О. В. МАТЫСИК, К. С. ДУБРОВСКАЯ

Беларусь, Брест, УО «БрГУ имени А. С. Пушкина»

ПРАВИЛО ОСТАНОВА В ПРОЦЕССЕ ВЫЧИСЛЕНИЙ В НЕЯВНОМ МЕТОДЕ ИТЕРАЦИЙ ДЛЯ РЕШЕНИЯ НЕКОРРЕКТНЫХ ЗАДАЧ

В гильбертовом пространстве H решается операторное уравнение $Ax = y_\delta$, где $A: H \to H$ — оператор положительный, ограниченный, несамосопряженный и $\|y-y_\delta\| \le \delta$. Предполагается, что $0 \in S_A$ (но не является собственным значением оператора A), поэтому рассматриваемая задача некорректна. Пусть $y \in R(A)$, т. е. при точной правой части y уравнение имеет единственное решение x. Будем искать его, используя неявный итерационный метод

$$z_{n+1} = Cz_n + By_{\delta} + Cu_n, \ z_0 \in H,$$
 (1)

где $C = (E + \alpha A^*A)^{-1}(E - \alpha A^*A)$, $B = (E + \alpha A^*A)^{-1}2\alpha A^*$, $\alpha > 0$, а u_n – ошибки в вычислении итераций (причем $\|u_n\| \le \beta$).

Предложенный метод можно сделать вполне эффективным, если воспользоваться следующим правилом останова *по поправкам*: зададим уровень останова $\varepsilon > 0$ и момент останова m определим условиями $\|z_n - z_{n+1}\| > \varepsilon$, (n < m), $\|z_m - z_{m+1}\| \le \varepsilon$. Справедлива

Теорема. Пусть уровень останова $\varepsilon = \varepsilon(\delta,\beta)$ выбирается как функция от уровней δ и β норм погрешностей $y-y_{\delta}$ и u_{n} . Тогда справедливы утверждения:

- а) если $\varepsilon(\delta,\beta)>2\|C\|\beta$, то момент останова т определен при любом начальном приближении $z_0\in H$ и любых y_δ и u_n , удовлетворяющих условиям $\|y-y_\delta\|\leq \delta$, $\|u_n\|\leq \beta$;
 - б) если $\varepsilon(\delta,\beta) > \|B\|\delta + 2\|C\|\beta$, то справедлива оценка

$$m \leq \frac{\left\|z_0 - x\right\|^2}{\left(\varepsilon - \left\|B\right\|\delta - 2\left\|C\right\|\beta\right)\left(\varepsilon - \left\|B\right\|\delta\right)};$$

в) если, кроме того, $\varepsilon(\delta,\beta)\to 0$, $\delta,\beta\to 0$ и $\varepsilon(\delta,\beta)\geq d\Big(\|B\|\delta+\|C\|\beta^p\Big)$, где $d>1,\ p\in (0,1),\ mo\lim_{\delta,\beta\to 0}\|z_m-x\|=0,\ m.\ e.\ приближения\ (1)$ сходятся к точному решению уравнения $Ax=y_\delta$.