Показать сокращенную информацию

dc.contributor.authorМонахов, В.С.
dc.contributor.authorКнягина, В.Н.
dc.contributor.authorЗубей, Е.В.
dc.date.accessioned2020-10-28T16:20:29Z
dc.date.available2020-10-28T16:20:29Z
dc.date.issued2018
dc.identifier.citationЗубей, E. В. О разрешимости конечной группы с S-полунормальными подгруппами Шмидта / Е.В. Зубей, В. Н. Княгина, В. С. Монахов // Укр. мат. журн. – 2018. – Т. 70, № 11. – С. 1511–1518.ru_RU
dc.identifier.urihttp://rep.brsu.by:80/handle/123456789/2994
dc.description.abstractA finite nonnilpotent group is called a Schmidt group if all its proper subgroups are nilpotent. A subgroup A is called S-seminormal (or SS-permutable) in a finite group G if there is a subgroup B such that G = AB and A is permutable with every Sylow subgroup of B. We establish criteria for the solvability and pi-solvability of finite groups in which some Schmidt subgroups are S-seminormal. In particular, we prove the solvability of a finite group in which all supersoluble Schmidt subgroups of even order are S-seminormal.ru_RU
dc.language.isoenru_RU
dc.titleО разрешимости конечной группы с S-полунормальными подгруппами Шмидтаru_RU
dc.typeArticleru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию