УДК 378.147:51

И. А. ДОРДЮК, Н. Н. СЕНДЕР

Брест, БрГУ имени А. С. Пушкина

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ. ПРИБЛИЖЕННОЕ РЕШЕНИЕ

Рассмотрим контур, в котором последовательно с индуктивностью включено сопротивление R (рисунок 1).

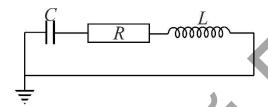


Рисунок 1

Будем считать, что R мало. Если R совсем не принимать во внимание, то мы получим схему без R. Если при t=0 было $\varphi=\varphi_0$, I=0 , то из формул (1) получаем (2):

$$\varphi = \frac{I_0}{C\omega} \sin \omega t + \varphi_0 \cos \omega t, \quad I = I_0 \cos \omega t - C\varphi_0 \omega \sin \omega t,$$

$$\varphi = \varphi_0 \cos \omega t, \quad I = I_m \sin \omega (t + \pi),$$
(2)

$$\varphi = \varphi_0 \cos \omega t, \ I = I_m \sin \omega (t + \pi), \tag{2}$$

где положено

$$I_m = C\varphi_0\omega, \ \omega = \frac{1}{\sqrt{LC}}.$$
 (3)

При этом полная энергия $W = \frac{C\varphi_0^2}{2}$, или, пользуясь (3), можно записать также

$$W = \frac{LI_m^2}{2}. (4)$$

При наличии сопротивления происходит превращение электрической энергии в тепловую. Тепловая мощность P равна

$$P = RI^{2} = RI_{m}^{2} \sin^{2}(\omega t + \pi) = RI_{m}^{2} \sin^{2}\omega t = \frac{RI_{m}^{2}}{2}(1 - \cos 2\omega t).$$
 (5)

Тепловая мощность при электрических колебаниях не остается постоянной. На протяжении каждого периода P дважды достигает максимума и дважды обращается в нуль (знак ее, конечно, не изменяется). Найдем среднее значение P за период.

Из формулы (5) находим $\bar{P} = \frac{RI_m^2}{2}(1 - \overline{\cos 2\omega t})$. Вспоминая, что среднее

значение косинуса за период равно нулю, получаем $\bar{P} = \frac{RI_m^2}{2}$.

Выделение тепла на сопротивлении R может происходить только за счет уменьшения электрической энергии W. Поэтому

$$\frac{dW}{dt} = -P. (6)$$

Мы предположили, что R мало, значит, и P мало. Энергия колебаний убывает медленно, значительное изменение энергии заметно лишь по истечении нескольких периодов. Рассматривая промежутки времени, большие по сравнению с периодом колебаний T, заменим в правой части (6) P на \overline{P} :

$$\frac{dW}{dt} = -\bar{P} = -\frac{RI_m^2}{2}. (7)$$

Поскольку энергия W медленно меняется, то из (4) видим, что и I_m есть медленно меняющаяся величина. Выразив I_m из (4), получим:

$$I_m = \sqrt{\frac{2W}{L}}. (8)$$

Пользуясь (8), получаем из (7) $\frac{dW}{dt} = -\frac{R}{L}W$.

Решение этого уравнения есть $W=W_0e^{-(R/L)t}$, где W_0 — это значение W при t=0. Поэтому согласно (8) $I_m=\sqrt{\frac{2W_0}{L}}e^{-Rt/(2L)}$.

Тогда

$$I = \sqrt{\frac{2W_0}{L}}e^{-Rt/(2L)}\sin(\omega t + \pi). \tag{9}$$

Вспоминая, что $\varphi = \varphi_0 \cos \omega t$, а $\varphi_0 = \frac{I_m}{C\omega}$, получаем

$$\varphi_m = \frac{I_m}{C\omega}\cos\omega t = \frac{1}{C\omega}\sqrt{\frac{2W_0}{L}}e^{-Rt/(2L)}\cos\omega t. \tag{10}$$

Формулы (9) и (10) показывают, что при наличии небольшого сопротивления электрические колебания затухают по показательному закону.

УДК 530.10

А.В.ЗАРЕЦКИЙ

Брест, БрГУ имени А. С. Пушкина

ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА $Bi_{1-x}Sb_x$ В ИНТЕРВАЛЕ КОНЦЕНТРАЦИЙ X=0–0,25

Твердые растворы между полуметаллами Bi и Sb известны как лучшие термоэлектрические (ТЭ) материалы n-типа и перспективные термомагнитные материалы для температур ниже $\sim \!\! 150$. Только в этих материалах достигаются самые высокие значения ТЭ добротности $Z = (S^2 \ \sigma) \ / \ \lambda$, где S - коэффициент Зеебека, $\sigma -$ коэффициент электропроводности и $\lambda -$ коэффициент теплопроводности.

Во-первых, до х ~ 0,12, несмотря на немонотонный, осциллирующий характер этих кривых, имеет место тенденция к росту S и R_H при увеличении x. Во-вторых, в обоих случаях в концентрационных интервалах x = 0,01-0,015, x = 0,025-0,035 и $x \sim 0,05-0,10$ на зависимостях S(x) и $R_H(x)$ наблюдается аномальное уменьшение S и R_H при увеличении содержания сурьмы. В-третьих, положение максимумов и минимумов на зависимостях S(x) и $R_H(x)$ практически совпадают для концентрационных интервалов x = 0,01-0,015 и x = 0,025-0,035 (хотя измерения S и R_H проводились независимо друг от друга), но отличаются для интервала $x \sim 0,05-0,10$: на зависимости $R_H(x)$ в интервале составов x = 0,05-0,10 наблюдаются два участка аномального снижения RH в отличие от S, где наблюдается один минимум вблизи $x \sim 0,07$.

Из зависимости $\sigma(x)$ видно, что во всем исследованном интервале составов (x=0–0,25) при общем немонотонном характере кривой наблюдается тенденция к падению электропроводности с ростом x. В области составов x=0–0,1, как и в случае S и R_H , имеют место концентрационные аномалии (рост σ при увеличении x), причем максимумам на кривых S