Показать сокращенную информацию

dc.contributor.authorКузьмич, А.М.
dc.contributor.authorБурый, А.В.
dc.contributor.authorОвсиюк, Е.М.
dc.date.accessioned2024-12-18T08:16:43Z
dc.date.available2024-12-18T08:16:43Z
dc.date.issued2024
dc.identifier.citationКузьмич, А. М. Уравнения Максвелла в пространстве Лобачевского и моделирование среды со специальными свойствами / А. М. Кузьмич, А. В. Бурый, Е. М. Овсиюк // Известия Коми научного центра Уральского отделения Российской академии наук. Серия «Физико-математические науки». – 2024. – № 5 (71). – С. 58–63.ru_RU
dc.identifier.issn1994-5655
dc.identifier.urihttp://rep.brsu.by:80/handle/123456789/10213
dc.description.abstractLobachevsky geometry simulates a medium with special constitutive relations. The situation is specified in quasi-Cartesian coordinates (x, y, z) in Lobachevsky space, they are appropriate for modeling a medium nonuniform along the axis z . Exact solutions of the Maxwell equations in complex form of Majorana – Oppenheimer have been constructed. The problem reduces to a second order differential equation for a certain primary function which can be associated with the one-dimensional Schrödinger problem for a particle in external potential field. In the frames of the quantum mechanics, the Lobachevsky geometry acts as an effective potential barrier with reflection coefficient R =1; in electrodynamic context results are similar: this geometry simulates a medium that effectively acts as an ideal mirror distributed in space. Penetration of the electromagnetic field into the effective medium along the axis z , depends on the parameters of an electromagnetic waves , and the curvature radius of the used Lobachevsky model. The generalized quasi-plane wave solutions and the relevant system of equations are transformed the real form, which permit us to relate geometry characteristics with expressions for effective tensors of electric and magnetic permittivities.ru_RU
dc.language.isoruru_RU
dc.publisherУчреждение Российской академии наук Коми научный центр Уральского отделения РАНru_RU
dc.relation.ispartofseriesФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ;
dc.subjectMaxwell equationsru_RU
dc.subjectMajorana – Oppenheimer formalismru_RU
dc.subjectLobachevsky geometryru_RU
dc.subjectexact solutionsru_RU
dc.subjecteffective constitutive relationsru_RU
dc.titleMaxwell equations in Lobachevsky space, and modeling the medium with reflecting propertiesru_RU
dc.title.alternativeУравнения Максвелла в пространстве Лобачевского, моделирование среды со специальными свойствамиru_RU
dc.typeArticleru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию