К. С. ШЛОЙДА, О. В. МАТЫСИК

Беларусь, Брест, УО «БрГУ имени А. С. Пушкина»

СХОДИМОСТЬ МЕТОДА ИТЕРАЦИЙ К РЕШЕНИЮ С МИНИМАЛЬНОЙ НОРМОЙ ЛИНЕЙНОГО УРАВНЕНИЯ

В работе для решения линейного некорректного уравнения

$$Ax = y \tag{1}$$

с действующим в гильбертовом пространстве H ограниченным положительным самосопряженным оператором $A \colon H \to H$ предлагается новый неявный итерационный метод

$$(E + \alpha A)x_{n+1} = (E - \alpha A)x_n + 2\alpha y, x_0 = 0.$$
 (2)

Покажем, что метод (2) пригоден и тогда, когда $\lambda=0$ – собственное значение оператора A (случай неединственного решения уравнения (1)). Обозначим через $N(A)=\{x\in H\mid Ax=0\},\ M(A)$ – ортогональное дополнение ядра N(A) до H . Пусть P(A)x – проекция $x\in H$ на N(A), а $\Pi(A)x$ – проекция $x\in H$ на M(A). Справедлива

Теорема. Пусть $A \ge 0$, $y \in H$, $\alpha > 0$. Тогда для итерационного процесса (2) верны следующие утверждения:

a)
$$Ax_n \to \Pi(A)y$$
, $||Ax_n - y|| \to I(A, y) = \inf_{x \in H} ||Ax - y||$;

б) последовательность x_n сходится тогда и только тогда, когда уравнение $Ax = \Pi(A)y$ разрешимо. В последнем случае $x_n \to P(A)x_0 + x^*$, где x^* – минимальное решение уравнения (1).

Доказательство. Применим оператор A к методу (2), получим $A(E+\alpha A)x_n=A(E-\alpha A)x_{n-1}+2\alpha Ay$, где $y=P(A)y+\Pi(A)y$. Так как AP(A)y=0, то получим $(E+\alpha A)(Ax_n-\Pi(A)y)=(E-\alpha A)(Ax_{n-1}-\Pi(A)y)$. Обозначим $Ax_n-\Pi(A)y=v_n$, $v_n\in M(A)$, тогда $(E+\alpha A)v_n=(E-\alpha A)v_{n-1}$. Отсюда $v_n=(E+\alpha A)^{-1}(E-\alpha A)v_{n-1}$, значит, $v_n=(E+\alpha A)^{-n}(E-\alpha A)^n v_0$. Имеем $A\geq 0$ и A — положительно определен в M(A), т. е. (Ax,x)>0 $\forall x\in M(A)$. Так как $\alpha>0$, то $||(E+\alpha A)^{-1}(E-\alpha A)||<1$. Поэтому справедливо

$$\|v_n\| = \|(E + \alpha A)^{-n} (E - \alpha A)^n v_0\| = \left\| \int_0^{\|A\|} \frac{(1 - \alpha \lambda)^n}{(1 + \alpha \lambda)^n} dE_{\lambda} v_0 \right\| \le$$

$$\leq \left\| \int_{0}^{\varepsilon_{0}} \frac{\left(1 - \alpha \lambda\right)^{n}}{\left(1 + \alpha \lambda\right)^{n}} dE_{\lambda} v_{0} \right\| + \left\| \int_{\varepsilon_{0}}^{\left[A\right]} \frac{\left(1 - \alpha \lambda\right)^{n}}{\left(1 + \alpha \lambda\right)^{n}} dE_{\lambda} v_{0} \right\| \leq \left\| \int_{0}^{\varepsilon_{0}} dE_{\lambda} v_{0} \right\| + q^{n} \left(\varepsilon_{0}\right) \left\| \int_{\varepsilon_{0}}^{\left[A\right]} dE_{\lambda} v_{0} \right\| = \\ = \left\| E_{\varepsilon_{0}} v_{0} \right\| + q^{n} \left(\varepsilon_{0}\right) \left\| v_{0} - E_{\varepsilon_{0}} v_{0} \right\| \rightarrow 0 \text{ при } \varepsilon_{0} \rightarrow 0, \ n \rightarrow \infty.$$

Здесь $\left| \frac{(1-\alpha\lambda)}{(1+\alpha\lambda)} \right| \leq q(\epsilon_0) < 1$, при $\lambda \in \left[\epsilon_0, \|A\| \right]$. Следовательно, $v_n \to 0$, откуда $Ax_n \to \Pi(A)y$ и $\Pi(A)y \in A(H)$. $\|Ax_n - y\| \to \|\Pi(A)y - y\| = \|P(A)y\| = J(A,y)$. Итак, а) доказано.

Докажем б). Пусть итерационный процесс (2) сходится. Покажем, что уравнение $Ax = \Pi(A)y$ разрешимо. Из сходимости $\{x_n\} \in H$ к $z \in H$ и из а) следует, что $Ax_n \to Az = \Pi(A)y$, следовательно, $\Pi(A)y \in A(H)$ и уравнение $\Pi(A)y = Ax$ разрешимо.

Пусть теперь $\Pi(A)y \in A(H)$ (уравнение $\Pi(A)y = Ax$ разрешимо), следовательно, $\Pi(A)y = Ax^*$, где x^* – минимальное решение уравнения Ax = y (оно единственно в M(A)). Тогда (2) примет вид

$$(E + \alpha A)x_n = (E - \alpha A)x_{n-1} + 2\alpha A\Pi(A)y = (E - \alpha A)x_{n-1} + 2\alpha Ax^* =$$

$$= (E + \alpha A)x_{n-1} - 2\alpha Ax_{n-1} + 2\alpha Ax^* = (E + \alpha A)x_{n-1} + 2\alpha A(x^* - x_{n-1}).$$

Отсюда $x_n = x_{n-1} + 2\alpha A(E + \alpha A)^{-1}(x^* - x_{n-1})$. Последнее равенство разобьем на два:

$$P(A)x_{n} = P(A)x_{n-1} + 2\alpha(E + \alpha A)^{-1}AP(A)(x^{*} - x_{n-1}) = P(A)x_{n-1} = P(A)x_{0};$$

$$\Pi(A)x_{n} = \Pi(A)x_{n-1} + 2\alpha A(E + \alpha A)^{-1}\Pi(A)(x^{*} - x_{n-1}) =$$

$$= \Pi(A)x_{n-1} + 2\alpha A(E + \alpha A)^{-1}(x^{*} - \Pi(A)x_{n-1}),$$

так как $x^* \in M(A)$. Обозначим $w_n = \Pi(A)x_n - x^*$, тогда из равенства $\Pi(A)x_n - x^* = \Pi(A)x_{n-1} - x^* + 2\alpha A(E + \alpha A)^{-1} (x^* - \Pi(A)x_{n-1})$ получим равенство $w_n = w_{n-1} - 2\alpha A(E + \alpha A)^{-1} w_{n-1}$.

Следовательно, $w_n = (E - \alpha A)(E + \alpha A)^{-1}w_{n-1}$, и аналогично v_n можно показать, что $w_n \to 0$, $n \to \infty$. Таким образом, $\Pi(A)x_n \to x^*$. Отсюда вытекает $x_n = P(A)x_n + \Pi(A)x_n \to P(A)x_0 + x^*$. Теорема доказана.

Замечание. Так как у нас $x_0 = 0$, то $x_n \to x^*$, т. е. метод (2) сходится к решению с минимальной нормой.