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M.A. KRASNOSELSKII THEOREM

AND ITERATION METHODS OF SOLVING

ILL-POSED LINEAR PROBLEMS

WITH A SELF-ADJOINT OPERATOR

Abstract: The article deals with iterative methods of solving linear operator equations

x = Bx + f and Ax = f with self-adjoint operators in Hilbert space X in critical case

when ρ(B) = 1 and 0 ∈ SpA. The main results are based on the use of M.A. Krasnosel’skĭı

theorem about the convergence of the successive approximations and some its modifications

and refinements.

The method of successive approximations is one of the main methods of approximate
solution of linear operator equations of the second order x = Bx + f in Hilbert and
Banach spaces. The main theorems on the convergence of this method, the convergence
rate, error estimates, etc. is reduced to studying the properties of Neumann series
∞∑

n=0

Bn for the corresponding operator B и and are expounded in numerous textbooks

and monographs, among which we can mention here [3, 4]. At the same time the
greater part of the obtained results are related to the so-called noncritical case, when
spectral radius ρ(B) of this linear operator is strictly less than 1, and this condition
is necessary and sufficient for the convergence of Neumann series in the space of
operators. However, it was later found out that Neumann series can also converge (not
at the norm of operators, but only strongly) in the cases when spectral radius ρ(B)
of the corresponding operator is equal to 1. One of the first results in this direction
was obtained by M.A. Krasnosel’skii [5] (See also [4]), who showed that for equation
x = Bx+ f with a self-adjoint operator B in Hilbert space in case of ρ(B) = ‖B‖ = 1
and the supplementary hypothesis that −1 is not the eigenvalue of B the successive
approximations converge to one of the solutions to the equation under study, only if the
equation is solvable. This theorem is not trivial, for under the suggested assumptions
equation x = Bx+ f , is, generally speaking, ill-posed.

The primary aim of the present paper is to show that the theorem of M.A.
Krasnosel’skii on the successive approximations convergence for the equations with
self-adjoint operators mentioned above contains in itself, with some natural additions,
the main results of iteration methods of approximate solving ill-posed linear equations
of the second order with self-adjoint operator B in Hilbert space X.

The method of successive approximations is also widely used for approximate
constructing the solutions to operator equations of the first order Ax = y. Here the
main scheme of using the successive approximation method is based on the transition
from the original equation Ax = y to the equivalent (or almost equivalent) equation of
the second order рода x = Bx+f . One of the main methods of such transition is based
on the use of functions f(A) of operator A as operator B. This type of methods has
been studied by many authors (See, for instance, [4]), however, the main results here
are obtained for correct equations Ax = y, to put in other words, under the additional
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assertion that 0 /∈ SpA.
The second aim of the present paper is to study the possibility of using the method

of successive approximations for finding the approximate solutions to equation Ax = y,
namely, when this equation is incorrect, that is, when 0 ∈ SpA. We shall confine
ourselves to the case when operator A, as well as operator B = f(A) constructed on
its basis, are self-adjoint operators in Hilbert space X. Thus, the main research tool for
ill-posed linear operator equations of the first order will be again the above-mentioned
theorem of M.A. Krasnosel’skii.

It should be noted that the the theory of ill-posed linear operator equations with
a self-adjoint operator in a Hilbert space was developed independently from different
aspects and with a different degree of exactness by various authors. It is sufficient to
mention the following monographs [6, 7, 8, 9, 10, 11, 12, 13, 14]. The third aim of
our paper is to show how the results of these works known before make up a general
scheme, as well as to formulate a range of new propositions.

We shall list the main problems examined in this paper for successive approaches
to the exact solutions to the equations under study. They concern the convergence
conditions of these successive approximations and determining their convergence rate
for exact solutions in the original and "weakened" norms both in the whole space and
in some subspaces densely enclosed in the original one; the analysis of the behaviour of
residuals and corrections in constructing these successive approximations; and, finally,
the behaviour of the corresponding errors in cases when the right-hand members are
defined approximately, and when the calculations are made with some mistakes.

§ 1. The equalities of the second order

1.1. The convergence of successive approximations. Let X be Hilbert space,
and B be a self-adjoint operator, f ∈ X. Consider the equation

x = Bx+ f. (1)

To find solutions to this equation, it is natural to use the method of successive approximations

xn+1 = Bxn + f (x0 ∈ X, n = 0, 1, 2, . . .). (2)

Actually, if the sequence (xn) defined by the equation (2) is convergent, then its limit
will be the solution of the equation (1).

The convergence analysis of successive approximations (2) is carried out with
sufficient completeness in case of ρ(B) < 1. The latter inequality (for any continuous
linear and not obligatorily self-adjoint operator B) is equivalent to Neumann series
convergence and to equation

(I −B)−1 =

∞∑

n=0

Bn.

That is why we will further be interested only in the «critical» case, when ρ(B) = 1.
For the self-adjoint operator it means that ‖B‖ = 1 и что SpB ∩ {−1, 1} 6= ∅. In case
of 1 /∈ SpB equation (1) remains uniquely solvable at any f ∈ X, though the issue
of convergence to the corresponding solution of successive approximations 2) remains
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open-ended. At the same time, in case of 1 ∈ SpB equation (1) proves to be solvable
for some right-hand members f ∈ X (generally speaking, in this case the solution is
non-unique) and unsolvable with other right-hand members f ∈ X.

In the cited paper [5] M.А.Krasnosel’skii gave an exhaustive answer concerning
the conditions of successive approximations convergence in the critical case described
above. In the modification of M.A. Krasnoselskii theorem to be given further we can
find the statement as to which of solutions the successive approximations converge
when equation (1) has an ambiguous solution.

Theorem 1.1. Let B be a self-adjoint operator with ρ(B) = 1 in Hilbert space X,
while −1 is not its eigenvalue.

Let equality (1) be solved. Then successive approximations (2) at any initial condition
x0 ∈ X converge to one of the solutions of equation (1).

More exactly, approximations (2) сonverge to the solution x∗ to equation (1), for
which Px∗ = Px0, where P is an orthoprojection on the set of eigenvectors of operator
B, with the eigenvalue 1.

� We will give a simple proof scheme of this theorem (сompare with the one given
in [5, 4]). From (1) and (2) there obviously follow equation

xn = Bnx0 + (E +B + . . .+Bn−1)f (n = 0, 1, 2, . . .), (3)

x∗ = Bnx∗ + (E +B + . . .+Bn−1)f (n = 0, 1, 2, . . .), (4)

resulting in
xn − x∗ = Bn(x0 − x∗), (5)

Hence, by virtue of the theorems on spectral decomposition of of self-adjoint operators
in Hilbert space (See, for instance, [3, 15]),

‖xn − x∗‖
2 =

∫

spB

|λ|2n (dEλ(x0 − x∗), x0 − x∗)), (6)

where Eλ is a spectral measure for operator B. The sequence |λ|2n сonverges to zero
everywhere on (−1, 1) ∩ spB. Point −1 (if it is enclosed in spB) under Theorem 1.1,
has a zero spectral measure. Point 1 (if it is again in spB) can have positive measure,
yet only when Px0 6= Px∗. Тhus,the proposition of Theorem 1.1 results from Lebesgue
theorem on the passage to the limit under integral sign. �

We observe that the convergence of successive approximations can generally be
аrbitrarily poor. It becomes quite obvious from equation (6). The corresponding examples
can be easily given.

1.2. The convergence of residuals and corrections. We shall now consider
the behaviour of residuals xn −Bxn − f for approximations (2). It follows,

xn − Bxn − f = xn − xn+1,

namely, the residuals in the case under consideration coincide with the corrections
taken with the reversed sign. From (3) it follows

xn − Bxn − f = Bn(x0 − Bx0 − f). (7)
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Once again, by virtue of the spectral theorem for self-adjoint operators this equation
brings about equations

‖xn − Bxn − f‖2 =

∫

spB

|λ|2n (dEλ(x0 −Bx0 − f), x0 − Bx0 − f). (8)

We can once again apply Lebesgue theorems of the limiting process to this equation.
As a result, we obtain the following assertion:

Theorem 1.2. Let B be a self-adjoint operator with ρ(B) = 1 in Hilbert space
X, not having −1 as its eigenvalue. Let be Pf = 0, where P is an orthoprojection on
the set of eigenvectors of operator B, corresponding to the eigenvalue 1. Then residuals
xn − Bxn − f for successive approximations (2) at any starting condition x0 ∈ X
converge to zero.

We have to point out that condition Pf = 0 in this theorem is necessary, but
in the general case not sufficient, for solving equation (1). Consequently, residuals
for successive approximations can converge to zero also in the case when the original
equation has no solutions at all.

It follows from Theorem 1.2 that the convergence rate of residuals and corrections
zero in this case is defined by the first residual properties x0 − Bx0 − f .

1.3. Convergence оf errors, residuals and corrections in special subspaces.

As it is shown by simple examples and equations (6), (8) the convergence rate of
successive approximations to the exact solution and that of residuals to zero considerably
depends on initial approximation x0 and right-hand member f of equation (1). It is
possible to estimate these convergence rates more exactly for functions f from some
(usually unclosed!) subspaces X̃ of space X. Among such subspaces the simplest ones
are the subspaces of «sourcewise» representable functions. These subspaces are defined
with the help of some function θ(λ) singled out in the spectrum spB оf operator B as
a set of elements θ(B)X of the type

x = θ(B)h

(
=

∫

spB

θ(λ) dEλh

)
(h ∈ X). (9)

The set θ(B)X changes into a normed linear space, if the norm on its elements is
defined as equation

‖x‖θ(B)X = inf

{
‖h‖ : h ∈ X, θ(B)h = x

}
. (10)

It presents no difficulty to test that with this norm (but not with the initial one!) space
θ(B)X is a Banach space.

Formula (6) at x0 − x∗ ∈ θ(B)X is rewritten in the form

‖xn − x∗‖
2 =

∫

spB

|λ|2n|θ(λ)|2 (dEλh, h). (11)

By virtue of the spectral theorem for self-adjoint operators, there follows from it
inequality

‖xn − x∗‖ ≤ γn ‖x0 − x∗‖θ(B)X (x0 − x∗ ∈ θ(B)X), (12)
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where
γn = max

λ∈spB
|λ|n|θ(λ)|. (13)

If γn → 0 at n → ∞, то (12) gives the qualified estimate of the convergence rate
of approximations (2) for solving equation (1) for all functions x0 and f at once, for
which x0 − x∗ ∈ θ(B)X. The latter condition is difficult to test, since x∗ is unknown.

However, it is satisfied if x0 − Bx0 − f ∈ θ̃(B)X, where functions θ и θ̃ are connected

by equality θ(λ) = (1− λ)θ̃(λ). As a result, instead of (12) we have estimate

‖xn − x∗‖ ≤ γ̃n ‖x0 − Bx0 − f‖
θ̃(B)X (x0 − Bx0 − f ∈ θ̃(B)X), (14)

where
γ̃n = max

λ∈spB
|λ|n|θ̃(λ)|. (15)

Similarly, formula (8) at (I −B)x0 − f ∈ θ(B)X brings us to estimate

‖xn − Bxn − f‖ ≤ γn ‖h‖ (x0 − Bx0 − f = θ(B)h, h ∈ X), (16)

where sequence (γn) is again defined by equality (13).
The following holds
Theorem 1.3. Let B be a self-adjoint operator with ρ(B) = 1 in Hilbert space

X, not having −1 as its eigenvalue. If θ is a function with θ(±1) = 0, determined on
spectrum spB then γn → 0 and, сonsequently, at x0 − x∗ ∈ θ(B)X the convergence
rate of approximations (2) to consistent solution x∗ of equation (1) is estimated by

inequality (12). Further, if θ(λ) = (1− λ)θ̃(λ) with θ̃(±1) = 0, то γ̃n → 0 and, hence,

at x0−Bx0−f ∈ X(θ̃) the convergence rate of approximations (2) to consistent solution
x∗ of equation (1) is defined by inequality (14).

Theorem 1.4. Let B be a self-adjoint operator with ρ(B) = 1 in Hilbert space
X, not having −1 as its eigenvalue. If θ is a function with θ(±1) = 0, determined
on spectrum spB then γn → 0 and, сonsequently, at x0 − Bx0 − f ∈ θ(B)X residual
convergence rate for approximations (2) to zero is estimated by inequality (16).

Both theorems follow from the following lemma.
Lemma 1.1. Let function ϑ(λ) : [−1, 1] → R satisfy the condition ϑ(±1) = 0.

Then
lim
n→∞

max
−1≤λ≤1

|λ|n|ϑ(λ)| = 0.

� Let there be given 0 < ε < 1. Then there exists such δ > 0, that at 1 − δ <
|λ| ≤ 1 the inequality |ϑ(λ)| < ε is true. On the set {λ : |λ| ≤ 1 − δ} there holds
inequality |λ|n|ϑ(λ)| ≤ c(1 − δ)n, where c = max

−1≤λ≤1
|ϑ(λ)|, and, hence, |λ)|n|ϑ(λ)| < ε

at n >
ln(c−1ε)

ln(1− δ)
. But at λ ∈ {λ : 1 − δ < |λ| ≤ 1} inequality |λ|n|ϑ(λ)| < ε also

holds, and, consequently, this inequality holds at all λ ∈ [−1, 1]. Since ε is arbitrary,
and n does not depend on λ, then |λ|n|ϑ(λ)| → 0 at n → ∞ is uniform according to
λ ∈ [−1, 1]. �

It should be noted that the conditions of theorems 1.3 и 1.4 соntain initial
approximation x0. If, as it is usually done, x0 = 0, then the conditions of theorems 1.3 и
1.4 come down to assumptions concerning the solution itself x∗ or the given right-hand
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member f . The latter also holds when x0 is taken nonzero, but «good enough» (in the
examples, «differentiable enough»).

Finally, we consider that the assertions of theorems 1.3 и 1.4 essentially mean
the convergence to zero according to the sequence norm of operators Bnθ(B) or the
convergence to zero of the operator sequence BnTθ(B), where T is a quasi-inverse
(possibly unlimited) operator for operator (I − B) ((I − B)T (I − B) = I − B).

1.4. Сonvergence in «weakened» norms. In a number of jobs, while studying
successive approximations, it is enough to determine their convergence in a weaker norm
than the original norm of Hilbert space X. Such norms can be exemplified by norm

‖x‖0 = ‖Tx‖, (17)

where T is some noninvertible operator with ker T = 0. Herewith, the simplest case is
when operator T is commutative with operator B (TB = BT ). Among such operators
the simplest ones belong to the type

Tπ = π(B), (18)

where π(λ) is some bounded function, for which elements SpB ∩ {λ : π(λ) = 0} are
not eigenvalues. In this case (17) is the norm, because it follows from Tx = 0 that
x = 0. The norms of such type are sometimes called weakened or relaxed generating
ones. It should be noted that space X with the norm (17) is incomplete, if function
π−1(λ) is unbounded on spectrum SpB.

We find it necessary to consider equality (5):

xn − x∗ = Bn(x0 − x∗);

resulting from (3), (4). Here xn are successive approximations, xn+1 = Bxn+f с x0 ∈ X
is the initial approximation to the solution of equation (1), x∗ is the exact solution of
equation (1).

From this equation for the norm (17) with T , defined by equation 18 we have
equation

‖xn − x∗‖π = ‖π(B)Bn(x0 − x∗)‖,

and, further,

‖xn − x∗‖
2
0 =

∫

SpB

|π(λ)|2|λ|2n (dEλ(x0 − x∗), x0 − x∗),

from where,
‖xn − x∗‖π ≤ γn‖x0 − x∗‖, (19)

where
γn = max

λ∈SpB
|π(λ)| |λ|n. (20)

By using lemma 1.1 we come to the following assertion supplementing theorem
1.1.

Theorem 1.5. Let B be a self-adjoint operator with ρ(B) = 1 in Hilbert space
X, not having −1 as eigenvalue. Let π(±1) = 0 and equation (1) is solvable. Then,
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successive approximations (2) at any initial condition x0 ∈ X converge in norm (17) to
solution x∗ of equation (1), for which Px∗ = Px0, where P is an orthoprojection on the
set of eigenvectors of operator B, corresponding to eigenvalue 1. Then, this convergence
is uniform as regards x0 − x∗ ∈ X on each bounded set.

We underline that in the conditions of theorem 1.5, there is no demand for the
sourcewise representability of the exact solution or the right-hand member of equation
(1). We also note that in the conditions of theorem 1.5, the sequence of approximations
(2), in case of equation (1) is not solved, can be fundamental in norm (17). In other
words, it can prove to be convergent in completion Xπ of space X under the norm (17),
while this limit turns out to be the generalized solution of equation (1).

Similarly to theorem 1.5, one proves the following theorem 1.6; at that, instead of
the equation (5) equation (8) is used which also results from (3), (4):

xn − Bxn − f = Bn(x0 − Bx0 − f);

Here xn are successive approximations xn+1 = Bxn + f с x0 ∈ X, x0 is the initial
approximation to the solution of equation (1) (the solution itself may not exist at all).

Theorem 1.6. Let B be a self-adjoint operator with ρ(B) = 1 in Hilbert space
X, not having −1 as eigenvalue. Let Pf = 0, where P is an orthoprojection on the
set of eigenvectors of operator B, corresponding to the characteristic constant 1. Then,
residuals xn−Bxn−f for successive approximations (2) at any initial condition x0 ∈ X
converge in the norm (17) to zero. Consequently, this convergence is uniform in relation
to x0 −Bx0 − f ∈ X on each bounded set.

1.5. Сonvergence in errors of estimation. Let now the conditions of theorem
1.1. be again satisfied for self-adjoint operator B. Let equation (1) be solvable. In this
case, the successive approximations (2) сonverge to one of the solutions x∗ of equation
(1). Consider now, instead of exact successive approximations (2) the approximations
for the case when the right-hand member of the equation (1) is set approximately, or
when an error is made at every step of estimating these approximations. Both variants
of such approximations are described well enough by equations

x̃n+1 = Bx̃n + fn (n = 0, 1, 2. . . .) (21)

assuming that ‖fn − f‖ ≤ δn (n = 0, 1, 2, . . .), where (δn) is some sequence of small
positive numbers, bounded by the number δ. From these equations and (2), it directly
follows

x̃n = xn +Bn−1(f0 − f) +Bn−2(f1 − f) . . .+ (fn−1 − f)

and, hence,

‖x̃n−xn‖ ≤ ‖Bn−1‖ ‖f0−f‖+ . . .+‖B‖ ‖fn−2−f‖+‖fn−1−f‖ ≤ δ0+ . . .+δn−2+δn−1.

In this way,
‖x̃n − x∗‖ ≤ ‖xn − x∗‖+ ‖x̃n − xn‖,

and, consequently,

‖x̃n − x∗‖ ≤ ‖xn − x∗‖+ (δ0 + . . .+ δn−2 + δn−1), (22)

where x∗ is the exact solution of equation (1).
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From inequalities (22) the convergence x̃n к x∗ does not follow, since the right-
hand part in (22) at n → ∞ does not tend to zero (and, moreover, usually tends to
infinity). However, in many cases it follows from these inequalities that, on the one
hand, at quite big, but not too big, numbers n, the approximations (21) come close
enough to the exact solution x∗ of equation (1). Moreover, these approximations for
sequences (δn), sufficiently small in natural sense, «fit» the exact solution x∗ arbitrarily
close!

In the conditions of theorem 1.1, at every initial approximation x0 ∈ X exact
approximations xn сonverge to x∗, or, to put it differently, for some sequence of
nonnegative numbers µn tending to zero, inequality

‖xn − x∗‖ ≤ µn.

holds.
We also recall that in the conditions of theorem 1.1, the sequence (µn) essentially

depends on the initial condition x0 ∈ X and the right-hand member f ∈ X. However,
theorem 1.3 also enables to describe some sets of initial conditions x0 ∈ X and right-
hand members f ∈ X, for whose elements sequence µn can be chosen, independent of
x0 ∈ X и f ∈ X.

Suppose

∆0 = 0, ∆n = δ0 + . . .+ δn−2 + δn−1 (n = 1, 2, . . .).

Then the inequality (22) is transcribed as

‖x̃n − x∗‖ ≤ µn +∆n (n = 0, 1, 2, . . .). (23)

To estimate the «smallness» of sequence (δn), it is most convenient to suppose
that the sequence (δn) belongs to some Banach space L (with a monotonous, in the
usual sense, norm) and to estimate this «smallness» by the norm ‖(δn)‖L. It appears,
the numbers δ0+ δ1+ . . .+ δn−1 (n = 1, 2, . . .) can be regarded as meanings in sequence
(δn) of linear functionals σn (n = 0, 1, 2, . . .), generated by sequence (1, 1, . . . , 1, 0, . . .),
the first elements of which n are equal to 1, аnd the rest are equal to zero. According
to the definition of the norms of functionals σn, the following inequalities

δ0 + δ1 + . . .+ δn−1 ≤ ‖σn‖ δ (δ = ‖(δn)‖L, n = 0, 1, 2, . . .). (24)

hold. From inequalities (23) и (24), there follow the estimates

‖x̃n − x∗‖ ≤ µn + ‖σn‖ δ (δ = ‖(δn)‖, n = 0, 1, 2, . . .) (25)

The sequence (‖σn)‖) is increasing; the examples below show that it can be both
unbounded and bounded.

We can easily describe the behaviour peculiarities of sequence (µn+‖σn‖δ) in the
form of the following statement. Then it will be convenient for us to consider further
on a more general sequence (µn + c‖σn‖δ), where c is some positive number.

Lemma 1.2. Let sequence (µn) tend to zero, while sequence (‖σn‖) is nondecreasing.
Then

lim
n→∞, ‖σn‖δ→0

(µn + c‖σn‖δ) = 0. (26)
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More exactly, let ε > 0 be given. Then there exists such N(ε), that at any N−, N+,
for which N(ε) ≤ N− < N+ such δ(N−, N+) exists, that at 0 < δ < δ(N−, N+) the
inequalities

µn + c‖σn‖δ < ε n ∈ [N−, N+]. (27)

hold.
In other words, at the given ε > 0 at sufficiently small δ > 0 the inequality

µn+ ‖σn‖δ < ε is satisfied within arbitrarily distant and arbitrarily big change gaps n.
� The equality (26) is obvious. Let now give ε > 0. To establish the inequality (27),

we first mention that at any t, 0 < t < ε, at n > N(t) the inequality µn < t is satisfied.
Further, at the same t, we take arbitrary numbers N−, N+, for which N(ε) ≤ N− < N+

and then the number δ(N−, N+) so that at n ∈ [N−, N+] the inequality

‖σn‖ <
ε− t

cδ
.

be satisfied. Then, at δ ≤ δ(N−, N+) и n ∈ [N−, N+]

µn + ‖σn‖δ < t +
ε− t

cδ
· cδ = ε. �

The relation (26) of lemma 1.2 is sometimes written in the form of

lim
δ→0

min
ν≤n<∞

{µn + c‖σn‖δ} = 0 (ν ∈ N). (28)

However, without the additional assumption concerning the convergence of the sequence
(µn) to zero, this relation is weaker than (26).

We make another important remark. The inequalities (26) turn out to be useful
only in the cases, when at increasing n the right-hand member µn+‖σn‖δ decreases. The
incident of decreasing the right-hand member in one step is equivalent to the inequality

δ <
µn − µn+1

‖σn+1‖ − ‖σn‖
. Тhus, the arguments considered show that the sequential computation

of approximations (21) prove to be useful at n ∈ [0, N ] only if

δ <
µn − µn+1

c(‖σn+1‖ − ‖σn‖)
(n = 0, 1, . . . , N). (29)

In satisfying this correlation, one states that the correlating iteration method
quasi-converges.

We once again point out that in case of quasi-convergence of iteration methods (21)
и (22), one does not speak about the usual convergence of corresponding approximations
to the exact solution. We can only assert that at sufficiently small δ, these approximations
happen to come close to the exact solution, and then, as a rule, move away from
it; besides, the closer to the exact solution these approximations are, the less δ is.
Moreover, if δ is not sufficiently small, then the use of approximations (21) will turn
out to be useless — these approximations can move away from the exact solution.

It follows from the given considerations and lemma 1.2 that
Theorem 1.7. Let the conditions of the theorem 1.1 be satisfied and let the

approximations (2) be calculated with errors, not exceeding δn > 0 at every step n =
0, 1, 2, . . ., while (δn) ∈ L, where L is a Banach space of sequences with the monotonic
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norm. Then the approximations (21) «quasiсonverge», in the sense described above, to
the corresponding solution x∗ of the equation (1) (namely, the following relation holds

lim
n→∞,‖σn‖δ→0

‖x̃n − x∗‖ = 0. (30)

We also observe that in the above-mentioned «paradoxical case» µn = 0, it turns
out that the initial approximation x0 coincides with the solution x∗. It is in this case that
the arguments about the sequence (µn+nδ), given above, degenerate, and the estimate
(26) becomes useless. However, it should be like that, if the initial approximation
coincides with the exact solution x∗, it is useless to accurately define this approximation
by any iteration procedures.

Now it remains to give the formulas for the norms ‖σn‖ of the functionals σn
(n = 0, 1, . . .) for classical spaces mentioned above. For the spaces ℓp (1 ≤ p ≤ ∞)
there happen to be equations

‖σn‖ = n
1

p′

(
1

p
+

1

p′
= 1, n = 0, 1, 2, . . .

)
.

One should observe two special cases in this equation when p = ∞ и p = 1. In the
first one the condition (δn) ∈ ℓ∞ means that errors are made in calculations which do
not exceed number δ = ‖(δn)‖ℓ∞; in this case ‖σn‖ = n for all n = 0, 1, 2, . . .. We also
observe that the assumption as to δn → 0 (or, otherwise, (δn) ∈ ℓ◦∞ = c0 ⊂ ℓ∞) does
not result in clarifying the behaviour of the norm sequence (σn), both sequences of the
norms for spaces c0 и ℓ∞ coincide. In the other case, when (δn) ∈ ℓ1, the sequence of
norms (‖σn‖) turns out to be bounded!

For spaces m(ω) of the sequences bounded by weight весом ω (ω = (ω0, ω1, ω, . . .),
ωk > 0, k = 0, 1, 2, . . .) the formulas

‖σn‖ =

n−1∑

k=0

1

ωk

(n = 0, 1, 2, . . .)

hold. In the particular case, when ω = (1, 2ν , . . . , (k − 1)ν , . . .) the following equations

‖σn‖ =

n−1∑

k=0

1

kν
(n = 0, 1, 2, . . .)

hold. In this equation, one should also observe a special case when ν > 1. In this case,
the sequence of norms (‖σn‖), as well as in the case of space ℓ1, also appears to be
bounded: ‖σn‖m(ω) ≤ ζ(ν) (n = 0, 1, 2, . . .); here ζ(·) is Riemann function.

1.6. The main example. We can take as an example in space X = L2(Ω), where
Ω is a closed set of the segment [−1, 1] c 1 ∈ Ω (или −1 ∈ Ω), the equation

x(t) = tx(t) + f(t).

This equation is solved in X, if and only if (1 − t)−1f(t) ∈ L2(Ω). The successive
approximations (2) in this case appear to be

xn+1(t) = txn(t) + f(t)
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or, which is just the same,

xn(t) = tnx0(t) + (1 + t + t2 + . . .+ tn−1)f(t).

They converge in X (at any x0(t) ∈ L2(Ω)) to the function (1 − t)−1f(t), which is,
under the assumption of the solvability the equation, belongs to L2(Ω). The equation
in this example is not correct. The similar situation takes place if X = L2(Ω, σ), where
σ is some measure on Ω, while σ({−1}) = 0.

The cited example has a sufficiently general character — it is a known fact
that every self-adjoint operator with a simple spectrum is similar to the operator of
multiplying by an independent argument in the space L2(Ω, σ) for the suitable choice
of measure σ. For self-adjoint operators B with the non-simple spectrum the similar
assertion also holds, but one has to take here a topologically complex disjunctive union
of segments [−1, 1] as Ω.

§ 2. The equations of the first order

2.1. The convergence principle. Let A be a self-adjoint operator in Hilbert
space X. Let us consider the linear equation

Ax = y, (31)

where y ∈ X. We are interested in the case when 0 is the point of spectrum SpA of
operator A.

Let φ(λ) be some real and analytical function on the spectrum of the operator A,
which takes value 1 at zero point; then

φ(λ) = 1− λψ(λ),

where ψ(λ) is also a real and analytical function on SpA. Polynomials or rational
functions can serve as the most obvious examples of such functions.

For each function φ(λ) of the type described above one can define the operator
φ(A); it is also a self-adjoint one. Operator ψ(A) is also defined. The equation

x− φ(A)x = ψ(A)Ax.

is obvious. From this equation it follows that every solution x of the equation (31) is
the solution to the equation

x = φ(A)x+ ψ(A)y. (32)

An inverse also holds, but under the additional assumption that 0 is not the eigenvalue
of the operator ψ(A). Actually, (32) can be rewritten as follows

ψ(A)(Ax− y) = 0,

from where it follows that x is also the solution of the equation (31). The assumption
that 0 is not the eigenvalue of operator ψ(A) is equivalent to the one that 1 is not
the eigenvalue of operator φ(A). The latter, obviously, means the solution of equation
(32), if it exists, is unique. Thus, if the equation (31) has the unique solution x∗, then
it is the unique solution of equation (32), and inversely, if the equation (32) has the
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unique solution, then it will be the unique solution of the equation (31). It should be
observed that in the general case (without the assumption that 0 is not the eigenvalue
of operator A) in case of solvability of the equation (31) the solution x of the equation
(32) is not obligatorily the solution of the equation (31), however, the solution of the
equation (31) in this case, is sure to be the element x + φ(A)(ξ − x), where ξ is an
arbitrary solution of the equation (31).

Therefore, instead of analyzing the solvability properties of the equation (31) one
can consider the equation (32). However, the latter equation has the form of x = Bx+f
with B = φ(A), f = ψ(A)y, and for its analysis one can naturally use the theorem
of M.A. Krasnosel’skii mentioned above and all results from § 1. The conditions of
the latter will be satisfied if ‖φ(A)‖ = 1 и −1 is not the eigenvalue of operator φ(A).
Since, by virtue of Danford theorem, [15] Spφ(A) = φ(SpA), and the operator φ(A) is
self-adjoint, then the equation ‖φ(A)‖ = 1 is equivalent to the inequality

|φ(λ)| ≤ 1 (λ ∈ SpA) (33)

(let us recall that φ(0) = 1 and, therefore, (33) means ‖φ(A)‖ = 1). The second
condition means that not a root of the equation φ(λ) + 1 = 0 is the eigenvalue of
operator A. Thus, the following holds

Theorem 2.1. Let A be a self-adjoint operator in Hilbert space X and its range
of values is not closed. Let φ(λ) be the analytical function of the environment SpA, for
which

a) φ(λ) = 1− λψ(λ);
b) |φ(λ)| ≤ 1 (λ ∈ SpA);c) zeroes of the function φ(λ)+1 are not the eigenvalues

of the operator A. Consequently, if the equation (31) is solved, the successive approximations

xn+1 = φ(A)xn + ψ(A)y (n = 0, 1, 2, . . .) (34)

converge to one of the solutions of equation (31).
There, naturally arises the question of the convergence rate of the approximations

(34). From theorem 1.1, it follows that in the general case this rate can be arbitrarily
slow. To make the picture complete, we give here the calculations from § 1, modified
directly for the equation (32). From (34), it clearly follows

xn = φn(A)x0 + (E + φ(A) + φ2(A) + . . .+ φn−1(A))ψ(A)y (n = 0, 1, 2, . . .), (35)

and from (32)

x∗ = φn(A)x∗ + (E + φ(A) + φ2(A) + . . .+ φn−1(A))ψ(A)y (n = 0, 1, 2, . . .), (36)

Subtracting (36) from (35), we obtain

xn − x∗ = φn(A)(x0 − x∗) (n = 0, 1, 2, . . .) (37)

and, further,

‖xn − x∗‖
2 =

∫

SpA

|φ(λ)|2n (dEλ(x0 − x∗), x0 − x∗). (38)

From the formula (38) the convergence of the approximations xn to x∗ follows, by
virtue of Lebesgue theorem of the limiting process under integral sign for the sequence
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almost always converging to zero. As it has been noted, it follows from this formula that
this sequence can turn out to be arbitrarily slow and considerably depend on the the
properties of «smoothness» of the initial error x0 − x∗, while the latter can depend on
the properties of «smoothness» of the right-hand member y and the «incorrecftness»
properties of the operator A. However, it should also be noted that this convergence is
the faster, the «less» the function φ(λ) on the spectrum of the operator A is.

2.2. The convergence of residuals and corrections. We consider now the
behaviour of residuals Axn − y and corrections xn+1 − xn = φ(A)xn + ψ(A)y − xn for
approximations (34).

From (35) it follows

Axn = φn(A)Ax0 + (E + φ(A) + φ2(A) + . . .+ φn−1(A))ψ(A)Ay =

= φn(A)Ax0 + (E + φ(A) + φ2(A) + . . .+ φn−1(A))(E − φ(A))y =

= φn(A)Ax0 + (E − φn(A))y,

and, hence,
Axn − y = φn(A)(Ax0 − y). (39)

It follows from this equation that

‖Axn − y‖2 =

∫

SpA

|φ(λ)|2n (dEλ(Ax0 − y), Ax0 − y). (40)

Analogously, from (35) for corrections xn+1 − xn we have

xn+1 − xn = φn(A)(φ(A)−E)x0 + φn(A)ψ(A)y = φn(A)(φ(A)x0 + ψ(A)y − x0)

or
xn+1 − xn = φn(A)(x1 − x0). (41)

Consequently,

‖xn+1 − xn‖
2 =

∫

SpA

|φ(λ)|2n (dEλ(x1 − x0), x1 − x0). (42)

Consequently, from (40) and (42) we obtain the following assertion:
Theorem 2.2. Let the conditions of theorem 2.1be satisfied. Let Py = 0, where P

is an orthoprojection on the set of the eigenvectors of the operator φ(A), corresponding
to the eigenvalue 1. Then, the residuals Axn−y and corrections xn+1−xn for successive
approximations (34) at any intial condition x0 ∈ X сonverge to zero.

Here one should also note that residuals and corrections converge to zero without
the assumption of the solvability of the equation (31).

2.3. Convergence on subspaces. As it is shown by the equations (38), (40), (42)
the rate of convergence of the successive approximations (32) to the exact solution of
the equation (31), сorrespondingly, the convergence rate of the residuals and corrections
to zero greatly depends on the right-hand member y of the equation (31) and the initial
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condition x0. However, the rates of these convergences can be specified, if the right-
hand members y of the equation and, consequently, the initial conditions x0 are taken
from some subspaces X̃ of the space X. The simplest subspaces among this kind are
the subspaces of the sourcewise representable functions mentioned above. Namely, we
consider the cases when the right-hand members y of the equation and, hence, the
initial conditions x0 lie in the subspaces θ(A)X, which are defined by the operator
A, exactly in the same way as the spaces θ(B)X were defined with the help of some
function θ(λ) determined on SpA as a set of elements of the type

x =

∫

SpA

θ(λ) dEλh (h ∈ X)

with the norm
‖x‖θ(A)X = inf

{
‖h‖ : h ∈ X, θ(A)h = x

}
.

Similar to the spaces θ(B)X, we assume for the spaces θ(A)X that the zeroes of the
function θ(λ) are not eigenvectors of the operator A.

In the assumption that y ∈ θ(A)X exists h ∈ X, for which x = θ(A)h. Then

‖xn − x∗‖
2 =

∫

SpA

|φ(λ)|2n|θ(λ)|2 (dEλh, h). (43)

Hence,
‖xn − x∗‖ ≤ γn‖x0 − x∗‖θ(A)X (x0 − x∗ ∈ θ(A)X), (44)

where γn = max
λ∈SpA

|φ(λ)|n|θ(λ)|.

If γn → 0 at n→ ∞, then (44) gives the qualified estimate of the convergence rate
of approximations (34) to the solution of the equation (31) immediately for all functions
x0 и y, for which x0−x∗ ∈ θ(A)X. The condition x0−x∗ ∈ θ(A)X is difficult to check

on, since x∗ is unknown. However, it is satisfied if Ax0 − y ∈ θ̃(A), where the functions

θ and θ̃ are connected by the equation θ(λ) = λθ̃(λ). In this case, consequently, instead
of (44) we have the estimate

‖xn − x∗‖ ≤ γ̃n‖Ax0 − y‖
θ̃(A)X (Ax0 − y ∈ θ̃(A)X), (45)

where γ̃n = max
λ∈SpA

|φ(λ)|n|θ̃(λ)|.

It is natural that to prove γn → 0 at n→ ∞ and γ̃n → 0 at n→ ∞ we will need
an analogue of lemma 1.1:

Lemma 2.1. Let the function φ(λ) : SpA → R satisfy the conditions of the
theorem 2.1 and the function θ(λ) : SpA → R is such that from |φ(λ)| = 1 it follows
that θ(λ) = 0. Then

lim
n→∞

max
λ∈SpA

|φ(λ)|n|θ(λ)| = 0.

The proof of this lemma is absolutely analogous to the proof of lemma 1.1.
By virtue of the things mentioned above and lemma 2.1, it follows
Theorem 2.3. Let the conditions of theorem 2.1 be satisfied. Then:
a) if θ is the function defined on the spectrum SpA, for which from |φ(λ)| = 1 there

follows θ(λ) = 0, то γn → 0 and, consequently, at x0 − x∗ ∈ θ(A)X the convergence
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rate of the approximations (34) to the corresponding solution x∗ of the equation (1) is
estimated by the inequality (44);

b) if θ is the function defined on the spectrum SpA for which from |φ(λ)| = 1

it follows θ̃(λ) = 0, где θ̃(λ) = λ−1θ(λ), то γ̃n → 0, hence, at Ax0 − y ∈ θ̃(A)X
the convergence rate of the approximations (34) to the corresponding solution x∗ of the
equation (31) is estimated by the inequality (45).

The formulas (40) and (42), in their turn, result in the estimates

‖Axn − y‖ ≤ γn‖Ax0 − y‖θ(A)X (Ax0 − y ∈ θ(A)X), (46)

‖xn+1 − xn‖ ≤ γn‖x1 − x0‖ (x1 − x0 ∈ θ(A)X), (47)

where the sequence γn is again defined by the equation (44). From these considerations
and lemma 2.1 again it follows

Theorem 2.4. Let the conditions of the theorem 2.1 be satisfied and let θ be a
function defined on the spectrum SpA, for which from |φ(λ)| = 1 it follows θ(λ) = 0.
Then γn → 0 and, consequently, at Ax0 − y ∈ θ(A)X the convergence rate of the
residuals for approximations (34) to zero is estimated by the inequality (46) and at
x1 − x0 ∈ θ(A)X the convergence rate of the residuals for approximations (34) to zero
is estimated by the inequality (47).

2.4. Сonvergence in weakened norms. We continue to study the behaviour
of successive approximations xn+1 = φ(A)xn + ψ(A)y for the linear operator equation
Ax = y with a self-adjoint operator A, active in Hilbert space X in case when 0 is
a point of the spectrum of operator A. In a number of problems studying successive
approximations it is sufficient to determine their convergence in the norm which is
weaker than the initial norm of Hilbert space X. Similarly to what has been done, we
shall consider the norms

‖x‖0 = ‖Tx‖ (48)

where T is an operator with Ker T = 0 and such that TA = AT . In repeating
considerations п. 1.4, we will restrict ourselves by operators of the type

T = π(A) (49)

where π is a function, positive on SpA, the zeroes of which are not the eigenvalues of
operator A. In this case (48) is the norm, as from Tx = 0 it obviously follows that
x = 0.

Let us refer to [1], that the equations

xn = φn(A)x0 + (E + φ(A) + φ2(A) + φn−1(A))ψ(A)y,

x∗ = φn(A)x∗ + (E + φ(A) + φ2(A) + φn−1(A))ψ(A)y.

hold. Thus
xn − x∗ = φn(A)(x0 − x∗) (n = 0, 1, 2, . . .). (50)

hold. Here xn are the successive approximations xn+1 = φ(A)xn + ψ(A)y с x0 ∈ X, x∗
is the exact solution of the equation Ax = y.

From the equation (50) for norm (48) (with T , defined by the equation (50)) there
follows the equation

‖xn − x∗‖π(A)X = ‖π(A)φn(A)(x0 − x∗)‖,
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and, further,

‖xn − x∗‖
2
π(A)X =

∫

SpA

|π(λ)|2|φ(λ)|2n (dEλ(x0 − x∗), x0 − x∗),

hence,
‖xn − x∗‖π(A)X ≤ γn‖x0 − x∗‖,

where γn = maxλ∈SpA |π(λ)||φ(λ)|n.
By repeating the statements from п. 1.4, we arrive at the following assertion

supplementing the theorem of M.A. Krasnosel’skii.
Theorem 2.5. Let the conditions of theorem 2.1 be satisfied. Let π(±1) = 0 and

the equation Ax = y be solved. Then the successive approximations xn+1 = φ(A)xn +
ψ(A)y at any initial condition x0 ∈ X сonverge in norm (48) to the solution x∗ to the
equation Ax = y, for which Px∗ = Px0, where P is the orthoprojection on the set of
eigenvectors of the operator A, corresponding to the eigenvalue 0. Then this convergence
is uniform with respect to x0 − x∗ ∈ X from every bounded set.

It is sufficient to show that γn → 0 at n → ∞. But this fact follows immediately
from lemma 2.1, in which the function θ should be changed for the function π.

We underline that under the conditions of theorem 2.5 the requirement for the
sourcewise representability of the exact solution or the right-hand member of the
equation (31) is missing.

Theorem 2.5 is the analogue of theorem 1.5. The constructions described above
allow to formulate the analogues of theorem 1.6 оn the convergence to zero of the
residuals and corrections in norms (48) at the corresponding choice of functions π for
the equations of the first order (31). We confine ourselves here only to the corresponding
definition.

Theorem 2.6. Let the conditions of theorem 2.1 be satisfied. Let π(±1) = 0
and Py = 0, where P is an orthoprojection on the subspace of the eigenvectors of
the operator A, corresponding to the eigenvalue 0. Then the residuals Axn − y and
the corrections xn+1 − xn for successive approximations (34) at any initial condition
x0 ∈ X converge in norm (49) to zero. Also this convergence is uniform with respect to
Ax0 − y ∈ X and, consequently, x1 − x0 on every bounded set.

2.5. The convergence of approximations at imperfect data and and in

the occurrence of errors. Let the conditions of theorem 2.1 be again satisfied for
the self-adjoint operator A, while ‖φ(A)‖ = 1 and, consequently, ρ(φ(A)) = 1. Let
the equation (31) be solved. In this case the successive approximations (34) converge
to one of the solutions x∗ to the equation (31). Instead of exact approximations (34),
we consider now the approximations for the case when the right-hand member of the
equation (31) is calculated at every step n with an error not exceeding δn. These new
approximations x̃n are written in the form

x̃n+1 = φ(A)x̃n + ψ(A)yn (n = 0, 1, 2, , . . .) (51)

with the approximate right-hand member yn, ‖yn − y‖ ≤ δn. As it is easily seen, from
the equalities (34), there follow the equalities

x̃n = φn(A)x0 + (ψ(A)yn−1 + φ(A)ψ(A)yn−2 + . . .+ φn−1ψ(A)y0)
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valid at all n = 0, 1, 2, . . .).
Consequently from (34)

x̃n − xn = ψ(A)(yn−1 − y) + φ(A)ψ(A)(yn−2 − y) + . . .+ φn−1ψ(A)(y0 − y),

and, by virtue of ‖φ(A)‖ = 1,

‖x̃n − xn‖ ≤ ‖ψ(A)‖ ‖yn−1 − y‖+ ‖ψ(A)‖ ‖yn−2 − y‖+ . . .+ ‖ψ(A)‖ ‖y0 − y‖,

and, finally,

‖x̃n − xn‖ = ‖ψ(A)‖ (δ0 + δ1 + . . .+ δn−1) (n = 0, 1, 2, . . .).

Since ‖x̃n − x∗‖ ≤ ‖xn − x∗‖+ ‖x̃n − xn‖, then it follows from the last inequality

‖x̃n − x∗‖ = ‖xn − x∗‖+ ‖ψ(A)‖ (δ0 + δ1 + . . .+ δn−1) (n = 0, 1, 2, . . .). (52)

Let
c = max

λ∈SpA
|ψ(λ)|. (53)

It follows from the spectral theorem for self-adjoint operators that this number coincides
with ‖ψ(A)‖. Therefore, from (52) и (53) the analogous (25) estimate

‖x̃n − x∗‖ = ‖xn − x∗‖+ c(δ0 + δ1 + . . .+ δn−1) (n = 0, 1, 2, . . .) (54)

follows. One can apply lemma 1.2. to the right-hand member of this inequality. From
it correlations (26) and (28) follow and, further, the analogue of theorem 1.7. In other
words, the following holds

Theorem 2.7. Let the conditions of theorem 2.1 be satisfied, and let the approximations
(34) at every step n = 0, 1, 2, . . . are calculated with errors not exceeding δn > 0, while
(δn) ∈ L, where L is a Banach space of sequences with monotonic norm. Then, the
approximations (51) «quasiconverge» in the above sense to the corresponding solution
x∗ to the equation (31), that is, the relation

lim
n→∞,‖σn‖δ→0

‖x̃n − x∗‖ = 0holds. (55)

2.6. The main example. We can also consider here the equation

tx(t) = y(t).

as an example in the space X = L2(Ω), where Ω is some bounded closed set the straight
line R c 0 ∈ Ω. This equation is solvable in X, if and only if t−1y(t) ∈ L2(Ω). The
successive approximations (51) in this case are such that

xn+1(t) = φ(t)xn(t) + ψ(t)y(t)

or, which is just the same,

xn(t) = φ(t)nx0(t) + (1 + φ(t) + φ2(t) + . . .+ φn−1(t))ψ(t)y(t).
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On satisfying the conditions of the corresponding theorem of this paragraph, these
successive approximations converge inX (at any x0(t) ∈ L2(Ω)) to the function t−1y(t),
which, under the assumption of the solvability of the equation, belongs to L2(Ω). The
equation in this example is not correct. Similar to the equations of the second order,
the analogous situation also takes place if X = L2(Ω, σ), where σ is some measure on
Ω, when σ({−1}) = 0.

As it is mentioned in п. 1.6, the given example is of a sufficiently general character.

§ 3. Partial iteration methods for the equations of the first order

3.1. Implicit iterative schemes. By choosing various functions φ(λ) и ψ(λ),
which satisfy conditions a), b), c) of the theorem 2.1, we obtain various iterative schemes
of approximate constructing the solutions of the equation (31). We will confine ourselves
here to several examples (cf. [9, 10, 13, 14], where they are studied from the another
aspect).

First of all, we consider (see [14]) the iteration method (34), соrresponding to the
polynomial

φ(λ) = (1− αλ)k (56)

(k is a natural number, α > 0). For it

ψ(λ) =
1− (1− αλ)k

λ
(57)

and, further, condition b) of the theorem 2.1 is satisfied if SpA ⊆

[
0,

2

α

]
, while

condition c), if λ =
2

α
is not the eigenvalue of the operator A. Correspondingly, the

iterations (34) take the form

xn+1 = (E − αA)kxn + A−1[E − (E − αA)k]y (n = 0, 1, 2, . . .). (58)

For this method it is most convenient to take function θ(λ) = λs as the function
θ(λ) (s is some positive number). This function satisfies the conditions of the theorem

2.3, if SpA ⊆ [0,M ], where M <
2

α
. The sequence (γn), defined by the equation

γn = max
λ∈SpA

|φ(λ)|n|θ(λ)|, will be estimated at M ≤
1

α
by the equality

γn =

(
s

α(s+ kn)

)s(
kn

s+ kn

)kn

(n = 0, 1, 2, . . .)

and at
1

α
< M <

2

α
by the equation

γn = max

{(
s

α(s+ kn)

)s(
kn

s+ kn

)kn

, Ms(1− αM)kn
}

(n = 0, 1, 2, . . .).

As it is clearly seen, in both cases,the correlation

γn ∼

(
s

eαk

)s
1

ns
. (59)
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holds
We consider now (see [14]) the iteration method (34), соrrelating tо the polynomial

φ(λ) = (1− αλk) (60)

(k is a natural number, α > 0). For it

ψ(λ) = αλk−1. (61)

Condition b) of the theorem 2.1 at even k is satisfied if SpA ⊆

[
−

(
2

α

) 1

k

,

(
2

α

) 1

k
]

and at odd k, if SpA ⊆

[
0,

(
2

α

) 1

k
]
. Further, condition c) is satisfied if λ = ±

(
2

α

) 1

k

in the first case and λ =

(
2

α

) 1

k

in the second case are not the eigenvalue of operator

A. Соrrespondingly, the iterations (34) are as follows

xn+1 = (E − αAk)xn + αAk−1y (n = 0, 1, 2, . . .). (62)

For this method it is also most convenient to take the function θ(λ) = λs as
the function θ(λ) (s is some positive number). The conditions of the theorem 2.3 are

satisfied if SpA ⊆ [−M,M ] at even k and SpA ⊆ [0,M ] at odd k, where M <

(
2

α

) 1

k

.

The sequence (γn), defined by the equation γn = max
λ∈SpA

|φ(λ)|n|θ(λ)|, will be estimated

at M ≤

(
2

α

) 1

k

by the equation

γn =

(
s

α(s+ kn)

) s
k
(

kn

s+ kn

)n

(n = 0, 1, 2, . . .)

and at

(
1

α

) 1

k

< M <

(
2

α

) 1

k

by the equation

γn = max

{(
s

α(s+ kn)

) s
k
(

kn

s+ kn

)n

, Ms(1− αMk)n
}

(n = 0, 1, 2, . . .).

It is clearly seen that in both cases the correlation

γn ∼

(
s

eαk

) s
k 1

n
s
k

(63)

holds.
The comparison of equations (59) и (63) shows that, что at θ(λ) = λs method

(58) converges asymptotically better than method (62).
3.2. The implicit iterative schemes. Let us first consider the case φ(λ) =

1

1 + αλk
(α > 0) and, соrrespondingly, ψ(λ) =

αλk−1

1 + αλk
. In this case we deal with the

implicit method of iterations defined by the formulas

(E + αAk)xn+1 = xn + αAk−1y (n = 0, 1, 2, . . .). (64)
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Condition b) of the theorem 2.1, at even k, is satisfied at SpA ⊆ (−∞,∞) (т.е., всегда)
and at odd k, if SpA ⊆ [0,∞). Further, condition c) is always satisfied.

In order to use the theorem 2.3, we again consider the case θ(λ) = λs; here s
is any positive number if SpA ⊆ [0,∞) and a rational positive number with an even

denominator, if SpA ∩ (−∞, 0). Simple calculations show that γn = 1 for n ≤
s

k
and

for n >
s

k

γn =

(
s

nk − s

)s(
nk − s

nk

)n

∼

(
s

eαk

) s
k 1

n
s
k

. (65)

Similarly, we examine the case φ(λ) =
1− αλk

1 + αλk
(α is a positive number) and,

correspondingly, ψ(λ) =
2αλk−1

1 + αλk
. The iteration method (51) in this case coincides

with the implicit method of iterations defined by the equations

(E + αAk)xn+1 = (E − αAk)xn + 2αAk−1y (n = 0, 1, 2, . . .). (66)

Condition b) of the theorem 2.1 at even k is satisfied at SpA ⊆ (−∞,∞) (i.e., always)
and at odd k, if SpA ⊆ [0,∞). Further, condition c) is always satisfied.

For applying the theorem 2.3 we again consider the case θ(λ) = λs; here s is
any positive number, if SpA ⊆ [0,∞) и and a rational positive number with an even
denominator, if SpA ∩ (−∞, 0) 6= ∅. The calculations of constant γn result in rather
cumbersome formulas. Therefore, we confine ourselves to clarifying their asymptotic
behaviour at n → ∞. Actually, γn = max

λ∈SpA
λs(1 − αλk)n(1 + αλk)−n. The derivative

of the function ξ(λ) = λs(1− αλk)n(1 + αλk)−n is defined by the equation

ξ′(λ) = λs−1(1− αλk)n−1(1 + αλk)−n−1 ((s− sα2λ2k)− 2nkαλk).

At big n this derivative turns into zero in the point λ = λn, для которой

s(αλk)2 + 2nk(αλk)− s = 0,

from where

αλk =

√(
nk

s

)2

+ 1−
nk

s
=

1√(
nk

s

)2

+ 1 +
nk

s

∼
s

2k
·
1

n
. (67)

Hence, at λ = λn,

γn = λs
(
1− αλk

1 + αλk

)n

∼

(
s

2eαk

) s
k

·
1

n
s
k

. (68)

Finally, let us consider another case when φ(λ) =
(1− αλk)2

1 + α2λ2k
, α > 0, and,

consequently, ψ(λ) =
2αλk−1

1 + α2λ2k
. In this case we obtain the following iteration method

(E + α2A2k)xn+1 = (E − αAk)2xn + 2αAk−1y (n = 0, 1, 2, . . .). (69)
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At odd k, we obtain that the conditions of the theorem 2.1 are satisfied if SpA ⊆ [0,∞),
while at even k we get that the conditions of the theorem 2.1 are satisfied at all times.

For applying the theorem 2.3 we again consider the case θ(λ) = λs; here s is any
positive number. The calculations of constant γn сomes down here to the analysis of
the roots of some cubic equation. However, the asymptotic behaviour of these roots is
defined rather simply; it turns out that for λ = λn the correlation

λ ∼

(
s

2kα

) 1

k

·
1

n
1

k

holds, and therefore

γn ∼

(
s

2keα

) s
k

·
1

n
s
k

. (70)

The comparison of correlations (65), (68), (70) shows that the convergence rate
of all the three methods considered in this paragraph is asymptotically equal.
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