УДК 372.853+537

А.И. СЕРЫЙ

Брест, БрГУ имени А. С. Пушкина

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА СКАЛЯРНОГО И ВЕКТОРНОГО ПОТЕНЦИАЛОВ В ЭЛЕКТРОДИНАМИКЕ

В разделе «Электродинамика» курса теоретической физики присутствуют главы, посвященные электростатике и магнитостатике. Для обобще-

ния и закрепления материала представляется интересным дать сравнительную характеристику скалярного потенциала электростатического поля φ [1, с. 75] и векторного потенциала магнитного поля \vec{A} [1, с. 293]. Для этих целей составлена предложенная ниже таблица.

Таблица — Сравнительный анализ потенциалов $\, \varphi \,$ и $\, \vec{A} \,$

	Г	
	φ	$ec{A}$
1. Величина	скалярная	векторная
2. Физический смысл	существует для разности потенциалов	отсутствует
3.1. Связь с силовой характеристикой (СХ) поля	$ec{E} = -ec{ abla} arphi$	$\vec{B} = rot\vec{A}$
3.2. Алгоритм вывода	проще (выражение для работы	сложнее (формула для
формулы в п. 3.1 с мате-	через: а) разность потенциалов	объемных токов и ее
матической точки зрения	и заряд; б) путь и силу, выра-	преобразования на осно-
	жаемую через заряд и напря-	ве соотношений вектор-
	женность поля)	ного анализа)
4. Получающиеся урав-	оказываются более удобными для исследования по срав-	
нения поля	нению с уравнениями первого порядка для СХ полей	
5.1. Определяется с точ-	произвольной константы C	градиента произвольной
ностью до		скалярной функции χ
5.2. Иными словами, по-	φ и $\varphi' = \varphi + C$ соответствует	\vec{A} и $\vec{A}' = \vec{A} + grad\chi$ co-
тенциалам	одно и то же поле $ec{E}$	ответствует одно и то же
		поле \vec{B}
5.3. Это объясняется	тем, что $\vec{\nabla}C \equiv \vec{0}$	тем, что $rotgrad\chi \equiv \vec{0}$

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Сивухин, Д. В. Общий курс физики : учеб. пособие для вузов : в 5 т. / Д. В. Сивухин. – М. : Наука, 1977. – Т. 3 : Электричество. – 688 с.