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Abstract. We investigate a finite group G with F-subnormal Sylow subgroups, where F
is a subgroup-closed formation and A1A � F � NA. We prove that G is soluble and
the derived subgroup of each metanilpotent subgroup is nilpotent. We also describe the
structure of groups in which every Sylow subgroup is F-subnormal or F-abnormal.

1 Introduction

All groups in this paper are finite. We use the standard notation and terminology
of [3,10]. The formations of all abelian, nilpotent, supersoluble and soluble groups
are denoted by A, N, U and S, respectively. We also use the following notation:
� E denotes the formation of all finite groups,
� A1 denotes the formation of all abelian groups with elementary abelian Sylow

subgroups,
� A denotes the formation of all soluble groups with abelian Sylow subgroups.

Let F be a formation, and let G be a group. The subgroup

GF
D

\
¹N C G W G=N 2 Fº

is called the F-residual of G. If X and F are subgroup-closed formations, then
the product XF D ¹G 2 E W GF 2 Xº is also a subgroup-closed formation by
[10, Theorem 5.10 (3)] and [3, Definition IV.1.7].

The F-subnormality and F-abnormality could be regarded as the extension of
the subnormality and abnormality to formation theory, see [3, Definitions IV.5.12,
Remarks IV.5.6] and [1, Section 6.1].

A subgroup H is called an F-subnormal subgroup of a group G if there is
a chain of subgroups

H D H0 ÉH1 É � � �ÉHn D G (1.1)

such that Hi=.Hi�1/Hi
2 F for all i . This is equivalent to HF

i � Hi�1. Here
YX D

T
x2X Y

x is the core of a subgroup Y in a group X , Hi�1 ÉHi denotes
that Hi�1 is a maximal subgroup of a group Hi .
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A subgroupH of a group G is said to be F-abnormal in G if L=KL 62 F for all
subgroups K and L such that H � K É L � G.

In any group G, there are no proper subgroups that are both F-subnormal and
F-abnormal. It is clear that for formations F and X, F � X, every F-subnormal
subgroup is X-subnormal and every X-abnormal subgroup is F-abnormal.

Groups with certain F-subnormal subgroups were investigated in [4,11–16,18–
20].

T. I. Vasil’eva and A. F. Vasil’ev [18] proposed to denote the class of all groups
in which every Sylow subgroup is F-subnormal by wF. In any soluble group,
every Sylow subgroup is A1N-subnormal (see Corollary 3.7). Therefore in the sol-
uble universe, the class wF should be investigated when A1N ª F. Since N-sub-
normal subgroups are subnormal [17, Section II.8], we have wN D N. The de-
tailed description of the class wU and properties of groups from this class are
obtained in [11, 12, 19].

In this paper, we investigate the class wF when F is a subgroup-closed forma-
tion and A1A � F � NA. We get the following characterizations of this class.

Theorem A. Let F be a subgroup-closed formation and let A1A � F � NA. The
following statements hold.

(1) Every Sylow subgroup of a group G is F-subnormal if and only if GA is
nilpotent.

(2) Every Sylow subgroup of a groupG is F-subnormal if and only ifG is soluble
and every its metanilpotent subgroup has the nilpotent derived subgroup.

Note that statement (1) of Theorem A is equivalent to wF D NA.
In Section 4, we use Theorem A to investigate a group in which every Sylow

subgroup is F-subnormal or F-abnormal. We prove

Theorem B. Let F be a subgroup-closed formation and let A1A � F � NA.
Every Sylow subgroup of a group G is F-subnormal or F-abnormal of nilpo-
tency class at most 2 if and only if either G 2 NA or G D GN Ì P , where P is
a non-abelian F-abnormal Sylow p-subgroup of G for some p 2 �.G/ and the
Carter and Gaschütz subgroup of G, P 0 � Z.P /, GN D GU 2 NA.

2 Preliminaries

We write X � Y and X E Y if X is a subgroup of a group Y and X is a normal
subgroup of Y , respectively. If X ¤ Y , then we use X < Y and X C Y . The
semidirect product of a subgroupA and a normal subgroupB is denoted byA Ì B .
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We useZ.G/,ˆ.G/ and F.G/ to denote the centre, Frattini and Fitting subgroups
of a group G, respectively. The derived subgroup of a group G is denoted by G0.

A nilpotent group P has nilpotency class at most 2 if P 0 � Z.P /.

Lemma 2.1. Let F be a formation, let H and K be subgroups of a group G and
let N E G. The following statements hold.

(1) If K is F-subnormal in H and H is F-subnormal in G, then K is F-sub-
normal in G, [1, Lemma 6.1.6 (1)].

(2) If K=N is F-subnormal in G=N , then K is F-subnormal in G, [1, Lem-
ma 6.1.6 (2)].

(3) If H is F-subnormal in G, then HN=N is F-subnormal in G=N , [1, Lem-
ma 6.1.6 (3)].

(4) If F is a subgroup-closed formation and GF � K, then K is F-subnormal
in G, [1, Lemma 6.1.7 (1)].

(5) If F is a subgroup-closed formation andH is F-subnormal inG, thenH \K
is F-subnormal in K, [1, Lemma 6.1.7 (2)].

(6) If F is a subgroup-closed formation and H � K � G 2 F, then H is F-sub-
normal in K, [1, Lemma 6.1.7 (1)].

Throughout this paper P denotes the set of all primes.

Lemma 2.2. Let F be a formation containing a group of order p for all primes p,
and let A be an F-abnormal subgroup of a group G. The following statements
hold.

(1) If A � B � G, then A is F-abnormal in B and A D NG.A/.

(2) If A � B � G, then B is F-abnormal in G and B D NG.B/.

Proof. (1) It is clear thatA is F-abnormal inB . Assume that there is a subgroupK
of G such that A � K and K ¤ NG.K/. Hence there is a subgroup L such that
K < L � NG.K/, jL=Kj 2 P . By hypothesis, L=K 2 F. This contradicts the
F-abnormality of A. Therefore K D NG.K/ for every subgroup K containing A,
in particular, A D NG.A/.

(2) Let A � B � G. By definition, B F-abnormal in G. As in (1) we get
B D NG.B/.

Lemma 2.3 ([8, Lemma 1]). The following statements hold.

(1) If K � H � G, then KG � KH .

(2) If N � H � G and N C G, then N � HG and .H=N/G=N D HG=N .

(3) If N C G and H � G, then .HG/N � .HN/G .
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Lemma 2.4. Let F be a formation, let H � G and N E G. The following state-
ments hold.

(1) If H is F-abnormal in G, then HN=N is F-abnormal in G=N .

(2) if N � H and H=N is F-abnormal in G=N , then H F-abnormal in G.

Proof. (1) Let
HN=N � K=N É L=N � G=N: (2.1)

It follows that H � HN � K É L � G. Since H is F-abnormal in G, we have
L=KL … F. By Lemma 2.3 (2),

.L=N/=.K=N/L=N D .L=N/=.KL=N/ ' L=KL … F: (2.2)

Hence HN=N is F-abnormal in G=N .
(2) Assume thatN � H � K É L � G. SinceH=N is F-abnormal inG=N , in

view of Lemma 2.3 (2), we get (2.1) and (2.2). Hence H is F-abnormal in G.

Let F be a class of groups. A group G is called a minimal non-F-group if
G … F but every proper subgroup of G belongs to F.

Lemma 2.5. Let F be a formation. If G is a minimal non-F-group, N C G and
G=N … F, then N � ˆ.G/.

Proof. Suppose that N ª ˆ.G/. Then in G there is a maximal subgroup M such
that G DMN . Since G is a minimal non-F-group, it follows that M 2 F and
G=N 'M=.M \N/ 2 F, a contradiction. Thus, N � ˆ.G/.

Lemma 2.6. Suppose that F is a (subgroup-closed) formation. Then NF is a sat-
urated (subgroup-closed) formation.

Proof. The product of (subgroup-closed) formations is a (subgroup-closed) for-
mation [10, Theorem 5.10 (2)], hence NF is a (subgroup-closed) formation. Let
G=ˆ.G/ 2 NF. Then in G=ˆ.G/ there is a nilpotent normal subgroup K=ˆ.G/
such that

G=K ' .G=ˆ.G//=.K=ˆ.G// 2 F; ˆ.G/ � K C G; K=ˆ.G/ 2 N:

In view of [10, Theorem 3.24], K is nilpotent and G 2 NF.

Lemma 2.7. A minimal non-A-group is primary non-abelian group in which all
proper subgroups are abelian. Conversely, every primary non-abelian group with
abelian proper subgroups is a minimal non-A-group.
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Proof. Assume that G is a minimal non-A-group and P is a Sylow subgroup
of G. If G ¤ P , then P is abelian and G is A-group, a contradiction. Hence
G D P is a primary non-abelian group. If P1 < P , then P1 coincides with its
Sylow subgroup. Therefore P1 is abelian. Thus a minimal non-A-group is a non-
abelian primary group in which all proper subgroups are abelian. The converse is
obvious.

Lemma 2.8. Let G be a soluble minimal non-NA-group. The following state-
ments hold.

(1) G D P ÌQ.

(2) P D GNA is a Sylow p-subgroup, its properties are described in [17, Theo-
rem 24.2]; in particular, P=ˆ.P / is a minimal normal subgroup in G=ˆ.G/.

(3) Q is a non-abelian Sylow q-subgroup in which all proper subgroups are
abelian.

(4) Q0 � CG.ˆ.P //.

Proof. By Lemma 2.6, NA is a saturated subgroup-closed formation. In view
of [2, Proposition 1],G=GNA is a minimal non-A-group. By Lemma 2.7,G=GNA

is a primary non-abelian group in which all proper subgroup are abelian. Hence
GNA is a Sylow subgroup of G and G D P ÌQ, where P D GNA. The proper-
ties of P are described in [17, Theorem 24.2]. In particular, P=ˆ.P / is a minimal
normal subgroup of G=ˆ.G/. It follows that H D ˆ.P / ÌQ is a maximal sub-
group of G. By hypothesis, H 2 NA, so H=F.H/ 2 A. Since ˆ.P / � F.H/,
H=F.H/ is an abelian q-group and Q0 � F.H/, i.e. Q0 � CG.ˆ.P //.

Let G be a group and let X be a class of groups. A subgroup H of a group G
is X-maximal in G if H 2 X and H D K whenever H � K � G and K 2 X.
A subgroup H is an X-projector of G if HN=N is an X-maximal subgroup of
G=N for any normal subgroup N of G.

Lemma 2.9 ([17, Theorem 15.1]). Let F be a formation. A subgroup H of a sol-
uble group G is an F-projector of G if and only if H 2 F and H is F-abnormal
in G.

If G has a maximal subgroupM with trivial core, then G is said to be primitive
and M is its primitivator [5].

Lemma 2.10 ([9, Lemma 8]). Let F be a saturated formation and letG be a group.
Assume that G … F, but G=N 2 F for all nontrivial normal subgroups N of G.
Then G is a primitive group.
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Lemma 2.11 ([10, Theorems 4.41 and 4.42]). Let G be a soluble primitive group
with a primitivator M . The following statements hold.

(1) ˆ.G/ D 1.

(2) F.G/ D CG.F.G// D Op.G/ for some p 2 �.G/.

(3) G has a unique minimal normal subgroup N 2 A1, furthermore N D F.G/.

(4) G D N ÌM and Op.M/ D 1.

Lemma 2.12. In a soluble group, every subnormal subgroup is A1-subnormal.

Proof. LetH be a subnormal subgroup of a soluble group G. There is a composi-
tion series of G containing H . Since G is soluble, the composition factors are of
prime orders. Hence there is a chain of subgroups

H D H0 ÉH1 É � � �ÉHn D G

such that Hi C HiC1 and jHiC1 W Hi j 2 P . Thus, HiC1=Hi 2 A1 for all i , and
so H is A1-subnormal in G.

Lemma 2.13. A group G is soluble if and only if G contains an S-subnormal
soluble subgroup.

Proof. If G is a soluble group, then every subgroup of G is soluble and S-sub-
normal by Lemma 2.1 (6). Conversely, assume that G contains an S-subnormal
soluble subgroup H . Since H is a proper subgroup of G and S-subnormal in G,
there is a maximal subgroup M containing H such that G=MG is soluble. By
Lemma 2.1 (5), H is S-subnormal in M and, by induction, M is soluble. Thus
G=MG and MG are soluble, hence G is soluble.

3 Groups with F-subnormal Sylow subgroups

In this section, we investigate groups that belong to wF on condition that F is
a subgroup-closed formation and A1A � F � NA.

Example 3.1. In the symmetric group S4 of degree 4, every Sylow subgroup is
A1A-subnormal, i.e. S4 2 w.A1A/ � wF for any formation F with A1A � F.

Example 3.2. The general linear group GL.2; 3/ of order 243 has a subgroup chain

1 � P �Z � SL.2; 3/ D Q Ì P C GL.2; 3/; 1 � Q C R É GL.2; 3/;

where Z D Z.GL.2; 3//, P is the Sylow 3-subgroup and R is the Sylow 2-sub-
group of GL.2; 3/,Q is the quaternion group of order 8,Q C GL.2; 3/. It follows
that GL.2; 3/ 2 w.A1A/ � wF for any formation F such that A1A � F.
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The following example shows that a subgroup-closed formation F on condition
that A1A � F � NA could be nonsaturated.

Example 3.3. Let F D Sform¹A1A [ S4º be a subgroup-closed formation gener-
ated by the formation A1A and the symmetric group S4. Then F is not saturated
and A1A � F � NA, since S4 2 F n A1A and GL.2; 3/ 2 NA n F. We can
similarly construct a subgroup-closed nonsaturated formation Sform¹A1A [ V º

for any group V 2 NA nA1A.

Lemma 3.4. If F is a subgroup-closed soluble formation, then wF is also a sub-
group-closed soluble formation.

Proof. By [18, Lemma 1.4], wF is subgroup-closed and, by Lemma 2.13, wF is
soluble.

Proposition 3.5. Let F be a subgroup-closed formation, let G be a soluble group
and let H � G.

(1) If H 2 F, then H is A1F-subnormal in G.

(2) H is A1F-subnormal in G if and only if H is NF-subnormal.

(3) A subgroup H is A1F-abnormal in G if and only if H is NF-abnormal.

Proof. (1) We use induction on jGj. Assume that H 2 F and N is a minimal
normal subgroup of G. By induction, HN=N is A1F-subnormal in G=N . Hence
HN is A1F-subnormal in G by Lemma 2.1 (2). Since HN 2 A1F, we conclude
that H is A1F-subnormal in HN , and so H is A1F-subnormal in G in view of
Lemma 2.1 (1).

(2) Suppose that H is A1F-subnormal in G. Since A1F � NF, we deduce
that H is NF-subnormal in G. To prove the converse, we use induction on jGj.
LetH be an NF-subnormal subgroup of G,M be a maximal subgroup of G such
that H �M and G=MG 2 NF. Since G=MG is primitive, by Lemma 2.11,

G=MG D G D N ÌM; N D F.G/ D CG.F.G//;

N is a minimal normal subgroup ofG,N 2A1. AsG=MG 2NF andN D F.G/,
we have M 2 F. Now, G=MG 2 A1F and M is A1F-normal in G. Since H
is NF-subnormal in G, by induction, H is A1F-subnormal in M . Thus, H is
A1F-subnormal in G by Lemma 2.1 (1).

(3) Suppose that H is A1F-abnormal in G. Then L=KG … A1F for any sub-
groups K and L such that H � K É L � G. Since L=KG is a primitive group,
we obtain

L=KG D N=KG ÌM=KG ; N=KG D F.L=KG/ 2 A1;
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in view of Lemma 2.11. If L=KG 2 NF, then L=KG 2 A1F, a contradiction. So
L=KG … NF andH is NF-abnormal inG. Conversely, ifH NF-abnormal inG,
then L=KG … NF for any subgroups K and L such that H � K É L � G. As
A1F � NF, it follows that L=KG … A1F, and H is A1F-abnormal.

According to Proposition 3.5 (1), every abelian subgroup of a soluble group is
A1A-subnormal. The following example demonstrates that a primary subgroup of
nilpotency class at most 2 could be non-A1A-subnormal.

Example 3.6. Let E32 be the elementary abelian group of order 32. The gen-
eral linear group GL.2; 3/ is the automorphism group of E32 . The dihedral sub-
group D of order 8 is a subgroup of GL.2; 3/ and acts irreducibly on E32 . So
G D E32 ÌD is contained in the holomorph ofE32 . NoteG has ID 40 among the
groups of order 72 in the GAP SmallGroup library [22]. The Sylow 2-subgroupD
of G is a maximal subgroup and DG D 1. Hence G 2 .A1/

3 nA1A and D is
A1A-abnormal in G. It follows that subgroups of nilpotency class 2 could be non-
A1A-subnormal.

Corollary 3.7. Let F be a subgroup-closed formation and let A1N � F � S.
Then wF D S.

Proof. Every Sylow subgroup of a soluble group is A1N-subnormal, by Proposi-
tion 3.5 (1). Hence S � w.A1N/ � wF. The converse is true by Lemma 3.4.

Substituting F D A in Proposition 3.5 (2)–(3), we obtain the following:

Corollary 3.8. A subgroup H of a soluble group G is A1A-subnormal (A1A-ab-
normal) if and only if H is NA-subnormal (NA-abnormal).

Corollary 3.9. Let F be a subgroup-closed formation and let A1A � F � NA.
A subgroup H of a soluble group G is F-subnormal (F-abnormal) if and only if
H is NA-subnormal (NA-abnormal).

Proof. Suppose that H is an F-subnormal subgroup of a soluble group G. Then
H is NA-subnormal, because F � NA. Conversely, assume that H is NA-sub-
normal in G. By Corollary 3.8, H is A1A-subnormal. Since A1A � F, it implies
that H is F-subnormal in G.

Now assume that H is F-abnormal in G. As A1A � F, it follows that H is
A1A-abnormal, and in view of Corollary 3.8, H is NA-abnormal. Conversely,
suppose thatH is NA-abnormal inG. ThenH is F-abnormal, since F � NA.

Proposition 3.10. If F is a subgroup-closed formation and A1A � F � NA,
then wF D NA.
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Proof. Firstly, we show that wF � NA. Suppose that it is not true and let G
be a group of least order such that G 2 wF nNA. By hypothesis, F � NA, it
implies thatGF ¤ 1. In view of Lemma 3.4, wF is a subgroup-closed soluble for-
mation. Thus for every nontrivial normal subgroup K of G, the quotient group
G=K 2 wF and, by induction, G=K 2 NA. From Lemma 2.6, it follows that
NA is a saturated formation, therefore G is primitive in view of Lemma 2.10.
By Lemma 2.11, G D N ÌM , where N is a unique minimal normal p-subgroup
of G for some p 2 �.G/ such that N D CG.N / D F.G/ 2 A1, M is a maximal
subgroup ofG,MG D 1 andOp.M/ D 1. We claim thatM 2 A. Indeed, suppose
that in M there is a non-abelian Sylow q-subgroup Q for some q 2 �.M/. By
induction, M 2 NA, hence M=F.M/ 2 A. Since Op.M/ D 1, we deduce that
F.M/ is p0-subgroup. If q D p, then Q is abelian, a contradiction. So, q ¤ p.
Consider H D NQ D N ÌQ. If H < G, then we have, by induction, H 2 NA.
As N D CG.N / D F.H/, we obtain H=F.H/ ' Q 2 A, a contradiction. Con-
sequently, G D N ÌQ. From G 2 wF, it follows that Q is F-subnormal in G,
and so in G there is a maximal subgroup L, containing Q, such that G=LG 2 F.
Now, N � GF and G D N ÌQ � GFQ � L, a contradiction. Thus, M 2 A

and G 2 NA, i.e. wF � NA.
To prove the reverse inclusion, we suppose that it is not true andG is a group of

least order such that G 2 NA n wF. Let N be a minimal normal subgroup of G
and letR be a non-F-subnormal Sylow subgroup ofG. By induction,G=N 2 wF,
therefore RN=N is F-subnormal in G=N and, by Lemma 2.1 (2), RN is F-sub-
normal in G. If RN < G, then RN 2 wF and R is F-subnormal in RN . By
Lemma 2.1 (1), R is F-subnormal in G, a contradiction. Now, G D N ÌR. Since
G 2 NA, it implies that R is abelian and G 2 A1A � F � wF, a contradiction.
Thus, NA � wF.

Lemma 3.11. Let G be a soluble group of order pnm, p does not divide m. If for
every q ¤ p, a Sylow q-subgroup of G is cyclic, then G 2 NA. In particular, any
group of order pnq, where p and q are primes, belongs to NA.

Proof. Suppose thatG is a counterexample of least order. Since NA is a saturated
formation, by Lemma 2.10 and Lemma 2.11, G is primitive and

G D N ÌM; N D CG.N / D F.G/ D Or.G/;

r 2 �.G/; M ÉG; MG D ˆ.G/ D 1:

If r ¤ p, then N D Gq is cyclic and G=N is abelian, and so G 2 NA. Suppose
that r D p. As Op.M/ D 1, we conclude that F.M/ is cyclic p0-subgroup. Now
M=F.M/ is abelian by [10, 2.16], it follows that a Sylow p-subgroup of M is
abelian. Thus, M 2 A and G 2 NA.
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Example 3.12. In the group G D E32 ÌD from example 3.6, the Sylow 2-sub-
groupD is A1A-abnormal. HenceG … w.A1A/ D NA. Thus in Lemma 3.11, the
condition for Sylow 20-subgroups to be cyclic cannot be replaced by the condition
to be abelian.

Proof of Theorem A

(1) If every Sylow subgroup of G is F-subnormal, then G 2 wF. By Proposi-
tion 3.10, wF D NA, it follows that GA is nilpotent. Conversely, if GA is nilpo-
tent, then G 2 NA D wF and every Sylow subgroup of G is F-subnormal.

(2) We begin by proving NA \N2 D NA. It is clear that NA � NA \N2.
To prove the reverse inclusion, we suppose that it is not true and G is a group of
least order such that G 2 .NA \N2/ nNA. If K is a nontrivial normal subgroup
ofG, thenG=K 2 NA by induction. Consequently,G is primitive by Lemma 2.10,
and in view of Lemma 2.11,G D F.G/ ÌM . SinceG 2 .NA \N2/, we deduce
G=F.G/ 'M 2 A \N D A. Hence G 2 NA, a contradiction. Thus, we have
wF \N2 D NA \N2 D NA.

If G 2 wF, then G is soluble by Lemma 2.13. Let H be a metanilpotent sub-
group of G. By Lemma 3.4, H 2 wF \N2. Since wF \N2 D NA, it implies
that the derived subgroup ofH is nilpotent. To prove the converse, we suppose that
it is not true and there is a soluble group G … wF such that its metanilpotent sub-
group has the nilpotent derived subgroup. Let H be a minimal non-wF-subgroup
in G. Since wF D NA, from Lemma 2.8 we conclude that H is metanilpotent.
By the choice ofG,H 2 NA � NA, a contradiction. Thus,G 2 wF. Theorem A
is proved.

Since A1A � A2 � NA � NA, we obtain the following:

Corollary 3.13. We have w.A1A/ D w.A2/ D w.NA/ D w.NA/ D NA:

Corollary 3.14. Let F be a subgroup-closed formation and let A1A � F � NA.
Then wF is a soluble saturated subgroup-closed formation.

Proof. By Proposition 3.10, we have wF D NA. The formation NA is soluble
and subgroup-closed by Lemma 3.4, and saturated by Lemma 2.6.

Corollary 3.15. Let F be a subgroup-closed formation and let A1A � F � NA.
If G 2 wF, then every nilpotent subgroup of G is F-subnormal.

Proof. We use induction on jGj. Suppose that G 2 wF is a group of least order
that contains a nilpotent non-F-subnormal subgroup H . Let N be a minimal nor-
mal subgroup of G. In view of Lemma 3.4, HN 2 wF. Since HN is metanilpo-
tent, it follows thatHN 2 NA by Theorem A (2) andH is NA-subnormal inHN .
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As a consequence of Corollary 3.8, H is A1A-subnormal in HN , and so H is
F-subnormal in HN , since A1A � F. By induction, HN=N is F-subnormal
in G=N , and by Lemma 2.1 (2), HN is F-subnormal in G. Finally, from part (1)
of Lemma 2.1 we conclude that H is F-subnormal in G.

Remark 3.16. For any subgroup-closed formation F such that A1A � F � NA,
we have wF D NA. Therefore Lemma 2.8 contains the description of minimal
non-wF-groups.

4 Groups with F-subnormal and F-abnormal Sylow subgroups

A Carter subgroup is a nilpotent self-normalizing subgroup. A Gaschütz subgroup
is a supersoluble subgroup H such that jL W Kj is not prime for all subgroups K
and L, H � K < L � G.

Lemma 4.1. Let F be a soluble subgroup-closed formation. If every Sylow sub-
group of a group G is F-subnormal or F-abnormal, then G is soluble.

Proof. If there is an F-subnormal Sylow subgroup in G, then by Lemma 2.13,
G is soluble. Assume that every Sylow subgroup of G is F-abnormal. Then each
one is self-normalizing in view of Lemma 2.2 (1), and so is a Carter subgroup.
By Vdovin’s theorem [21], Carter subgroups are conjugate, thereforeG is primary
and soluble.

Proposition 4.2. Let F be a formation and let A1A � F � NA. If every Sylow
subgroup of a group G is F-subnormal or F-abnormal, then either G 2 NA or
the following statements hold:

(1) Only one of the Sylow subgroups in G is F-abnormal; let P be such a Sylow
p-subgroup of G.

(2) G is soluble, P is a non-abelian Cater and Gaschütz subgroup.

(3) Gp0 2 wF and Gp0 � G
N D GU.

Proof. If every Sylow subgroup of G is F-subnormal, then G 2 NA by Propo-
sition 3.10. Assume that G … NA. In view of Proposition 3.10, in G there is an
F-abnormal Sylow p-subgroup P for a prime p. By Lemma 2.2 (1), P is self-
normalizing, and so a Carter subgroup of G. By Vdovin’s theorem [21], Carter
subgroups are conjugate, therefore every Sylow r-subgroup of G, r ¤ p, is dif-
ferent from its normalizer and F-subnormal in G. From Lemma 4.1, we conclude
that G is soluble and Gp0 2 wF. If P is abelian, then P is A1A-subnormal by
Proposition 3.5 (1), and so F-subnormal, this contradicts the F-abnormality of P .
Therefore P is non-abelian.
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To prove that P is a Gaschütz subgroup, we suppose that this is not true and
that in G there are subgroups K and L such that

P � K É L � G; jL W Kj D r 2 P :

Then L=KL is a primitive group and, by Lemma 2.11,

L=KL D N=KL ÌK=KL; N=KL D CL=KL
.N=KL/ D F.L=KL/;

jN=KLj D jL W Kj D r 2 P ; N=KL 2 A1;

NL=KL
.N=KL/=CL=KL

.N=KL/ D .L=KL/=.N=KL/ 2 A

in view of [10, Theorem 2.16 (3)]. Hence L=KL 2 A1A � F, this contradicts the
F-abnormality of P . Thus P is a Gaschütz subgroup of G.

As a Gaschütz subgroup is a U-projector [10, Theorem 5.29], we obtain

G D GUP; G=GU
' P=P \GU

2 N; GN
� GU:

Since N � U, we conclude GU � GN and GU D GN. From G D GUP , it fol-
lows that Gp0 � G

U.

A group with a normal Sylow p-subgroup is called p-closed.

Lemma 4.3. Let F be a formation and let A1A � F � NA. Assume that G is
a ¹p; qº-group with an F-subnormal Sylow p-subgroup P and an F-abnormal
Sylow q-subgroup Q, p ¤ q. If Q0 � Z.Q/, then P is normal in G.

Proof. By Lemma 2.12, all p-subgroups are F-subnormal in G. Suppose that
G is a group of least order with a non-normal Sylow subgroup P . Let K be
a nontrivial normal subgroup of G. In view of the properties of Sylow subgroups,
Lemma 2.1 (2) and Lemma 2.4 (2), PK=K is normal in G=K by induction, i.e.
G=K is p-closed. Hence, by Lemma 2.10, G is primitive and, by Lemma 2.11,
G D N ÌM , where N is a unique minimal normal r-subgroup of G such that
N D CG.N / D F.G/ 2 A1, M is a maximal subgroup of G with trivial core
and Or.M/ D 1. If r D p, then Q �M and, by induction, M is p-closed, but
Op.M/ D 1, a contradiction. Consequently, r D q and N is a proper subgroup
in Q in view of Lemma 2.2 (1). By induction, we have PN=N C G=N , and so
H D PN D N Ì P is a proper normal subgroup of G. From Lemma 2.1 (5) we
conclude that P is F-subnormal in H , and N is also F-subnormal in H in view
of Lemma 2.12. Consequently, H 2 wF D NA by Proposition 3.10. It follows
from CG.N / D N that PH D 1 and F.H/ D N , and so H=F.H/ ' P 2 A. By
induction,M D PÌQ1, whereQ D NÌQ1. SinceQ0 � Z.Q/ � CG.N / D N ,
we get Q1 2 A. Thus, G 2 NA and Q is F-subnormal in G by Proposition 3.10,
a contradiction.
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Remark 4.4. In the symmetric group S4 of degree 4, the Sylow 2-subgroup D is
abnormal and has nilpotency class 2. A Sylow 3-subgroup Z is not normal but
A1A-subnormal, because

Z � A4 C S4; A4 2 A1A:

Thus in Lemma 4.3 we cannot replace the A1A-abnormality by abnormality of
Sylow subgroups.

Proof of Theorem B

Suppose that every Sylow subgroup of a group G is F-subnormal or F-abnormal
of nilpotency class at most 2. By Lemma 4.1, G is soluble. If every Sylow sub-
group of G is F-subnormal, then G 2 wF D NA in view of Proposition 3.10.

Assume that G … NA. Then in G, there is an F-abnormal Sylow p-subgroup
P for some p 2 �.G/ of nilpotency class at most 2. By Proposition 4.2, P is
a non-abelian Carter and Gaschütz subgroup andGN D GU. In view of [10, Theo-
rems 5.27 and 5.29] and Lemma 2.9,G D GNP D GUP . Since Carter subgroups
are conjugate [21], it implies that every Sylow q-subgroup Gq of G, q ¤ p, is
F-subnormal in G. Consider a Hall ¹p; qº-subgroup H D PGq of G. It follows
from Lemma 4.3 that Gq is normal in H and P � NG.Gq/. Since q is arbitrary,
we obtain P � NG.Gp0/ and the Hall p0-subgroup Gp0 of G is normal in G. Con-
sequently,

G D Gp0 Ì P D GNP D GUP; Gp0 D G
N
D GU:

By Proposition 3.10, Gp0 2 NA.
Conversely, if G 2 NA, then every Sylow subgroup of G is F-subnormal

by Proposition 3.10. Now assume that G D GN Ì P , where P is a non-abelian
F-abnormal Sylow p-subgroup of G for some element p 2 �.G/ and a Carter
and Gaschütz subgroup, P 0 � Z.P / and GN D GU 2 NA. Let Gr be a Sylow
r-subgroup of G, r 2 �.G/. If r D p, then Gr and P are conjugate, so Gr is
F-abnormal in G. If r ¤ p, then Gr � G

N 2 NA. In view of Proposition 3.10,
Gr is F-subnormal in GN, consequently, Gr is F-subnormal in G. Theorem B
is proved.

Example 4.5. Let E24 be the elementary abelian group of order 16. The gen-
eral linear group GL.4; 2/ ' A8 is the automorphism group of E24 and contains
H D E32 ÌD (see Example 3.6). The group G D E24 ÌH is a subgroup of
the holomorph and has ID 157849 among the groups of order 1152 in the GAP
SmallGroup library [22]. Besides,

Q D E24 ÌD ÉG; QG D E24 D F.G/; G=QG ' H … A1A:
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Hence the Sylow 2-subgroup Q is A1A-abnormal in G. The Sylow 3-subgroup
P D E32 is not normal but A1A-subnormal in G, since

P � E24 Ì P C G; E24 Ì P 2 A2
1:

Thus we cannot omit the restriction on the nilpotency class of F-abnormal Sylow
subgroups in Theorem B.

Bibliography

[1] A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Math. Appl.
584, Springer, Dordrecht, 2006.

[2] J. C. Beidleman and H. Heineken, Minimal non-F -groups, Ric. Mat. 58 (2009),
no. 1, 33–41.

[3] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math. 4, Walter
de Gruyter, Berlin, 1992.

[4] P. Förster, Finite groups all of whose subgroups are F -subnormal or F -sub-
abnormal, J. Algebra 103 (1986), no. 1, 285–293.

[5] W. Gaschütz, Lectures of Subgroups of Sylow Type in Finite Soluble Groups, Aus-
tralian National University, Canberra, 1979.

[6] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin,
1967.

[7] V. A. Kovaleva and A. N. Skiba, Finite soluble groups with all n-maximal subgroups
F-subnormal, J. Group Theory 17 (2014), no. 2, 273–290.

[8] I. V. Lemeshev and V. S. Monakhov, Finite groups with decomposable cofactors of
maximal subgroups (in Russian), Trudy Inst. Mat. i Mekh. UrO RAN 17 (2011), no. 4,
181–188.

[9] V. S. Monakhov, On indices of maximal subgroups of finite solvable groups, Algebra
Logic 43 (2004), no. 4, 230–237.

[10] V. S. Monakhov, Introduction to the Theory of Finite Groups and Their Classes (in
Russian), Vyshejshaja Shkola, Minsk, 2006.

[11] V. S. Monakhov, Finite groups with abnormal and U-subnormal subgroups, Sib.
Math. J. 57 (2016), no. 2, 353–363.

[12] V. S. Monakhov and V. N. Kniahina, Finite groups with P -subnormal subgroups, Ric.
Mat. 62 (2013), no. 2, 307–322.

[13] V. N. Semenchuk, Finite groups with generalized subnormal Sylow subgroups (in
Russian), Probl. Fiz. Mat. Tekh. 2016 (2016), no. 3(28), 58–60.

[14] V. N. Semenchuk and S. N. Shevchuk, Characterization of classes of finite groups
using generalized subnormal Sylow subgroups, Math. Notes 89 (2011), no. 1,
117–120.



On groups with formational subnormal Sylow subgroups 287

[15] V. N. Semenchuk and S. N. Shevchuk, Finite groups whose primary subgroups are
either F -subnormal or F -abnormal, Russian Math. (Iz. VUZ) 55 (2011), no. 8,
38–46.

[16] V. N. Semenchuk and A. N. Skiba, On finite groups in which every subgroup is
either F-subnormal or F-abnormal (in Russian), Probl. Fiz. Mat. Tekh. 2015 (2015),
no. 2(23), 72–74.

[17] L. A. Šemetkov, Formations of Finite Groups (in Russian), “Nauka”, Moscow, 1978.

[18] A. F. Vasil’ev and T. I. Vasil’eva, On finite groups with generally subnormal Sylow
subgroups (in Russian), Probl. Fiz. Mat. Tekh. 2011 (2011), no. 4(9), 86–91.

[19] A. F. Vasil’ev, T. I. Vasil’eva and V. N. Tyutyanov, Finite groups of supersolvable
type, Sib. Math. J. 51 (2010), no. 6, 1004–1012.

[20] A. F. Vasil’ev, T. I. Vasil’eva and A. S. Vegera, Finite groups with a generalized sub-
normal embedding of Sylow subgroups, Sib. Math. J. 57 (2016), no. 2, 200–212.

[21] E. P. Vdovin, Carter subgroups of finite groups, Siberian Adv. Math. 19 (2009), no. 1,
24–74.

[22] The GAP Group: GAP — Groups, Algorithms, and Programming. Version 4.8.7,
released on 24 March 2017, http://www.gap-system.org.

Received June 27, 2017; revised October 5, 2017.

Author information

Victor S. Monakhov, Department of Mathematics and Programming Technologies,
Francisk Skorina Gomel State University, Sovetskaya Str. 104, 246019 Gomel, Belarus.
E-mail: victor.monakhov@gmail.com

Irina L. Sokhor, Department of Mathematics and Programming Technologies,
Francisk Skorina Gomel State University, Sovetskaya Str. 104, 246019 Gomel, Belarus.
E-mail: irina.sokhor@gmail.com

http://www.gap-system.org
mailto:victor.monakhov@gmail.com
mailto:irina.sokhor@gmail.com

