Nuclear spin polarization and strong magnetic fields in astrophysics

A.I. Sery

Brest State A.S. Pushkin University, Kosmonavtov Boulevard 21, 224016 Brest, Belarus E-mail: alexey sery@mail.ru

The research is done according to the suggestion of V.G. Baryshevsky and V.V. Tikhomirov. Since existence of nuclear pseudomagnetic field [1, p. 55] is confirmed experimentally, there is a possibility of spontaneous spin polarization of nucleons at high densities, and it can affect magnetic fields B in astrophysics. We consider Stoner criterion [2, p. 187, 198], beta-equilibrium equation and Fermi-liquid approach [3] for degenerate neutron-proton-electron system. $\alpha = (n_n - n_p)/(n_n + n_p)$ is isospin asymmetry parameter (n_n, n_p) are nucleon densities).

Table 1 - Nucleon or nucleon-electron system at different conditions.

Examples	Where	α	chemical equilibrium	T=0 K
				approximation
White dwarfs	under H-envelopes	≈-1	is necessary	is good
Type II SNae	in ejected mass	≈ 0	is not necessary	is bad
Neutron stars	in liquid cores	≈1	is necessary	is good

Table 2 - Numerical values of B (examples of calculations and observations).

Objects	$n_n + n_p, \mathrm{fm}^{-3}$	B, Gs (calc.)	B, Gs (observ.)
White dwarfs	$\sim 10^{-8}$	the results are not reliable	$\sim 10^4 - 10^8$
Type II SNae	~ 0.002	$\sim 10^{11}$?
Neutron stars	$\sim 0.1 - 0.2$	$\sim 10^{14}$	$\sim 10^{10} - 10^{14}$

It is possible that the age of white dwarfs with $B\sim 10^8~{\rm Gs}$ is $\ll 10^5~{\rm yearm}$ (the time of hydrogen burning) when the probability of nuclear spin polarization in higher. Magnetic fields of Type II Supernovae can affect further nucleosynthesis.

- [1] V.G. Baryshevskii. *Nuclear Optics of Polarized Media* [in Russian]: Moscow, Energoatomizdat (1995).
- [2] L.S. Levitov, A.V. Shitov. *Green Functions* [in Russian]: Moscow, Fizurallit (2003).
- [3] A.A. Isayev, J. Yang. Spin polarized states in nuclear matter with Skyrme of fective interaction: arXiv: nucl-th/0403059 v1 20 Mar 2004.