Показать сокращенную информацию

dc.contributor.authorMonakhov, Victor
dc.contributor.authorTrofimuk, Alexander
dc.date.accessioned2020-11-10T15:24:30Z
dc.date.available2020-11-10T15:24:30Z
dc.date.issued2019
dc.identifier.citationMonakhov, V.S. Finite groups with two supersoluble subgroups / V.S. Monakhov, A.A. Trofimuk // J. Group Theory. – 2019. – Vol. 22. – P. 297–312.ru_RU
dc.identifier.urihttp://rep.brsu.by:80/handle/123456789/4631
dc.description.abstractLet G be a finite group. In this paper we obtain some sufficient conditions for the supersolubility of G with two supersoluble non-conjugate subgroups H and K of prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove that G is supersoluble in the following cases: one of the subgroups H or K is nilpotent; the derived subgroup G0 of G is nilpotent; jG W Hj D q > r D jG W Kj and H is normal in G. Also the supersolubility of G with two non-conjugate maximal subgroupsM and V is obtained in the following cases: all Sylow subgroups of M and of V are seminormal in G; all maximal subgroups of M and of V are seminormal in G.ru_RU
dc.language.isoenru_RU
dc.publisherde Gruyterru_RU
dc.titleFinite groups with two supersoluble subgroupsru_RU
dc.typeArticleru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию