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On the residual of a finite group with semi-subnormal
subgroups

By ALEXANDER TROFIMUK (Gomel)

Abstract. A subgroup A of a group G is called seminormal in G, if there exists
a subgroup B such that G = AB and AX is a subgroup of G for every subgroup
X of B. We introduce the new concept that unites subnormality and seminormality.
A subgroup A of a group G is called semi-subnormal in G, if A is subnormal in G or
seminormal in G. In this paper, the §-residual of a group G = AB with semi-subnormal
subgroups A and B such that A, B € §, where § is a saturated formation and i C §,
is studied. Here 4l is the class of all supersoluble groups and the §-residual of G is the
intersection of all those normal subgroups N of G for which G/N € §.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite
group. We use the standard notations and terminology of [7], [9]. The monographs
[6], [9] contain the necessary information of the theory of formations.

It is well known that subgroups A and B of G permute if AB = BA.
If H and K are subgroups of G such that H is permutable with every subgroup
of K and K is permutable with every subgroup of H, we say that H and K
are mutually permutable. We say that H and K are totally permutable if every
subgroup of H is permutable with every subgroup of K. If G = AB and the sub-
groups A and B are mutually (respectively totally) permutable, then G is called
a mutually (respectively totally) permutable product of A and B, see [3, p. 149].
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Let § be a non-empty formation of groups, that is, § is closed under taking ho-
momorphic images and subdirect products. Then G denotes the F-residual of G,
that is the intersection of all those normal subgroups N of G for which G/N € §.
Obviously, G is supersoluble if and only if G¥ = 1. Here 4 is the formation of all
supersoluble groups. A well-known theorem of DOERK and HAWKES [6, IV.1.18]
states that for a formation § of soluble groups, the §-residual respects the oper-
ation of forming direct products. The above results confirm that the §-residuals
play an important role in the study of the structure of groups. Fortunately, these
residuals have a nice behaviour in mutually (totally) permutable products.

A. BALLESTER-BOLINCHES, M. C. PEDRAZA-AGUILERA and M. D. PEREZ-
RaAMOs in [5] extended a previous result of Doerk and Hawkes by considering
a totally permutable product of subgroups.

Theorem 1.1 ([5, Theorem A]). Let § be a formation of soluble groups
such that 4 C §. If G = AB is the product of the totally permutable sub-
groups A and B, then GS = ASBS,

AsSAAD and SHAALAN’s result [2, Theorem 3.1] is a particular case of Theo-
rem 1.1 when A and B are supersoluble.

In [3] and [4], a similar decomposition of the F-residual was obtained for
a group that is a mutually permutable product of subgroups.

Theorem 1.2. Let G = AB be the mutually permutable product of the
subgroups A and B. Let § be a saturated formation containing the class i of
supersoluble groups. Then GS = ASBS in each of the following cases:

(1) the derived subgroup G’ is nilpotent, see [4, Theorem Al;
(2) (AN B)g =1, see [3, Theorem 4.5.8].

The results of Asaad and Shaalan [2, Theorem 3.8] and M. ALEJANDRE,
A. BALLESTER-BOLINCHES and J. COSSEY [1, Theorem 1] follow from Theo-
rem 1.2 when A and B are supersoluble.

Without restrictions on the derived subgroup G’ and the core (4 N B)g,
V. S. MoNaAkHOV, I. K. CHIRIK and the author in [10], [11] and [12] described
the structure of the {-residual of G, when G is a product of two either supersoluble
subnormal subgroups, or supersoluble mutually permutable subgroups or super-
soluble subgroups of prime indices. These results are presented in the following
theorem.

Theorem 1.3. Let A and B be supersoluble subgroups of G and G = AB.
Then G = (G')™ in each of the following cases:
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(1) A and B are subnormal, see [11, Theorem 2];
(2) A and B are mutually permutable, see [10, Theorem 2.1];
(3) the indices of A and B in G are prime, see [12, Theorem C].

Here 91 is the formation of all nilpotent groups.

A subgroup A of G is called seminormal in G, if there exists a subgroup B
such that G = AB and AX is a proper subgroup of G for every proper subgroup X
of B, see [15]. The groups with some seminormal subgroups were investigated in
works of many authors, see, for example, the literature in [12]. If the subgroups A
and B of G = AB are mutually permutable, then A and B are seminormal in G.
The converse is false. For instance, G = Z7 x Zg is the product of seminormal in G
subgroups A ~ Zg and B ~ Z; X Z3, but A and B are not mutually permutable.
Here Z,, is a cyclic group of order n.

We introduce the following concept that unites subnormality and seminor-
mality.

Definition. A subgroup A of G is called semi-subnormal in G, if A is subnor-
mal in G or seminormal in G.

In this paper, we prove the following:

Theorem A. Let A and B be semi-subnormal subgroups of G and G = AB.
Let § be a saturated formation such that 4 C §. If A and B belong to §, then
GS < (G")™.

2. Preliminary results

In this section, we give some definitions and basic results which are essential
in the sequel.

A group whose chief factors have prime orders is called supersoluble. The
notation H < G means that H is a subgroup of G. If H < G and H # G,
we write H < G. Denote by Z(G), F(G) and ®(G) the centre, Fitting and Frattini
subgroups of G, respectively, and by O,(G) the greatest normal p-subgroup of G.
Denote by 7(G) the set of all prime divisors of order of G. The semidirect product
of a normal subgroup A and a subgroup B is written as follows: A x B. If H is
a subgroup of G, then Hg = (), H” is called the core of H in G.

A formation § is said to be saturated if G/®(G) € § implies G € §. Let P
be the set of all prime numbers. A formation function is a function f defined
on P such that f(p) is a, possibly empty, formation. A formation § is said to



144 Alexander Trofimuk

be local, if there exists a formation function f such that G € § if and only if for
any chief factor H/K of G and any p € 7(H/K), one has G/Cg(H/K) € f(p).
We write § = LF(f), and f is a local definition of §. By [6, IV.3.7], among all
possible local definitions of a local formation §, there exists a unique f such that
f is integrated (i.e., f(p) C § for all p € P) and full (i.e., f(p) = N, f(p) for all
p € P). Here N, is the formation of all p-groups. Such local definition f is said to
be canonical local definition of §. By [6, IV.4.6], a formation is saturated if and
only if it is local.

If G contains a maximal subgroup M with trivial core, then G is said to be
primitive.

Lemma 2.1. Let § be a saturated formation. Assume that G ¢ §, but
G/N € § for all non-trivial normal subgroups N of G. Then G is a primitive

group.

PROOF. Since § is a saturated formation, it follows that ®(G) = 1 and
G contains a unique minimal normal subgroup N. For some maximal subgroup M
of G, we have G = NM, because ®(G) = 1. It is obvious that the core Mg = 1.
Hence G is a primitive group. [

Lemma 2.2 ([7, Theorem I1.3.2]). If G is a soluble primitive group, then
F(G) = Cq(F(G)) = Op(G) is a unique minimal normal subgroup of G for some
prime p.

Lemma 2.3. (1) If H is a semi-subnormal subgroup of G and H < X < G,
then H is semi-subnormal in X.

(2) If H is a semi-subnormal subgroup of G and N is normal in G, then
HN/N is semi-subnormal in G/N.

ProOOF. If H is subnormal in G, then the statements (1)-(2) are true, see
[8, Chapter 2]. If H is seminormal, then these statements were proved in [12,
Lemma 4.1]. Thus the statements (1)—(2) are true. O

Lemma 2.4. Let H be a maximal subgroup of G. If H is semi-subnormal
in G, then the index of H in G is prime.

ProoOF. If H is subnormal in G, then H is normal in G, and |G : H| is
prime by [9, Lemma 3.17 (6)]. If H is seminormal in G, then the conclusion of
the lemma follows from [13, Theorem 1]. O

Lemma 2.5 ([9, Lemma 5.8]). Let § and $) be non-empty formations, and
K be normal in G. Then:
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(1) (G/K)S =GYK/K;
(2) G €5 if and only if G¥ = 1;
(3) if H C F, then G¥ < G9;
(4) G = (G9)S.

Lemma 2.6 ([14, Lemma 2.16]). Let § be a saturated formation contain-
ing 81, and G be a group with a normal subgroup E such that G/E € §. If E is
cyclic, then G € §.

3. Proof of Theorem A

We consider the case when the derived subgroup G’ is nilpotent. Then G is
soluble. Assume that G ¢ §. If N is a non-trivial normal subgroup of G, then
the subgroups AN/N and BN/N are semi-subnormal in G/N by Lemma 2.3 (2)
and belong to §, because § is a formation. Since

(G/N) = G'N/N ~G'/G' N N,

it follows that the derived subgroup (G/N)’ is nilpotent. Therefore by induction,
G/N € §. Since § is saturated, we have that G is primitive by Lemma 2.1.
Hence ®(G) =1 and N = Cg(N) = F(G) = Op(G) is a unique minimal normal
subgroup of G by Lemma 2.2. Because G’ is nilpotent, N = G’ and G/N is
abelian.

Suppose that AN = G. Then ANN =1 and A is a maximal subgroup of G.
Since A is semi-subnormal in G, it follows by Lemma 2.4, the index of the sub-
group A in G is prime. This means that |[N| = p and G € § by Lemma 2.6, a con-
tradiction. Therefore, the assumption is wrong and AN < G. By Lemma 2.3 (1),
A is semi-subnormal in AN. Since N is abelian, we have N € §. Besides,
(AN) < G’, and hence (AN)’ is nilpotent. By induction, AN € §. Similarly, we
get that BN < G and BN € §. Thus G = (AN)(BN) is the product of normal
subgroups AN and BN such that each of them belongs to §.

Since AN is normal in G, it follows that N< AN, ®(AN)=1 and F(AN)=N.
Hence N =Y x Y5 x --- X Yy, where Y; is a minimal normal subgroup of AN for
all ¢. Furthermore,

CAN(N) = ANQCG(N) = N.

By [9, Theorem 4.25], we have

N = F(AN) = () Can(Y)).



146 Alexander Trofimuk

Since § is saturated, there exists the canonical local definition f. Hence § =
LE(f), f(p) € § and f(p) = Npf(p). Then AN/Can(Yi) € f(p) for any i.
Because f(p) is a formation, it follows that AN/N € f(p). Similarly, we get that
BN/N € f(p).

We consider the direct product AN/N x BN/N = {(aN,bN),a € A,b €
B}. Let ¢ : AN/N x BN/N — G/N = (AN/N)(BN/N) be a function from
AN/N x BN/N to G/N and ¢(aN,bN) = (ab)N. Since G/N is abelian, we have
AN/N < Cg/n(BN/N). 1t is clear that ¢ is an epimorphism. Then by [9,
Theorem 2.3],

(AN/N x BN/N)/Ker ¢ ~Im ¢ = G/N.

Since f(p) is a formation, it follows that G/N € f(p). Because N € 91, we have
G e N, f(p) = f(p) C F. Hence the assumption is wrong.
Let (G")” # 1. We show that the quotient G/(G’)*" belongs to §. Since

(@/(@)) = @@ = & /@),
we have (G/(G")™) is nilpotent. The quotients
G/(G")™ = (AG)*/(G))BG) (G,
AGY (@) = AJAN (G, BG)™/(G)™ ~ B/BN (G,

hence the subgroups A(G")”/(G')™ and B(G")*/(G")” belong to §, and by
Lemma 2.3 (2), are semi-subnormal in G/(G’)™.

Arguing as above, we see that G/(G’)™ belongs to §. With this the theorem
is proved. ([

Corollary 3.1. Let G = AB, and § be a saturated formation such that
4 C F. Suppose that A and B belong to §. If the derived subgroup G’ is
nilpotent, then G € § in each of the following cases:
(1) A and B are subnormal in G;
(2) A and B are seminormal in G;
(3) one of the subgroups A or B is seminormal in G, the other is subnormal in G;
()
()

5

A and B are mutually permutable;

the indices of A and B in G are prime.

Since Y € M, it follows that G = (G*)™ = (G)”™ < G* by Lemma 2.5
(3—4). Therefore, for § = 4, Corollary 3.1 covers the above results of the papers [2],
[10], [11], [12].
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