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On the residual of a finite group with semi-subnormal
subgroups

By ALEXANDER TROFIMUK (Gomel)

Abstract. A subgroup A of a group G is called seminormal in G, if there exists

a subgroup B such that G = AB and AX is a subgroup of G for every subgroup

X of B. We introduce the new concept that unites subnormality and seminormality.

A subgroup A of a group G is called semi-subnormal in G, if A is subnormal in G or

seminormal in G. In this paper, the F-residual of a group G = AB with semi-subnormal

subgroups A and B such that A,B ∈ F, where F is a saturated formation and U ⊆ F,

is studied. Here U is the class of all supersoluble groups and the F-residual of G is the

intersection of all those normal subgroups N of G for which G/N ∈ F.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite

group. We use the standard notations and terminology of [7], [9]. The monographs

[6], [9] contain the necessary information of the theory of formations.

It is well known that subgroups A and B of G permute if AB = BA.

If H and K are subgroups of G such that H is permutable with every subgroup

of K and K is permutable with every subgroup of H, we say that H and K

are mutually permutable. We say that H and K are totally permutable if every

subgroup of H is permutable with every subgroup of K. If G = AB and the sub-

groups A and B are mutually (respectively totally) permutable, then G is called

a mutually (respectively totally) permutable product of A and B, see [3, p. 149].
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Let F be a non-empty formation of groups, that is, F is closed under taking ho-

momorphic images and subdirect products. Then GF denotes the F-residual of G,

that is the intersection of all those normal subgroups N of G for which G/N ∈ F.

Obviously, G is supersoluble if and only if GU = 1. Here U is the formation of all

supersoluble groups. A well-known theorem of Doerk and Hawkes [6, IV.1.18]

states that for a formation F of soluble groups, the F-residual respects the oper-

ation of forming direct products. The above results confirm that the F-residuals

play an important role in the study of the structure of groups. Fortunately, these

residuals have a nice behaviour in mutually (totally) permutable products.

A. Ballester-Bolinches, M. C. Pedraza-Aguilera and M. D. Perez-

Ramos in [5] extended a previous result of Doerk and Hawkes by considering

a totally permutable product of subgroups.

Theorem 1.1 ([5, Theorem A]). Let F be a formation of soluble groups

such that U ⊆ F. If G = AB is the product of the totally permutable sub-

groups A and B, then GF = AFBF.

Asaad and Shaalan’s result [2, Theorem 3.1] is a particular case of Theo-

rem 1.1 when A and B are supersoluble.

In [3] and [4], a similar decomposition of the F-residual was obtained for

a group that is a mutually permutable product of subgroups.

Theorem 1.2. Let G = AB be the mutually permutable product of the

subgroups A and B. Let F be a saturated formation containing the class U of

supersoluble groups. Then GF = AFBF in each of the following cases:

(1) the derived subgroup G′ is nilpotent, see [4, Theorem A];

(2) (A ∩B)G = 1, see [3, Theorem 4.5.8].

The results of Asaad and Shaalan [2, Theorem 3.8] and M. Alejandre,

A. Ballester-Bolinches and J. Cossey [1, Theorem 1] follow from Theo-

rem 1.2 when A and B are supersoluble.

Without restrictions on the derived subgroup G′ and the core (A ∩ B)G,

V. S. Monakhov, I. K. Chirik and the author in [10], [11] and [12] described

the structure of the U-residual of G, when G is a product of two either supersoluble

subnormal subgroups, or supersoluble mutually permutable subgroups or super-

soluble subgroups of prime indices. These results are presented in the following

theorem.

Theorem 1.3. Let A and B be supersoluble subgroups of G and G = AB.

Then GU = (G′)N in each of the following cases:
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(1) A and B are subnormal, see [11, Theorem 2];

(2) A and B are mutually permutable, see [10, Theorem 2.1];

(3) the indices of A and B in G are prime, see [12, Theorem C].

Here N is the formation of all nilpotent groups.

A subgroup A of G is called seminormal in G, if there exists a subgroup B

such that G = AB and AX is a proper subgroup of G for every proper subgroup X

of B, see [15]. The groups with some seminormal subgroups were investigated in

works of many authors, see, for example, the literature in [12]. If the subgroups A

and B of G = AB are mutually permutable, then A and B are seminormal in G.

The converse is false. For instance, G = Z7oZ6 is the product of seminormal in G

subgroups A ' Z6 and B ' Z7 oZ2, but A and B are not mutually permutable.

Here Zn is a cyclic group of order n.

We introduce the following concept that unites subnormality and seminor-

mality.

Definition. A subgroup A of G is called semi-subnormal in G, if A is subnor-

mal in G or seminormal in G.

In this paper, we prove the following:

Theorem A. Let A and B be semi-subnormal subgroups of G and G = AB.

Let F be a saturated formation such that U ⊆ F. If A and B belong to F, then

GF ≤ (G′)N.

2. Preliminary results

In this section, we give some definitions and basic results which are essential

in the sequel.

A group whose chief factors have prime orders is called supersoluble. The

notation H ≤ G means that H is a subgroup of G. If H ≤ G and H 6= G,

we write H < G. Denote by Z(G), F (G) and Φ(G) the centre, Fitting and Frattini

subgroups of G, respectively, and by Op(G) the greatest normal p-subgroup of G.

Denote by π(G) the set of all prime divisors of order of G. The semidirect product

of a normal subgroup A and a subgroup B is written as follows: A o B. If H is

a subgroup of G, then HG =
⋂

x∈GH
x is called the core of H in G.

A formation F is said to be saturated if G/Φ(G) ∈ F implies G ∈ F. Let P
be the set of all prime numbers. A formation function is a function f defined

on P such that f(p) is a, possibly empty, formation. A formation F is said to
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be local, if there exists a formation function f such that G ∈ F if and only if for

any chief factor H/K of G and any p ∈ π(H/K), one has G/CG(H/K) ∈ f(p).

We write F = LF (f), and f is a local definition of F. By [6, IV.3.7], among all

possible local definitions of a local formation F, there exists a unique f such that

f is integrated (i.e., f(p) ⊆ F for all p ∈ P) and full (i.e., f(p) = Npf(p) for all

p ∈ P). Here Np is the formation of all p-groups. Such local definition f is said to

be canonical local definition of F. By [6, IV.4.6], a formation is saturated if and

only if it is local.

If G contains a maximal subgroup M with trivial core, then G is said to be

primitive.

Lemma 2.1. Let F be a saturated formation. Assume that G /∈ F, but

G/N ∈ F for all non-trivial normal subgroups N of G. Then G is a primitive

group.

Proof. Since F is a saturated formation, it follows that Φ(G) = 1 and

G contains a unique minimal normal subgroup N . For some maximal subgroup M

of G, we have G = NM , because Φ(G) = 1. It is obvious that the core MG = 1.

Hence G is a primitive group. �

Lemma 2.2 ([7, Theorem II.3.2]). If G is a soluble primitive group, then

F (G) = CG(F (G)) = Op(G) is a unique minimal normal subgroup of G for some

prime p.

Lemma 2.3. (1) If H is a semi-subnormal subgroup of G and H ≤ X ≤ G,
then H is semi-subnormal in X.

(2) If H is a semi-subnormal subgroup of G and N is normal in G, then

HN/N is semi-subnormal in G/N .

Proof. If H is subnormal in G, then the statements (1)–(2) are true, see

[8, Chapter 2]. If H is seminormal, then these statements were proved in [12,

Lemma 4.1]. Thus the statements (1)–(2) are true. �

Lemma 2.4. Let H be a maximal subgroup of G. If H is semi-subnormal

in G, then the index of H in G is prime.

Proof. If H is subnormal in G, then H is normal in G, and |G : H| is

prime by [9, Lemma 3.17 (6)]. If H is seminormal in G, then the conclusion of

the lemma follows from [13, Theorem 1]. �

Lemma 2.5 ([9, Lemma 5.8]). Let F and H be non-empty formations, and

K be normal in G. Then:
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(1) (G/K)F = GFK/K;

(2) G ∈ F if and only if GF = 1;

(3) if H ⊆ F, then GF ≤ GH;

(4) GFH = (GH)F.

Lemma 2.6 ([14, Lemma 2.16]). Let F be a saturated formation contain-

ing U, and G be a group with a normal subgroup E such that G/E ∈ F. If E is

cyclic, then G ∈ F.

3. Proof of Theorem A

We consider the case when the derived subgroup G′ is nilpotent. Then G is

soluble. Assume that G 6∈ F. If N is a non-trivial normal subgroup of G, then

the subgroups AN/N and BN/N are semi-subnormal in G/N by Lemma 2.3 (2)

and belong to F, because F is a formation. Since

(G/N)′ = G′N/N ' G′/G′ ∩N,

it follows that the derived subgroup (G/N)′ is nilpotent. Therefore by induction,

G/N ∈ F. Since F is saturated, we have that G is primitive by Lemma 2.1.

Hence Φ(G) = 1 and N = CG(N) = F (G) = Op(G) is a unique minimal normal

subgroup of G by Lemma 2.2. Because G′ is nilpotent, N = G′ and G/N is

abelian.

Suppose that AN = G. Then A∩N = 1 and A is a maximal subgroup of G.

Since A is semi-subnormal in G, it follows by Lemma 2.4, the index of the sub-

group A in G is prime. This means that |N | = p and G ∈ F by Lemma 2.6, a con-

tradiction. Therefore, the assumption is wrong and AN < G. By Lemma 2.3 (1),

A is semi-subnormal in AN . Since N is abelian, we have N ∈ F. Besides,

(AN)′ ≤ G′, and hence (AN)′ is nilpotent. By induction, AN ∈ F. Similarly, we

get that BN < G and BN ∈ F. Thus G = (AN)(BN) is the product of normal

subgroups AN and BN such that each of them belongs to F.

Since AN is normal in G, it follows that N≤AN , Φ(AN)=1 and F (AN)=N .

Hence N = Y1× Y2× · · · × Yk, where Yi is a minimal normal subgroup of AN for

all i. Furthermore,

CAN (N) = AN ∩ CG(N) = N.

By [9, Theorem 4.25], we have

N = F (AN) =
⋂
i

CAN (Yi).
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Since F is saturated, there exists the canonical local definition f . Hence F =

LF (f), f(p) ⊆ F and f(p) = Npf(p). Then AN/CAN (Yi) ∈ f(p) for any i.

Because f(p) is a formation, it follows that AN/N ∈ f(p). Similarly, we get that

BN/N ∈ f(p).

We consider the direct product AN/N × BN/N = {(aN, bN), a ∈ A, b ∈
B}. Let ϕ : AN/N × BN/N → G/N = (AN/N)(BN/N) be a function from

AN/N ×BN/N to G/N and ϕ(aN, bN) = (ab)N . Since G/N is abelian, we have

AN/N ≤ CG/N (BN/N). It is clear that ϕ is an epimorphism. Then by [9,

Theorem 2.3],

(AN/N ×BN/N)/Ker ϕ ' Im ϕ = G/N.

Since f(p) is a formation, it follows that G/N ∈ f(p). Because N ∈ Np, we have

G ∈ Npf(p) = f(p) ⊆ F. Hence the assumption is wrong.

Let (G′)N 6= 1. We show that the quotient G/(G′)N belongs to F. Since

(G/(G′)N)′ = G′(G′)N/(G′)N = G′/(G′)N,

we have (G/(G′)N)′ is nilpotent. The quotients

G/(G′)N = (A(G′)N/(G′)N)(B(G′)N/(G′)N),

A(G′)N/(G′)N ' A/A ∩ (G′)N, B(G′)N/(G′)N ' B/B ∩ (G′)N,

hence the subgroups A(G′)N/(G′)N and B(G′)N/(G′)N belong to F, and by

Lemma 2.3 (2), are semi-subnormal in G/(G′)N.

Arguing as above, we see that G/(G′)N belongs to F. With this the theorem

is proved. �

Corollary 3.1. Let G = AB, and F be a saturated formation such that

U ⊆ F. Suppose that A and B belong to F. If the derived subgroup G′ is

nilpotent, then G ∈ F in each of the following cases:

(1) A and B are subnormal in G;

(2) A and B are seminormal in G;

(3) one of the subgroups A or B is seminormal in G, the other is subnormal in G;

(4) A and B are mutually permutable;

(5) the indices of A and B in G are prime.

Since U ⊆ NA, it follows that G(NA) = (GA)N = (G′)N ≤ GU by Lemma 2.5

(3–4). Therefore, for F = U, Corollary 3.1 covers the above results of the papers [2],

[10], [11], [12].
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