:27:03Z
dc.date.issued2015-06-06
dc.identifier.citationMatysik, O.V. M. A. Krasnosel'skii Theorem and Iterative Methods for Solving Ill-Posed Linear Problems with a Self-Adjoint Operator / O.V. Matysik, P.P. Zabreiko // Computational Methods in Applied Mathematics. — 2015. – Vol. 15, iss. 3. – P. 889–895.ru_RU
dc.identifier.issn1609-9389
dc.identifier.urihttp://rep.brsu.by:80/handle/123456789/292
dc.description.abstractThe paper deals with iterative methods for solving linear operator equations x=Bx+f and Ax=f with self-adjoint operators in Hilbert space X in the critical case when ρ(B)=1 and 0∈SpA. The results obtained are based on a theorem by M. A. Krasnosel'skii on the convergence of the successive approximations, their modifications and refinements.ru_RU
dc.language.isoenru_RU
dc.publisherDe Gruyterru_RU
dc.subjecterrorsru_RU
dc.subjectresiduals and correctionsru_RU
dc.subjectweakened normsru_RU
dc.subjectorthogonal projectionru_RU
dc.subjectconvergence and convergence rate of approximationsru_RU
dc.subjectill-posed linear problemsru_RU
dc.subjectmethod of successive approximationsru_RU
dc.subjectspectrum of operatorru_RU
dc.titleM.A. Krasnosel’skii theorem and iterative methods for solving ill-posed linear problems with a self-adjoint operatorru_RU
dc.typeArticleru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию