Показать сокращенную информацию

dc.contributor.authorMonakhov, Victor
dc.contributor.authorTrofimuk, Alexander
dc.date.accessioned2020-11-10T15:12:40Z
dc.date.available2020-11-10T15:12:40Z
dc.date.issued2018
dc.identifier.citationMonakhov, V.S. Supersolubility of a finite group with normally embedded maximal subgroups in Sylow subgroups / V.S. Monakhov, A.A. Trofimuk // Siberian Math. J. –2018. – Vol. 59, №5. – P. 922–930.ru_RU
dc.identifier.urihttp://rep.brsu.by:80/handle/123456789/4628
dc.description.abstractA subgroup A is called seminormal in a group G if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. Studying a group of the form G = AB with seminormal supersoluble subgroups A and B, we prove that GU = (G )N. Moreover, if the indices of the subgroups A and B of G are coprime then GU = GN2 . Here N, U, and N2 are the formations of all nilpotent, supersoluble, and metanilpotent groups respectively, while HX is the X-residual of H. We also prove the supersolubility of G = AB when all Sylow subgroups of A and B are seminormal in G.ru_RU
dc.language.isoenru_RU
dc.publisherPleiades Publishing, Ltd.,ru_RU
dc.titleSupersolubility of a finite group with normally embedded maximal subgroups in Sylow subgroupsru_RU
dc.typeArticleru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию