А. А. СВИРЕПА, А. И. СЕРЫЙ

К ВОПРОСУ ОБ УСТОЙЧИВОСТИ ФАЗЫ ТВЕРДОГО ТЕЛА В СВЕРХПЛОТНОМ ЭЛЕКТРОННО-ЯДЕРНОМ ВЕЩЕСТВЕ

В исследованиях сверхплотного вещества важное место занимает вопрос о критерии устойчивости фазы твердого тела, в том числе при наличии внешнего магнитного поля (МП). Представляется интересным сопоставить такие критерии для холодного и горячего вещества. Ниже это сделано в виде таблицы, при составлении которой были использованы сведения из [1, с. 106]. При этом использованы следующие обозначения: ρ – плотность, A – массовое число, Z – зарядовое число, T – абсолютная температура, $u = \omega_B/\omega_0$, ω_0 – частота нулевых колебаний ядра в ячейке кристаллической решетки, ω_B – гиромагнитная частота при наличии внешнего МП. Таблица может быть использована как в процессе преподавания астрономии и физики атомного ядра, так и в научных исследованиях для более четкого выбора направления исследований и для составления сравнительных таблиц по другим вопросам данной тематики.

Таблица — Устойчивость фазы твердого тела для холодного и горячего электронно-нуклонного вещества

	Холодное вещество	Горячее вещество
Критерий устойчиво-	$ \rho^{1/6} \le 1,68ZA^{2/3} $, или	$\rho^{1/3} \ge 2,65 \cdot 10^{-4} TZ^{-2} A^{1/3}$
сти фазы твердого тела без МП	$\rho \le 21,4Z^6A^4 \ (\Gamma/\text{cm}^3)$	или $\rho \ge 1.86 \cdot 10^{-11} T^3 Z^{-6} A$
Tella des Ivill		(Γ/cm^3)
То же с МП	$^{1/6} < 0.1$ 50,5 $ZA^{2/3}$	$\rho^{1/3} \ge 2,65 \cdot 10^{-4} TZ^{-2} A^{1/3}$
	$ ho^{1/6} \le 0,1 rac{50,5ZA^{2/3}}{2\sqrt{1+u^2}+1}$, или	или $\rho \ge 1.86 \cdot 10^{-11} T^3 Z^{-6} A$
	4 6 4	$(\Gamma/\text{см}^3)$, отсутствует зави-
	$\rho \leq \frac{1.56 \cdot 10^4 Z^6 A^4}{\sqrt{10^4 - 10^4 A^4}} (\Gamma/\text{cm}^3)$	симость от параметра и
	$\rho \le \frac{1,56 \cdot 10^4 Z^6 A^4}{\left(2\sqrt{1+u^2} + 1\right)^6} \ (\Gamma/\text{cm}^3)$	
Т. е. критерии при	различаются (совпадение при	совпадают
наличии МП и в его	u = 0, что соответствует исчез-	
отсутствие	новению магнитного поля)	

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Секержицкий, В. С. Равновесные системы фермионов и бозонов в магнитных полях : монография / В. С. Секержицкий ; Брест. гос. унтим. А. С. Пушкина. – Брест : Изд-во БрГУ, 2008. – 198 с.