УДК 372.853

А.И. СЕРЫЙ

К ВОПРОСУ О ЧИСЛЕННОМ И АНАЛИТИЧЕСКОМ РЕШЕНИИ УРАВНЕНИЙ В КУРСАХ ФИЗИКИ

Уравнения, встречающиеся в большинстве учебников и задачников по физике, как правило, имеют аналитические решения, а многие уравнения, зачастую точнее описывающие физическую реальность, но решаемые лишь численно, либо вовсе остаются «за кадром», либо иногда появляются в курсах по программированию, либо в курсовых и дипломных работах у

отдельно взятых студентов, т.е., по сути, оторваны от решаемых аналитически. Кроме того, курсы общей физики систематизированы по исторически сложившимся разделам, а курс математической физики систематизирован лишь по типам дифференциальных уравнений в частных производных, причем таких, которые решаются аналитически. Попробуем расширить систематизацию уравнений и систем с математической точки зрения.

Примеры отдельных уравнений из различных разделов физики рассмотрим в таблице 1.

Таблица 1 – Отдельные уравнения в курсах физики

Уравнения	Решаемые аналитически	Решаемые численно
Нелинейные алгеб-	для нахождения моментов	для нахождения постоянной Ви-
раические	времени, в которые под-	на [1, с. 31]
	брошенное вверх тело бу-	
	дет находиться на задан-	
	ной высоте	
Обыкновенные	1-мерное Шредингера для	Шредингера для потенциала Ри-
дифференциальные	прямоугольной ямы	да; Томаса-Ферми в теории
	[1, c. 78]	атома [2, с. 290]
Дифференциальные	3-мерное Шредингера с	Навье-Стокса [3, с. 16]
в частных произ-	кулоновским потенциалом	
водных	[1, c. 93]	
Интегральные	Смолуховского в частных	Смолуховского в общем случае
	случаях [4, с. 454]	[4, c. 454]
Интегро-	кинетическое Больцмана с	кинетическое Больцмана с инте-
дифференциальные	интегралом столкновений в	гралом столкновений в общем
	частных случаях [4, с. 469]	случае [4, с. 469]

Некоторые примеры систем уравнений рассмотрим в таблице 2.

Таблица 2 – Системы уравнений в курсах физики

Системы уравнений	Решаемые аналитически	Решаемые численно
Нелинейных алгеб-	для получения формулы	для нахождения степени спино-
раических	комптоновского сдвига	вой поляризации нейтронов и
	[1, c. 43]	протонов в нейтронно-протон-
		ном веществе [5, с. 56]
Обыкновенных	для тела, брошенного под	Эйлера в динамике вращатель-
дифференциальных	углом к горизонту, без	ного движения в общем виде
	учета сопротивления воз-	[6, c. 495]
	духа	
Дифференциальных	система уравнений Мак-	система уравнений гидродина-
в частных произ-	свелла в частных случаях	мики несжимаемой жидкости в
водных	[3, c. 40]	общем случае [3, с. 16]
Интегральных	дисперсионные соотноше-	дисперсионные соотношения в
	ния в частных случаях	общем случае [3, с. 56]
	[3, c. 56]	

Здесь возможны следующие замечания: 1. Данную систематизацию можно сделать более подробной, составив аналогичные таблицы для всех исторически сложившихся разделов физики. 2. Линейные уравнения и их системы здесь не рассматривались, т.к. для них решения (если они существуют, т.е. система совместна) всегда могут быть аналитическими.

СПИСОК ЛИТЕРАТУРЫ

- 1. Савельев, И.В. Курс общей физики: учеб. пособие: в 3 т. Т. 3. Квантовая оптика. Атомная физика. Физика атомного ядра и элементарных частиц / И.В. Савельев. М.: Наука, 1987. 320 с.
- 2. Ландау, Л.Д. Квантовая механика (нерелятивистская теория) / Л.Д. Ландау, Е.М. Лифшиц. М.: Физматгиз, 1963. 704 с.
- 3. Сборник задач по теоретической физике / Л.Г. Гречко [и др.]. М.: Высш. шк., 1984. –319 с.
- 4. Румер, Ю.Б. Термодинамика, статистическая физика и кинетика : учеб. пособие / Ю.Б. Румер, М.Ш. Рывкин. 2-е изд. Новосибирск: Издво Новосиб. ун-та, 2000. 608 с.
- 5. Серый, А.И. О поправках к критерию Стонера для ядерной материи / А.И. Серый // Весн. Брэсц. ун-та. Серыя 4, Фізіка. Матэматыка. 2013. № 2. С. 48—60.
- 6. Физическая энциклопедия : в 5 т. / гл. ред. А.М. Прохоров ; редкол.: Д.М. Алексеев [и др]. М. : Большая рос. энцикл., 1998. Т. 5 : Стробоскопические приборы Яркость. 691 с.