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The investigation of well-posedness of a boundary value problem for a given system of partial
differential equations plays an important role in the classification of elliptic systems. By [1–4],
the regularizability1 or nonregularizability of specific boundary value problems for some elliptic
systems depends on whether the system belongs to a specific homotopic class. There are also
systems [6–8] for which the regularizability of specific boundary value problems has nothing or
little to do with the homotopy type of the system and is determined by other factors. Finally, there
exist elliptic systems [9, 10] for which there are no boundary conditions that give a regularizable
boundary value problem. The number of known systems of the above-mentioned type is small, and
we increase this number in the present paper.

It was proved in [11] that, for an arbitrary pseudosymmetric system of first-order differential
equations in R4, any boundary value problem of the type of the Riemann–Hilbert problem cannot
be Fredholm. It turns out (as will be proved below) that systems singled out by Vinogradov
are systems of the type of [9, 10], i.e., arbitrary boundary conditions for them cannot give a
regularizable boundary value problem. In particular, this answers the question posed in [12] for
a particular system of differential equations (see system (12)2 in [12]).

In a bounded domain Ω ⊂ R4 whose boundary is a sufficiently smooth three-dimensional man-
ifold ∂Ω, we consider the boundary value problem of finding a solution U = U(x) of the elliptic
system of differential equations

4∑
j=1

Aj
∂U

∂xj
= f(x), x ∈ Ω, (1)

satisfying the boundary conditions

B (y, ∂/∂x)|x→yU = g(y), y ∈ ∂Ω. (2)

Here the Aj (j = 1, 2, 3, 4) are constant real matrices of the fourth order; moreover, A1 is the
identity matrix, and the remaining matrices are skew-symmetric (i.e., AT

j = −Aj for j = 2, 3, 4);
U and f are four-component column vectors, g is a two-component column vector, and B is a
2 × 4 matrix boundary operator consisting of scalar linear sufficiently smooth pseudodifferential
operators “polynomial” in the normal to ∂Ω [13].

Theorem. For an arbitrary boundary operator B , the boundary value problem (1), (2) is not
regularizable.

In particular, it follows from the theorem that the operator corresponding to the boundary
value problem (1), (2) and acting in certain Banach spaces [13, 14] is not Fredholm. In other
words, this operator has an infinite-dimensional kernel or cokernel. For example, if B is the

1 We say that a boundary value problem is regularizable if the Lopatinskii condition is valid for it [5].
2 This system contained misprints: the signs should be replaced by the opposite ones for the term d2wt in the second

equation of the system, ut in the third one, and d2ut in the fourth equation, and the term −e2ux in the third
equation should be replaced by −c2ux.
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operator of multiplication of the vector U by a constant 2×4 matrix, then the kernel of the operator
corresponding to problem (1), (2) is infinite-dimensional [11].

Proof of the theorem. It suffices to prove that the Lopatinskii condition does not hold for the
boundary value problem in the half-space R4

+ := {x = (x1, x2, x3, x4) ∈ R4 | x1 > 0} obtained from
problem (1), (2) by freezing the coefficients at a point of ∂Ω, where the normal to ∂Ω is parallel to
the axis Ox1. Therefore, throughout the following, we assume that Ω = R4

+ and the symbol of the
boundary operator B occurring in (2) is independent of the point y ∈ ∂R4

+.
Without loss of generality, one can assume that the boundary conditions (2) do not contain

the differentiation with respect to x1. Let A(λ, τ) := A1λ + A2τ1 + A3τ2 + A4τ3 be the charac-
teristic matrix of system (1). By B(τ) we denote the symbol of the principal part of the opera-
tor B (−i ∂/∂x)|∂Ω. To justify the theorem, one must show that, for at least one nonzero triple
τ = (τ1, τ2, τ3) ∈ R3\{0}, the rank of the matrix

B(τ)
∫
γ

A−1(λ, τ)dλ (3)

is strictly less than 2 [here γ is a simple smooth closed contour lying in the upper λ-half-plane and
surrounding all roots of the equation detA(λ, τ) = 0 lying there].

The characteristic matrix A(λ, τ) of system (1) has the form

A(λ, τ) =


λ a(τ) b(τ) c(τ)

−a(τ) λ r(τ) −q(τ)
−b(τ) −r(τ) λ p(τ)
−c(τ) q(τ) −p(τ) λ

 , (4)

where a(τ), b(τ), . . . , r(τ) are linear forms in the variables τ1, τ2, and τ3 with real coefficients. Since
system (1) is elliptic, it follows from [15, Lemmas 1 and 2] that the quadratic form

d(τ) := a(τ)p(τ) + b(τ)q(τ) + c(τ)r(τ)

is sign-definite and each of the systems {a(τ), b(τ), c(τ)} and {p(τ), q(τ), r(τ)} of linear forms is
linearly independent. To be definite, we assume that d(τ) > 0 for τ ∈ R3\{0}; the case of a
negative-definite quadratic form d(τ) can be considered in a similar way.

The nondegenerate change of variables (τ ′1, τ ′2, τ ′3) = (a(τ), b(τ), c(τ)) reduces the matrix (4) to
a matrix of the same form with a(τ) = τ1, b(τ) = τ2, and c(τ) = τ3.

The matrix B(τ) is a 2 × 4 matrix whose entries are real continuous homogeneous functions
of the variables τ1, τ2, and τ3. We assume that its rank is equal to 2 at each point τ ∈ R3\{0}.
[Otherwise, the rank of the matrix (3) is necessarily less than 2 for some τ 6= 0.]

By Λjk and Hjk (k, j = 1, 2, 3, 4) we denote the second-order minors formed by the jth and
kth columns of the matrix B(τ) and the matrix (3), respectively. We set L1(τ) = Λ12 + Λ34,
L2(τ) = Λ13 + Λ42, L3(τ) = Λ14 + Λ23, and ∆(τ) = (p2(τ) + q2(τ) + r2(τ) + 2d+ τ 2

1 + τ 2
2 + τ 2

3 )1/2.
A straightforward computation of the minors Hjk (1 ≤ j < k ≤ 4) of the matrix (3) shows that
H23 = H14, H24 = −H13, H34 = H12, and, neglecting a constant nonzero factor,

d−1H12 =
(

(q + τ2)2 + (r + τ3)2
)
L1(τ)− (p+ τ1) (q + τ2)L2(τ)

−(p+ τ1) (r + τ3)L3(τ) + i∆(τ) (− (r + τ3)L2(τ) + (q + τ2)L3(τ)) ,

d−1H13 = −(p+ τ1) (q + τ2)L1(τ) +
(

(p+ τ1)2 + (r + τ3)2
)
L2(τ)

−(q + τ2) (r + τ3)L3(τ) + i∆(τ) ((r + τ3)L1(τ)− (p+ τ1)L3(τ)) ,

d−1H14 = −(p+ τ1) (r + τ3)L1(τ)− (q + τ2) (r + τ3)L2(τ) +
(

(p+ τ1)2 + (q + τ2)2
)
L3(τ)

+ i∆(τ) (−(q + τ2)L1(τ) + (p+ τ1)L2(τ)) .
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Since p(τ), q(τ), and r(τ) are linearly independent forms and the quadratic form d(τ) is positive
definite, it follows that the forms p(τ) + τ1, q(τ) + τ2, and r(τ) + τ3 are linearly independent.
Consequently, the linear mapping ϕ : R3 → R3 given by ϕ(τ) = (p(τ) + τ1, q(τ) + τ2, r(τ) + τ3)
is nondegenerate. Therefore, its restriction to the closed unit ball B1[0] := {τ ∈ R3 | |τ | ≤ 1} is
a homeomorphism of this ball onto a convex body T ⊂ R3 for which 0 ∈ R3 is an interior point.
Hence, in turn, we find that the mapping ψ of the boundary ∂T of T onto the unit sphere S2 in R3

given by ψ(ζ) = ζ/|ζ| is a homeomorphism of ∂T onto S2.
Since the rank of the matrix B(τ) is equal to 2 for each τ 6= 0, it follows that the vector

L(τ) = (L1(τ), L2(τ), L3(τ)) is nonzero at each point τ ∈ R3\{0}. Consequently, the continuous
nondegenerate vector field3 L ◦ ϕ−1 ◦ ψ−1 is defined on the two-dimensional sphere S2. By the
well-known hedgehog lemma, there exists a point ξ0 ∈ S2 such that L ◦ ϕ−1 ◦ ψ−1 (ξ0) = α · ξ0 for
some nonzero number α ∈ R. The last relation implies that

L1 (τ0) = α
(
p (τ0) + τ

(0)
1

)/
|ϕ (τ0)| , L2 (τ0) = α

(
q (τ0) + τ

(0)
2

)/
|ϕ (τ0)| ,

L3 (τ0) = α
(
r (τ0) + τ

(0)
3

)/
|ϕ (τ0)|

at the point τ0 = ϕ−1 ◦ ψ−1 (ξ0) ∈ S2. By substituting the resulting expressions for L1 (τ0),
L2 (τ0), and L3 (τ0) into the minors Hjk of the matrix (3), we obtain Hjk (τ0) = 0 (k, j = 1, 2, 3, 4).
Therefore, the rank of the matrix (3) is less than 2 at the point τ0 = ϕ−1 ◦ψ−1 (ξ0) 6= 0. The proof
of the theorem is complete.
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3 For brevity, the mapping (ϕ|S2)−1 is denoted by ϕ−1.
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