On groups with formational subnormal Sylow subgroups

Victor S. Monakhov and Irina L. Sokhor

Communicated by Robert M. Guralnick

Abstract. We investigate a finite group G with \mathcal{F} -subnormal Sylow subgroups, where \mathcal{F} is a subgroup-closed formation and $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$. We prove that G is soluble and the derived subgroup of each metanilpotent subgroup is nilpotent. We also describe the structure of groups in which every Sylow subgroup is \mathcal{F} -subnormal or \mathcal{F} -abnormal.

1 Introduction

All groups in this paper are finite. We use the standard notation and terminology of [3,10]. The formations of all abelian, nilpotent, supersoluble and soluble groups are denoted by \mathfrak{A} , \mathfrak{N} , \mathfrak{U} and \mathfrak{S} , respectively. We also use the following notation:

- & denotes the formation of all finite groups,
- \mathfrak{A}_1 denotes the formation of all abelian groups with elementary abelian Sylow subgroups,
- A denotes the formation of all soluble groups with abelian Sylow subgroups.

Let \mathcal{F} be a formation, and let G be a group. The subgroup

$$G^{\mathfrak{F}} = \bigcap \{ N \lhd G : G/N \in \mathfrak{F} \}$$

is called the \mathfrak{F} -residual of G. If \mathfrak{X} and \mathfrak{F} are subgroup-closed formations, then the product $\mathfrak{X}\mathfrak{F} = \{G \in \mathfrak{G} : G^{\mathfrak{F}} \in \mathfrak{X}\}$ is also a subgroup-closed formation by [10, Theorem 5.10(3)] and [3, Definition IV.1.7].

The F-subnormality and F-abnormality could be regarded as the extension of the subnormality and abnormality to formation theory, see [3, Definitions IV.5.12, Remarks IV.5.6] and [1, Section 6.1].

A subgroup H is called an \mathcal{F} -subnormal subgroup of a group G if there is a chain of subgroups

$$H = H_0 \lessdot H_1 \lessdot \dots \sphericalangle H_n = G \tag{1.1}$$

such that $H_i/(H_{i-1})_{H_i} \in \mathfrak{F}$ for all *i*. This is equivalent to $H_i^{\mathfrak{F}} \leq H_{i-1}$. Here $Y_X = \bigcap_{x \in X} Y^x$ is the core of a subgroup *Y* in a group *X*, $H_{i-1} < H_i$ denotes that H_{i-1} is a maximal subgroup of a group H_i .

A subgroup *H* of a group *G* is said to be \mathfrak{F} -abnormal in *G* if $L/K_L \notin \mathfrak{F}$ for all subgroups *K* and *L* such that $H \leq K \ll L \leq G$.

In any group G, there are no proper subgroups that are both \mathcal{F} -subnormal and \mathcal{F} -abnormal. It is clear that for formations \mathcal{F} and \mathcal{X} , $\mathcal{F} \subseteq \mathcal{X}$, every \mathcal{F} -subnormal subgroup is \mathcal{X} -subnormal and every \mathcal{X} -abnormal subgroup is \mathcal{F} -abnormal.

Groups with certain \mathcal{F} -subnormal subgroups were investigated in [4,11–16,18–20].

T. I. Vasil'eva and A. F. Vasil'ev [18] proposed to denote the class of all groups in which every Sylow subgroup is \mathfrak{F} -subnormal by w \mathfrak{F} . In any soluble group, every Sylow subgroup is $\mathfrak{A}_1\mathfrak{N}$ -subnormal (see Corollary 3.7). Therefore in the soluble universe, the class w \mathfrak{F} should be investigated when $\mathfrak{A}_1\mathfrak{N} \not\subseteq \mathfrak{F}$. Since \mathfrak{N} -subnormal subgroups are subnormal [17, Section II.8], we have w $\mathfrak{N} = \mathfrak{N}$. The detailed description of the class w \mathfrak{U} and properties of groups from this class are obtained in [11, 12, 19].

In this paper, we investigate the class w \mathcal{F} when \mathcal{F} is a subgroup-closed formation and $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$. We get the following characterizations of this class.

Theorem A. Let \mathcal{F} be a subgroup-closed formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{R}\mathcal{A}$. The following statements hold.

- (1) Every Sylow subgroup of a group G is \mathfrak{F} -subnormal if and only if $G^{\mathcal{A}}$ is nilpotent.
- (2) Every Sylow subgroup of a group G is \mathcal{F} -subnormal if and only if G is soluble and every its metanilpotent subgroup has the nilpotent derived subgroup.

Note that statement (1) of Theorem A is equivalent to $w\mathcal{F} = \mathfrak{N}\mathcal{A}$.

In Section 4, we use Theorem A to investigate a group in which every Sylow subgroup is \mathfrak{F} -subnormal or \mathfrak{F} -abnormal. We prove

Theorem B. Let \mathfrak{F} be a subgroup-closed formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F} \subseteq \mathfrak{N} \mathcal{A}$. Every Sylow subgroup of a group G is \mathfrak{F} -subnormal or \mathfrak{F} -abnormal of nilpotency class at most 2 if and only if either $G \in \mathfrak{N} \mathcal{A}$ or $G = G^{\mathfrak{N}} \rtimes P$, where P is a non-abelian \mathfrak{F} -abnormal Sylow p-subgroup of G for some $p \in \pi(G)$ and the Carter and Gaschütz subgroup of G, $P' \leq Z(P)$, $G^{\mathfrak{N}} = G^{\mathfrak{U}} \in \mathfrak{N} \mathcal{A}$.

2 Preliminaries

We write $X \leq Y$ and $X \leq Y$ if X is a subgroup of a group Y and X is a normal subgroup of Y, respectively. If $X \neq Y$, then we use X < Y and X < Y. The semidirect product of a subgroup A and a normal subgroup B is denoted by $A \rtimes B$.

We use Z(G), $\Phi(G)$ and F(G) to denote the centre, Frattini and Fitting subgroups of a group G, respectively. The derived subgroup of a group G is denoted by G'.

A nilpotent group P has nilpotency class at most 2 if $P' \leq Z(P)$.

Lemma 2.1. Let \mathcal{F} be a formation, let H and K be subgroups of a group G and let $N \leq G$. The following statements hold.

- (1) If K is F-subnormal in H and H is F-subnormal in G, then K is F-subnormal in G, [1, Lemma 6.1.6 (1)].
- (2) If K/N is \mathfrak{F} -subnormal in G/N, then K is \mathfrak{F} -subnormal in G, [1, Lemma 6.1.6(2)].
- (3) If H is \mathcal{F} -subnormal in G, then HN/N is \mathcal{F} -subnormal in G/N, [1, Lemma 6.1.6(3)].
- (4) If \mathfrak{F} is a subgroup-closed formation and $G^{\mathfrak{F}} \leq K$, then K is \mathfrak{F} -subnormal in G, [1, Lemma 6.1.7 (1)].
- (5) If \mathfrak{F} is a subgroup-closed formation and H is \mathfrak{F} -subnormal in G, then $H \cap K$ is \mathfrak{F} -subnormal in K, [1, Lemma 6.1.7 (2)].
- (6) If F is a subgroup-closed formation and H ≤ K ≤ G ∈ F, then H is F-subnormal in K, [1, Lemma 6.1.7 (1)].

Throughout this paper \mathbb{P} denotes the set of all primes.

Lemma 2.2. Let \mathcal{F} be a formation containing a group of order p for all primes p, and let A be an \mathcal{F} -abnormal subgroup of a group G. The following statements hold.

(1) If $A \leq B \leq G$, then A is \mathfrak{F} -abnormal in B and $A = N_G(A)$.

(2) If $A \leq B \leq G$, then B is \mathcal{F} -abnormal in G and $B = N_G(B)$.

Proof. (1) It is clear that *A* is \mathfrak{F} -abnormal in *B*. Assume that there is a subgroup *K* of *G* such that $A \leq K$ and $K \neq N_G(K)$. Hence there is a subgroup *L* such that $K < L \leq N_G(K)$, $|L/K| \in \mathbb{P}$. By hypothesis, $L/K \in \mathfrak{F}$. This contradicts the \mathfrak{F} -abnormality of *A*. Therefore $K = N_G(K)$ for every subgroup *K* containing *A*, in particular, $A = N_G(A)$.

(2) Let $A \leq B \leq G$. By definition, B \mathcal{F} -abnormal in G. As in (1) we get $B = N_G(B)$.

Lemma 2.3 ([8, Lemma 1]). The following statements hold.

(1) If $K \leq H \leq G$, then $K_G \leq K_H$.

- (2) If $N \leq H \leq G$ and $N \triangleleft G$, then $N \leq H_G$ and $(H/N)_{G/N} = H_G/N$.
- (3) If $N \triangleleft G$ and $H \leq G$, then $(H_G)N \leq (HN)_G$.

Lemma 2.4. Let \mathfrak{F} be a formation, let $H \leq G$ and $N \leq G$. The following statements hold.

- (1) If H is \mathcal{F} -abnormal in G, then HN/N is \mathcal{F} -abnormal in G/N.
- (2) if $N \leq H$ and H/N is \mathcal{F} -abnormal in G/N, then $H \mathcal{F}$ -abnormal in G.

Proof. (1) Let

$$HN/N \le K/N \le L/N \le G/N.$$
(2.1)

It follows that $H \leq HN \leq K \leq L \leq G$. Since *H* is \mathfrak{F} -abnormal in *G*, we have $L/K_L \notin \mathfrak{F}$. By Lemma 2.3(2),

$$(L/N)/(K/N)_{L/N} = (L/N)/(K_L/N) \simeq L/K_L \notin \mathfrak{F}.$$
(2.2)

Hence HN/N is \mathcal{F} -abnormal in G/N.

(2) Assume that $N \le H \le K \le L \le G$. Since H/N is \mathfrak{F} -abnormal in G/N, in view of Lemma 2.3 (2), we get (2.1) and (2.2). Hence H is \mathfrak{F} -abnormal in G. \Box

Let \mathcal{F} be a class of groups. A group G is called a minimal non- \mathcal{F} -group if $G \notin \mathcal{F}$ but every proper subgroup of G belongs to \mathcal{F} .

Lemma 2.5. Let \mathcal{F} be a formation. If G is a minimal non- \mathcal{F} -group, $N \triangleleft G$ and $G/N \notin \mathcal{F}$, then $N \leq \Phi(G)$.

Proof. Suppose that $N \not\subseteq \Phi(G)$. Then in G there is a maximal subgroup M such that G = MN. Since G is a minimal non- \mathfrak{F} -group, it follows that $M \in \mathfrak{F}$ and $G/N \simeq M/(M \cap N) \in \mathfrak{F}$, a contradiction. Thus, $N \leq \Phi(G)$.

Lemma 2.6. Suppose that \mathcal{F} is a (subgroup-closed) formation. Then \mathfrak{NF} is a saturated (subgroup-closed) formation.

Proof. The product of (subgroup-closed) formations is a (subgroup-closed) formation [10, Theorem 5.10(2)], hence \mathfrak{MF} is a (subgroup-closed) formation. Let $G/\Phi(G) \in \mathfrak{MF}$. Then in $G/\Phi(G)$ there is a nilpotent normal subgroup $K/\Phi(G)$ such that

$$G/K \simeq (G/\Phi(G))/(K/\Phi(G)) \in \mathfrak{F}, \quad \Phi(G) \le K \lhd G, \quad K/\Phi(G) \in \mathfrak{N}.$$

In view of [10, Theorem 3.24], K is nilpotent and $G \in \mathfrak{NF}$.

Lemma 2.7. A minimal non-A-group is primary non-abelian group in which all proper subgroups are abelian. Conversely, every primary non-abelian group with abelian proper subgroups is a minimal non-A-group.

Proof. Assume that G is a minimal non-A-group and P is a Sylow subgroup of G. If $G \neq P$, then P is abelian and G is A-group, a contradiction. Hence G = P is a primary non-abelian group. If $P_1 < P$, then P_1 coincides with its Sylow subgroup. Therefore P_1 is abelian. Thus a minimal non-A-group is a non-abelian primary group in which all proper subgroups are abelian. The converse is obvious.

Lemma 2.8. Let G be a soluble minimal non- $\Re A$ -group. The following statements hold.

- (1) $G = P \rtimes Q$.
- (2) $P = G^{\Re A}$ is a Sylow *p*-subgroup, its properties are described in [17, Theorem 24.2]; in particular, $P/\Phi(P)$ is a minimal normal subgroup in $G/\Phi(G)$.
- (3) *Q* is a non-abelian Sylow *q*-subgroup in which all proper subgroups are abelian.

(4)
$$Q' \leq C_G(\Phi(P)).$$

Proof. By Lemma 2.6, \mathfrak{NA} is a saturated subgroup-closed formation. In view of [2, Proposition 1], $G/G^{\mathfrak{NA}}$ is a minimal non- \mathcal{A} -group. By Lemma 2.7, $G/G^{\mathfrak{NA}}$ is a primary non-abelian group in which all proper subgroup are abelian. Hence $G^{\mathfrak{NA}}$ is a Sylow subgroup of G and $G = P \rtimes Q$, where $P = G^{\mathfrak{NA}}$. The properties of P are described in [17, Theorem 24.2]. In particular, $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(G)$. It follows that $H = \Phi(P) \rtimes Q$ is a maximal subgroup of G. By hypothesis, $H \in \mathfrak{NA}$, so $H/F(H) \in \mathcal{A}$. Since $\Phi(P) \subseteq F(H)$, H/F(H) is an abelian q-group and $Q' \leq F(H)$, i.e. $Q' \leq C_G(\Phi(P))$.

Let G be a group and let \mathfrak{X} be a class of groups. A subgroup H of a group G is \mathfrak{X} -maximal in G if $H \in \mathfrak{X}$ and H = K whenever $H \leq K \leq G$ and $K \in \mathfrak{X}$. A subgroup H is an \mathfrak{X} -projector of G if HN/N is an \mathfrak{X} -maximal subgroup of G/N for any normal subgroup N of G.

Lemma 2.9 ([17, Theorem 15.1]). Let \mathcal{F} be a formation. A subgroup H of a soluble group G is an \mathcal{F} -projector of G if and only if $H \in \mathcal{F}$ and H is \mathcal{F} -abnormal in G.

If G has a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator [5].

Lemma 2.10 ([9, Lemma 8]). Let \mathfrak{F} be a saturated formation and let G be a group. Assume that $G \notin \mathfrak{F}$, but $G/N \in \mathfrak{F}$ for all nontrivial normal subgroups N of G. Then G is a primitive group. **Lemma 2.11** ([10, Theorems 4.41 and 4.42]). Let *G* be a soluble primitive group with a primitivator *M*. The following statements hold.

- (1) $\Phi(G) = 1$.
- (2) $F(G) = C_G(F(G)) = O_p(G)$ for some $p \in \pi(G)$.
- (3) *G* has a unique minimal normal subgroup $N \in \mathfrak{A}_1$, furthermore N = F(G).
- (4) $G = N \rtimes M$ and $O_p(M) = 1$.

Lemma 2.12. In a soluble group, every subnormal subgroup is \mathfrak{A}_1 -subnormal.

Proof. Let H be a subnormal subgroup of a soluble group G. There is a composition series of G containing H. Since G is soluble, the composition factors are of prime orders. Hence there is a chain of subgroups

$$H = H_0 \lessdot H_1 \lessdot \cdots \sphericalangle H_n = G$$

such that $H_i \triangleleft H_{i+1}$ and $|H_{i+1} : H_i| \in \mathbb{P}$. Thus, $H_{i+1}/H_i \in \mathfrak{A}_1$ for all *i*, and so *H* is \mathfrak{A}_1 -subnormal in *G*.

Lemma 2.13. A group G is soluble if and only if G contains an \mathfrak{S} -subnormal soluble subgroup.

Proof. If G is a soluble group, then every subgroup of G is soluble and \mathfrak{S} -subnormal by Lemma 2.1 (6). Conversely, assume that G contains an \mathfrak{S} -subnormal soluble subgroup H. Since H is a proper subgroup of G and \mathfrak{S} -subnormal in G, there is a maximal subgroup M containing H such that G/M_G is soluble. By Lemma 2.1 (5), H is \mathfrak{S} -subnormal in M and, by induction, M is soluble. Thus G/M_G and M_G are soluble, hence G is soluble.

3 Groups with **F**-subnormal Sylow subgroups

In this section, we investigate groups that belong to $w\mathcal{F}$ on condition that \mathcal{F} is a subgroup-closed formation and $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$.

Example 3.1. In the symmetric group S_4 of degree 4, every Sylow subgroup is $\mathfrak{A}_1\mathfrak{A}$ -subnormal, i.e. $S_4 \in w(\mathfrak{A}_1\mathfrak{A}) \subseteq w\mathfrak{F}$ for any formation \mathfrak{F} with $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F}$.

Example 3.2. The general linear group GL(2, 3) of order 2^43 has a subgroup chain

$$1 \le P \times Z \le \mathrm{SL}(2,3) = Q \rtimes P \lhd \mathrm{GL}(2,3), \quad 1 \le Q \lhd R \lessdot \mathrm{GL}(2,3),$$

where Z = Z(GL(2, 3)), *P* is the Sylow 3-subgroup and *R* is the Sylow 2-subgroup of GL(2, 3), *Q* is the quaternion group of order 8, $Q \triangleleft GL(2, 3)$. It follows that GL(2, 3) $\in w(\mathfrak{A}_1\mathfrak{A}) \subseteq w\mathfrak{F}$ for any formation \mathfrak{F} such that $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F}$. The following example shows that a subgroup-closed formation \mathcal{F} on condition that $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$ could be nonsaturated.

Example 3.3. Let $\mathfrak{F} = \text{Sform}\{\mathfrak{A}_1\mathfrak{A} \cup S_4\}$ be a subgroup-closed formation generated by the formation $\mathfrak{A}_1\mathfrak{A}$ and the symmetric group S_4 . Then \mathfrak{F} is not saturated and $\mathfrak{A}_1\mathfrak{A} \subset \mathfrak{F} \subset \mathfrak{N}\mathcal{A}$, since $S_4 \in \mathfrak{F} \setminus \mathfrak{A}_1\mathfrak{A}$ and $\text{GL}(2,3) \in \mathfrak{N}\mathcal{A} \setminus \mathfrak{F}$. We can similarly construct a subgroup-closed nonsaturated formation $\text{Sform}\{\mathfrak{A}_1\mathfrak{A} \cup V\}$ for any group $V \in \mathfrak{N}\mathcal{A} \setminus \mathfrak{A}_1\mathfrak{A}$.

Lemma 3.4. If \mathcal{F} is a subgroup-closed soluble formation, then $w\mathcal{F}$ is also a subgroup-closed soluble formation.

Proof. By [18, Lemma 1.4], w \mathfrak{F} is subgroup-closed and, by Lemma 2.13, w \mathfrak{F} is soluble.

Proposition 3.5. Let \mathfrak{F} be a subgroup-closed formation, let G be a soluble group and let $H \leq G$.

(1) If $H \in \mathfrak{F}$, then H is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in G.

(2) *H* is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in *G* if and only if *H* is $\mathfrak{N}\mathfrak{F}$ -subnormal.

(3) A subgroup H is $\mathfrak{A}_1\mathfrak{F}$ -abnormal in G if and only if H is $\mathfrak{N}\mathfrak{F}$ -abnormal.

Proof. (1) We use induction on |G|. Assume that $H \in \mathfrak{F}$ and N is a minimal normal subgroup of G. By induction, HN/N is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in G/N. Hence HN is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in G by Lemma 2.1 (2). Since $HN \in \mathfrak{A}_1\mathfrak{F}$, we conclude that H is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in HN, and so H is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in G in view of Lemma 2.1 (1).

(2) Suppose that H is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in G. Since $\mathfrak{A}_1\mathfrak{F} \subseteq \mathfrak{N}\mathfrak{F}$, we deduce that H is $\mathfrak{N}\mathfrak{F}$ -subnormal in G. To prove the converse, we use induction on |G|. Let H be an $\mathfrak{N}\mathfrak{F}$ -subnormal subgroup of G, M be a maximal subgroup of G such that $H \leq M$ and $G/M_G \in \mathfrak{N}\mathfrak{F}$. Since G/M_G is primitive, by Lemma 2.11,

$$G/M_G = \overline{G} = \overline{N} \rtimes \overline{M}, \quad \overline{N} = F(\overline{G}) = C_{\overline{G}}(F(\overline{G}))$$

 \overline{N} is a minimal normal subgroup of \overline{G} , $\overline{N} \in \mathfrak{A}_1$. As $G/M_G \in \mathfrak{MF}$ and $\overline{N} = F(\overline{G})$, we have $\overline{M} \in \mathfrak{F}$. Now, $G/M_G \in \mathfrak{A}_1\mathfrak{F}$ and M is $\mathfrak{A}_1\mathfrak{F}$ -normal in G. Since H is \mathfrak{MF} -subnormal in G, by induction, H is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in M. Thus, H is $\mathfrak{A}_1\mathfrak{F}$ -subnormal in G by Lemma 2.1 (1).

(3) Suppose that H is $\mathfrak{A}_1\mathfrak{F}$ -abnormal in G. Then $L/K_G \notin \mathfrak{A}_1\mathfrak{F}$ for any subgroups K and L such that $H \leq K \leq L \leq G$. Since L/K_G is a primitive group, we obtain

$$L/K_G = N/K_G \rtimes M/K_G, \quad N/K_G = F(L/K_G) \in \mathfrak{A}_1,$$

in view of Lemma 2.11. If $L/K_G \in \mathfrak{NF}$, then $L/K_G \in \mathfrak{A}_1\mathfrak{F}$, a contradiction. So $L/K_G \notin \mathfrak{NF}$ and H is \mathfrak{NF} -abnormal in G. Conversely, if H \mathfrak{NF} -abnormal in G, then $L/K_G \notin \mathfrak{NF}$ for any subgroups K and L such that $H \leq K \ll L \leq G$. As $\mathfrak{A}_1\mathfrak{F} \subseteq \mathfrak{NF}$, it follows that $L/K_G \notin \mathfrak{A}_1\mathfrak{F}$, and H is $\mathfrak{A}_1\mathfrak{F}$ -abnormal. \Box

According to Proposition 3.5 (1), every abelian subgroup of a soluble group is $\mathfrak{A}_1\mathfrak{A}$ -subnormal. The following example demonstrates that a primary subgroup of nilpotency class at most 2 could be non- $\mathfrak{A}_1\mathfrak{A}$ -subnormal.

Example 3.6. Let E_{3^2} be the elementary abelian group of order 3^2 . The general linear group GL(2, 3) is the automorphism group of E_{3^2} . The dihedral subgroup D of order 8 is a subgroup of GL(2, 3) and acts irreducibly on E_{3^2} . So $G = E_{3^2} \rtimes D$ is contained in the holomorph of E_{3^2} . Note G has ID 40 among the groups of order 72 in the GAP SmallGroup library [22]. The Sylow 2-subgroup D of G is a maximal subgroup and $D_G = 1$. Hence $G \in (\mathfrak{A}_1)^3 \setminus \mathfrak{A}_1 \mathfrak{A}$ and D is $\mathfrak{A}_1 \mathfrak{A}$ -abnormal in G. It follows that subgroups of nilpotency class 2 could be non- $\mathfrak{A}_1 \mathfrak{A}$ -subnormal.

Corollary 3.7. Let \mathfrak{F} be a subgroup-closed formation and let $\mathfrak{A}_1\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{S}$. Then $\mathfrak{W}\mathfrak{F} = \mathfrak{S}$.

Proof. Every Sylow subgroup of a soluble group is $\mathfrak{A}_1\mathfrak{N}$ -subnormal, by Proposition 3.5 (1). Hence $\mathfrak{S} \subseteq w(\mathfrak{A}_1\mathfrak{N}) \subseteq w\mathfrak{F}$. The converse is true by Lemma 3.4. \Box

Substituting $\mathfrak{F} = \mathfrak{A}$ in Proposition 3.5 (2)–(3), we obtain the following:

Corollary 3.8. A subgroup H of a soluble group G is $\mathfrak{A}_1\mathfrak{A}$ -subnormal ($\mathfrak{A}_1\mathfrak{A}$ -abnormal) if and only if H is $\mathfrak{N}\mathfrak{A}$ -subnormal ($\mathfrak{N}\mathfrak{A}$ -abnormal).

Corollary 3.9. Let \mathcal{F} be a subgroup-closed formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathfrak{A}$. A subgroup H of a soluble group G is \mathcal{F} -subnormal (\mathcal{F} -abnormal) if and only if H is $\mathfrak{N}\mathfrak{A}$ -subnormal ($\mathfrak{N}\mathfrak{A}$ -abnormal).

Proof. Suppose that H is an \mathfrak{F} -subnormal subgroup of a soluble group G. Then H is \mathfrak{MA} -subnormal, because $\mathfrak{F} \subseteq \mathfrak{MA}$. Conversely, assume that H is \mathfrak{MA} -subnormal in G. By Corollary 3.8, H is $\mathfrak{A}_1\mathfrak{A}$ -subnormal. Since $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F}$, it implies that H is \mathfrak{F} -subnormal in G.

Now assume that H is \mathfrak{F} -abnormal in G. As $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F}$, it follows that H is $\mathfrak{A}_1\mathfrak{A}$ -abnormal, and in view of Corollary 3.8, H is $\mathfrak{N}\mathfrak{A}$ -abnormal. Conversely, suppose that H is $\mathfrak{N}\mathfrak{A}$ -abnormal in G. Then H is \mathfrak{F} -abnormal, since $\mathfrak{F} \subseteq \mathfrak{N}\mathfrak{A}$. \Box

Proposition 3.10. If \mathfrak{F} is a subgroup-closed formation and $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F} \subseteq \mathfrak{N}\mathcal{A}$, then $\mathfrak{W}\mathfrak{F} = \mathfrak{N}\mathcal{A}$.

Proof. Firstly, we show that $w_{\mathcal{H}} \subseteq \mathfrak{N}\mathcal{A}$. Suppose that it is not true and let G be a group of least order such that $G \in \mathfrak{w} \mathfrak{F} \setminus \mathfrak{N} \mathcal{A}$. By hypothesis, $\mathfrak{F} \subseteq \mathfrak{N} \mathcal{A}$, it implies that $G^{\mathfrak{F}} \neq 1$. In view of Lemma 3.4, w \mathfrak{F} is a subgroup-closed soluble formation. Thus for every nontrivial normal subgroup K of G, the quotient group $G/K \in \mathfrak{W}\mathfrak{F}$ and, by induction, $G/K \in \mathfrak{N}\mathfrak{A}$. From Lemma 2.6, it follows that $\mathfrak{N}\mathcal{A}$ is a saturated formation, therefore G is primitive in view of Lemma 2.10. By Lemma 2.11, $G = N \rtimes M$, where N is a unique minimal normal p-subgroup of G for some $p \in \pi(G)$ such that $N = C_G(N) = F(G) \in \mathfrak{A}_1$, M is a maximal subgroup of G, $M_G = 1$ and $O_p(M) = 1$. We claim that $M \in \mathcal{A}$. Indeed, suppose that in M there is a non-abelian Sylow q-subgroup Q for some $q \in \pi(M)$. By induction, $M \in \mathfrak{N}\mathcal{A}$, hence $M/F(M) \in \mathcal{A}$. Since $O_n(M) = 1$, we deduce that F(M) is p'-subgroup. If q = p, then Q is abelian, a contradiction. So, $q \neq p$. Consider $H = NO = N \rtimes O$. If H < G, then we have, by induction, $H \in \mathfrak{NA}$. As $N = C_G(N) = F(H)$, we obtain $H/F(H) \simeq Q \in \mathfrak{A}$, a contradiction. Consequently, $G = N \rtimes Q$. From $G \in \mathfrak{wR}$, it follows that Q is \mathfrak{R} -subnormal in G, and so in G there is a maximal subgroup L, containing Q, such that $G/L_G \in \mathfrak{F}$. Now, $N \subseteq G^{\mathfrak{F}}$ and $G = N \rtimes O \subseteq G^{\mathfrak{F}}O \subseteq L$, a contradiction. Thus, $M \in \mathcal{A}$ and $G \in \mathfrak{N}\mathcal{A}$, i.e. $w\mathfrak{F} \subseteq \mathfrak{N}\mathcal{A}$.

To prove the reverse inclusion, we suppose that it is not true and *G* is a group of least order such that $G \in \mathfrak{NA} \setminus w\mathfrak{F}$. Let *N* be a minimal normal subgroup of *G* and let *R* be a non- \mathfrak{F} -subnormal Sylow subgroup of *G*. By induction, $G/N \in w\mathfrak{F}$, therefore RN/N is \mathfrak{F} -subnormal in G/N and, by Lemma 2.1 (2), RN is \mathfrak{F} -subnormal in *G*. If RN < G, then $RN \in w\mathfrak{F}$ and *R* is \mathfrak{F} -subnormal in *RN*. By Lemma 2.1 (1), *R* is \mathfrak{F} -subnormal in *G*, a contradiction. Now, $G = N \rtimes R$. Since $G \in \mathfrak{NA}$, it implies that *R* is abelian and $G \in \mathfrak{A}_1 \mathfrak{A} \subseteq \mathfrak{F} \subseteq w\mathfrak{F}$, a contradiction. Thus, $\mathfrak{NA} \subseteq w\mathfrak{F}$.

Lemma 3.11. Let G be a soluble group of order p^nm , p does not divide m. If for every $q \neq p$, a Sylow q-subgroup of G is cyclic, then $G \in \mathfrak{NA}$. In particular, any group of order p^nq , where p and q are primes, belongs to \mathfrak{NA} .

Proof. Suppose that G is a counterexample of least order. Since \mathfrak{NA} is a saturated formation, by Lemma 2.10 and Lemma 2.11, G is primitive and

$$G = N \rtimes M, \quad N = C_G(N) = F(G) = O_r(G),$$

$$r \in \pi(G), \quad M < G, \quad M_G = \Phi(G) = 1.$$

If $r \neq p$, then $N = G_q$ is cyclic and G/N is abelian, and so $G \in \mathfrak{NA}$. Suppose that r = p. As $O_p(M) = 1$, we conclude that F(M) is cyclic p'-subgroup. Now M/F(M) is abelian by [10, 2.16], it follows that a Sylow p-subgroup of M is abelian. Thus, $M \in \mathcal{A}$ and $G \in \mathfrak{NA}$.

Example 3.12. In the group $G = E_{3^2} \rtimes D$ from example 3.6, the Sylow 2-subgroup D is $\mathfrak{A}_1\mathfrak{A}$ -abnormal. Hence $G \notin w(\mathfrak{A}_1\mathfrak{A}) = \mathfrak{N}\mathcal{A}$. Thus in Lemma 3.11, the condition for Sylow 2'-subgroups to be cyclic cannot be replaced by the condition to be abelian.

Proof of Theorem A

(1) If every Sylow subgroup of G is \mathfrak{F} -subnormal, then $G \in \mathfrak{wF}$. By Proposition 3.10, $\mathfrak{wF} = \mathfrak{NA}$, it follows that $G^{\mathcal{A}}$ is nilpotent. Conversely, if $G^{\mathcal{A}}$ is nilpotent, then $G \in \mathfrak{NA} = \mathfrak{wF}$ and every Sylow subgroup of G is \mathfrak{F} -subnormal.

(2) We begin by proving $\mathfrak{NA} \cap \mathfrak{N}^2 = \mathfrak{NA}$. It is clear that $\mathfrak{NA} \subseteq \mathfrak{NA} \cap \mathfrak{N}^2$. To prove the reverse inclusion, we suppose that it is not true and *G* is a group of least order such that $G \in (\mathfrak{NA} \cap \mathfrak{N}^2) \setminus \mathfrak{NA}$. If *K* is a nontrivial normal subgroup of *G*, then $G/K \in \mathfrak{NA}$ by induction. Consequently, *G* is primitive by Lemma 2.10, and in view of Lemma 2.11, $G = F(G) \rtimes M$. Since $G \in (\mathfrak{NA} \cap \mathfrak{N}^2)$, we deduce $G/F(G) \simeq M \in \mathcal{A} \cap \mathfrak{N} = \mathfrak{A}$. Hence $G \in \mathfrak{NA}$, a contradiction. Thus, we have $\mathfrak{WF} \cap \mathfrak{N}^2 = \mathfrak{NA} \cap \mathfrak{N}^2 = \mathfrak{NA}$.

If $G \in \mathfrak{wF}$, then G is soluble by Lemma 2.13. Let H be a metanilpotent subgroup of G. By Lemma 3.4, $H \in \mathfrak{wF} \cap \mathfrak{N}^2$. Since $\mathfrak{wF} \cap \mathfrak{N}^2 = \mathfrak{MA}$, it implies that the derived subgroup of H is nilpotent. To prove the converse, we suppose that it is not true and there is a soluble group $G \notin \mathfrak{wF}$ such that its metanilpotent subgroup has the nilpotent derived subgroup. Let H be a minimal non- \mathfrak{wF} -subgroup in G. Since $\mathfrak{wF} = \mathfrak{NA}$, from Lemma 2.8 we conclude that H is metanilpotent. By the choice of $G, H \in \mathfrak{MA} \subseteq \mathfrak{NA}$, a contradiction. Thus, $G \in \mathfrak{wF}$. Theorem A is proved.

Since $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{A}^2 \subseteq \mathfrak{N}\mathfrak{A} \subseteq \mathfrak{N}\mathcal{A}$, we obtain the following:

Corollary 3.13. We have $w(\mathfrak{A}_1\mathfrak{A}) = w(\mathfrak{A}^2) = w(\mathfrak{N}\mathfrak{A}) = \mathfrak{N}\mathfrak{A}$.

Corollary 3.14. Let \mathcal{F} be a subgroup-closed formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$. Then $\mathfrak{W}\mathcal{F}$ is a soluble saturated subgroup-closed formation.

Proof. By Proposition 3.10, we have $w\mathcal{F} = \mathfrak{N}\mathcal{A}$. The formation $\mathfrak{N}\mathcal{A}$ is soluble and subgroup-closed by Lemma 3.4, and saturated by Lemma 2.6.

Corollary 3.15. Let \mathcal{F} be a subgroup-closed formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$. If $G \in \mathfrak{WF}$, then every nilpotent subgroup of G is \mathcal{F} -subnormal.

Proof. We use induction on |G|. Suppose that $G \in w\mathfrak{F}$ is a group of least order that contains a nilpotent non- \mathfrak{F} -subnormal subgroup H. Let N be a minimal normal subgroup of G. In view of Lemma 3.4, $HN \in w\mathfrak{F}$. Since HN is metanilpotent, it follows that $HN \in \mathfrak{MA}$ by Theorem A (2) and H is \mathfrak{MA} -subnormal in HN.

As a consequence of Corollary 3.8, H is $\mathfrak{A}_1\mathfrak{A}$ -subnormal in HN, and so H is \mathfrak{F} -subnormal in HN, since $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F}$. By induction, HN/N is \mathfrak{F} -subnormal in G/N, and by Lemma 2.1 (2), HN is \mathfrak{F} -subnormal in G. Finally, from part (1) of Lemma 2.1 we conclude that H is \mathfrak{F} -subnormal in G.

Remark 3.16. For any subgroup-closed formation \mathfrak{F} such that $\mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F} \subseteq \mathfrak{N}\mathcal{A}$, we have $w\mathfrak{F} = \mathfrak{N}\mathcal{A}$. Therefore Lemma 2.8 contains the description of minimal non- $w\mathfrak{F}$ -groups.

4 Groups with &-subnormal and &-abnormal Sylow subgroups

A Carter subgroup is a nilpotent self-normalizing subgroup. A Gaschütz subgroup is a supersoluble subgroup H such that |L : K| is not prime for all subgroups K and $L, H \le K < L \le G$.

Lemma 4.1. Let \mathcal{F} be a soluble subgroup-closed formation. If every Sylow subgroup of a group G is \mathcal{F} -subnormal or \mathcal{F} -abnormal, then G is soluble.

Proof. If there is an \mathcal{F} -subnormal Sylow subgroup in G, then by Lemma 2.13, G is soluble. Assume that every Sylow subgroup of G is \mathcal{F} -abnormal. Then each one is self-normalizing in view of Lemma 2.2 (1), and so is a Carter subgroup. By Vdovin's theorem [21], Carter subgroups are conjugate, therefore G is primary and soluble.

Proposition 4.2. Let \mathcal{F} be a formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$. If every Sylow subgroup of a group G is \mathcal{F} -subnormal or \mathcal{F} -abnormal, then either $G \in \mathfrak{N}\mathcal{A}$ or the following statements hold:

- (1) Only one of the Sylow subgroups in G is \mathfrak{F} -abnormal; let P be such a Sylow p-subgroup of G.
- (2) G is soluble, P is a non-abelian Cater and Gaschütz subgroup.
- (3) $G_{p'} \in \mathfrak{w}\mathfrak{F}$ and $G_{p'} \leq G^{\mathfrak{N}} = G^{\mathfrak{U}}$.

Proof. If every Sylow subgroup of G is \mathfrak{F} -subnormal, then $G \in \mathfrak{NA}$ by Proposition 3.10. Assume that $G \notin \mathfrak{NA}$. In view of Proposition 3.10, in G there is an \mathfrak{F} -abnormal Sylow p-subgroup P for a prime p. By Lemma 2.2(1), P is self-normalizing, and so a Carter subgroup of G. By Vdovin's theorem [21], Carter subgroups are conjugate, therefore every Sylow r-subgroup of G, $r \neq p$, is different from its normalizer and \mathfrak{F} -subnormal in G. From Lemma 4.1, we conclude that G is soluble and $G_{p'} \in \mathfrak{WF}$. If P is abelian, then P is $\mathfrak{A}_1\mathfrak{A}$ -subnormal by Proposition 3.5(1), and so \mathfrak{F} -subnormal, this contradicts the \mathfrak{F} -abnormality of P. Therefore P is non-abelian.

To prove that P is a Gaschütz subgroup, we suppose that this is not true and that in G there are subgroups K and L such that

$$P \leq K \lessdot L \leq G, \quad |L:K| = r \in \mathbb{P}.$$

Then L/K_L is a primitive group and, by Lemma 2.11,

$$L/K_L = N/K_L \rtimes K/K_L, \quad N/K_L = C_{L/K_L}(N/K_L) = F(L/K_L),$$
$$|N/K_L| = |L:K| = r \in \mathbb{P}, \quad N/K_L \in \mathfrak{A}_1,$$
$$N_{L/K_L}(N/K_L)/C_{L/K_L}(N/K_L) = (L/K_L)/(N/K_L) \in \mathfrak{A}$$

in view of [10, Theorem 2.16 (3)]. Hence $L/K_L \in \mathfrak{A}_1\mathfrak{A} \subseteq \mathfrak{F}$, this contradicts the \mathfrak{F} -abnormality of P. Thus P is a Gaschütz subgroup of G.

As a Gaschütz subgroup is a U-projector [10, Theorem 5.29], we obtain

$$G = G^{\mathfrak{U}}P, \quad G/G^{\mathfrak{U}} \simeq P/P \cap G^{\mathfrak{U}} \in \mathfrak{N}, \quad G^{\mathfrak{N}} \leq G^{\mathfrak{U}}.$$

Since $\mathfrak{N} \subseteq \mathfrak{U}$, we conclude $G^{\mathfrak{U}} \leq G^{\mathfrak{N}}$ and $G^{\mathfrak{U}} = G^{\mathfrak{N}}$. From $G = G^{\mathfrak{U}}P$, it follows that $G_{p'} \leq G^{\mathfrak{U}}$.

A group with a normal Sylow *p*-subgroup is called *p*-closed.

Lemma 4.3. Let \mathcal{F} be a formation and let $\mathfrak{A}_1\mathfrak{A} \subseteq \mathcal{F} \subseteq \mathfrak{N}\mathcal{A}$. Assume that G is a $\{p,q\}$ -group with an \mathcal{F} -subnormal Sylow p-subgroup P and an \mathcal{F} -abnormal Sylow q-subgroup Q, $p \neq q$. If $Q' \leq Z(Q)$, then P is normal in G.

Proof. By Lemma 2.12, all *p*-subgroups are \mathcal{F} -subnormal in G. Suppose that G is a group of least order with a non-normal Sylow subgroup P. Let K be a nontrivial normal subgroup of G. In view of the properties of Sylow subgroups, Lemma 2.1 (2) and Lemma 2.4 (2), PK/K is normal in G/K by induction, i.e. G/K is p-closed. Hence, by Lemma 2.10, G is primitive and, by Lemma 2.11, $G = N \rtimes M$, where N is a unique minimal normal r-subgroup of G such that $N = C_G(N) = F(G) \in \mathfrak{A}_1, M$ is a maximal subgroup of G with trivial core and $O_r(M) = 1$. If r = p, then $Q \leq M$ and, by induction, M is p-closed, but $O_p(M) = 1$, a contradiction. Consequently, r = q and N is a proper subgroup in Q in view of Lemma 2.2(1). By induction, we have $PN/N \triangleleft G/N$, and so $H = PN = N \rtimes P$ is a proper normal subgroup of G. From Lemma 2.1 (5) we conclude that P is \mathfrak{F} -subnormal in H, and N is also \mathfrak{F} -subnormal in H in view of Lemma 2.12. Consequently, $H \in \mathfrak{WF} = \mathfrak{NA}$ by Proposition 3.10. It follows from $C_G(N) = N$ that $P_H = 1$ and F(H) = N, and so $H/F(H) \simeq P \in \mathfrak{A}$. By induction, $M = P \rtimes Q_1$, where $Q = N \rtimes Q_1$. Since $Q' \leq Z(Q) \leq C_G(N) = N$, we get $Q_1 \in \mathfrak{A}$. Thus, $G \in \mathfrak{N} \mathcal{A}$ and Q is \mathfrak{F} -subnormal in G by Proposition 3.10, a contradiction.

Remark 4.4. In the symmetric group S_4 of degree 4, the Sylow 2-subgroup D is abnormal and has nilpotency class 2. A Sylow 3-subgroup Z is not normal but $\mathfrak{A}_1\mathfrak{A}$ -subnormal, because

$$Z \leq A_4 \triangleleft S_4, \quad A_4 \in \mathfrak{A}_1\mathfrak{A}.$$

Thus in Lemma 4.3 we cannot replace the $\mathfrak{A}_1\mathfrak{A}$ -abnormality by abnormality of Sylow subgroups.

Proof of Theorem B

Suppose that every Sylow subgroup of a group *G* is \mathcal{F} -subnormal or \mathcal{F} -abnormal of nilpotency class at most 2. By Lemma 4.1, *G* is soluble. If every Sylow subgroup of *G* is \mathcal{F} -subnormal, then $G \in \mathfrak{W}\mathcal{F} = \mathfrak{N}\mathcal{A}$ in view of Proposition 3.10.

Assume that $G \notin \mathfrak{NA}$. Then in G, there is an \mathfrak{F} -abnormal Sylow p-subgroup P for some $p \in \pi(G)$ of nilpotency class at most 2. By Proposition 4.2, P is a non-abelian Carter and Gaschütz subgroup and $G^{\mathfrak{N}} = G^{\mathfrak{U}}$. In view of [10, Theorems 5.27 and 5.29] and Lemma 2.9, $G = G^{\mathfrak{N}}P = G^{\mathfrak{U}}P$. Since Carter subgroups are conjugate [21], it implies that every Sylow q-subgroup G_q of G, $q \neq p$, is \mathfrak{F} -subnormal in G. Consider a Hall $\{p, q\}$ -subgroup $H = PG_q$ of G. It follows from Lemma 4.3 that G_q is normal in H and $P \leq N_G(G_q)$. Since q is arbitrary, we obtain $P \leq N_G(G_{p'})$ and the Hall p'-subgroup $G_{p'}$ of G is normal in G. Consequently,

$$G = G_{p'} \rtimes P = G^{\mathfrak{N}}P = G^{\mathfrak{U}}P, \quad G_{p'} = G^{\mathfrak{N}} = G^{\mathfrak{U}}.$$

By Proposition 3.10, $G_{p'} \in \mathfrak{NA}$.

Conversely, if $G \in \mathfrak{NA}$, then every Sylow subgroup of G is \mathfrak{F} -subnormal by Proposition 3.10. Now assume that $G = G^{\mathfrak{N}} \rtimes P$, where P is a non-abelian \mathfrak{F} -abnormal Sylow p-subgroup of G for some element $p \in \pi(G)$ and a Carter and Gaschütz subgroup, $P' \leq Z(P)$ and $G^{\mathfrak{N}} = G^{\mathfrak{U}} \in \mathfrak{NA}$. Let G_r be a Sylow r-subgroup of G, $r \in \pi(G)$. If r = p, then G_r and P are conjugate, so G_r is \mathfrak{F} -abnormal in G. If $r \neq p$, then $G_r \leq G^{\mathfrak{N}} \in \mathfrak{NA}$. In view of Proposition 3.10, G_r is \mathfrak{F} -subnormal in $G^{\mathfrak{N}}$, consequently, G_r is \mathfrak{F} -subnormal in G. Theorem B is proved.

Example 4.5. Let E_{2^4} be the elementary abelian group of order 16. The general linear group GL(4, 2) $\simeq A_8$ is the automorphism group of E_{2^4} and contains $H = E_{3^2} \rtimes D$ (see Example 3.6). The group $G = E_{2^4} \rtimes H$ is a subgroup of the holomorph and has ID 157849 among the groups of order 1152 in the GAP SmallGroup library [22]. Besides,

$$Q = E_{2^4} \rtimes D \lessdot G, \quad Q_G = E_{2^4} = F(G), \quad G/Q_G \simeq H \notin \mathfrak{A}_1\mathfrak{A}.$$

Hence the Sylow 2-subgroup Q is $\mathfrak{A}_1\mathfrak{A}$ -abnormal in G. The Sylow 3-subgroup $P = E_{3^2}$ is not normal but $\mathfrak{A}_1\mathfrak{A}$ -subnormal in G, since

 $P \leq E_{2^4} \rtimes P \lhd G, \quad E_{2^4} \rtimes P \in \mathfrak{A}_1^2.$

Thus we cannot omit the restriction on the nilpotency class of \mathfrak{F} -abnormal Sylow subgroups in Theorem B.

Bibliography

- A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups*, Math. Appl. 584, Springer, Dordrecht, 2006.
- [2] J. C. Beidleman and H. Heineken, Minimal non-*F*-groups, *Ric. Mat.* 58 (2009), no. 1, 33–41.
- [3] K. Doerk and T. Hawkes, *Finite Soluble Groups*, De Gruyter Exp. Math. 4, Walter de Gruyter, Berlin, 1992.
- [4] P. Förster, Finite groups all of whose subgroups are *F*-subnormal or *F*-subabnormal, J. Algebra 103 (1986), no. 1, 285–293.
- [5] W. Gaschütz, Lectures of Subgroups of Sylow Type in Finite Soluble Groups, Australian National University, Canberra, 1979.
- [6] B. Huppert, *Endliche Gruppen. I*, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967.
- [7] V. A. Kovaleva and A. N. Skiba, Finite soluble groups with all *n*-maximal subgroups *δ*-subnormal, *J. Group Theory* **17** (2014), no. 2, 273–290.
- [8] I. V. Lemeshev and V. S. Monakhov, Finite groups with decomposable cofactors of maximal subgroups (in Russian), *Trudy Inst. Mat. i Mekh. UrO RAN* 17 (2011), no. 4, 181–188.
- [9] V. S. Monakhov, On indices of maximal subgroups of finite solvable groups, *Algebra Logic* 43 (2004), no. 4, 230–237.
- [10] V. S. Monakhov, Introduction to the Theory of Finite Groups and Their Classes (in Russian), Vyshejshaja Shkola, Minsk, 2006.
- [11] V.S. Monakhov, Finite groups with abnormal and U-subnormal subgroups, Sib. Math. J. 57 (2016), no. 2, 353–363.
- [12] V. S. Monakhov and V. N. Kniahina, Finite groups with P-subnormal subgroups, *Ric. Mat.* 62 (2013), no. 2, 307–322.
- [13] V. N. Semenchuk, Finite groups with generalized subnormal Sylow subgroups (in Russian), *Probl. Fiz. Mat. Tekh.* 2016 (2016), no. 3(28), 58–60.
- [14] V. N. Semenchuk and S. N. Shevchuk, Characterization of classes of finite groups using generalized subnormal Sylow subgroups, *Math. Notes* 89 (2011), no. 1, 117–120.

- [15] V. N. Semenchuk and S. N. Shevchuk, Finite groups whose primary subgroups are either *F*-subnormal or *F*-abnormal, *Russian Math. (Iz. VUZ)* 55 (2011), no. 8, 38–46.
- [16] V. N. Semenchuk and A. N. Skiba, On finite groups in which every subgroup is either &-subnormal or &-abnormal (in Russian), *Probl. Fiz. Mat. Tekh.* 2015 (2015), no. 2(23), 72–74.
- [17] L. A. Šemetkov, Formations of Finite Groups (in Russian), "Nauka", Moscow, 1978.
- [18] A. F. Vasil'ev and T. I. Vasil'eva, On finite groups with generally subnormal Sylow subgroups (in Russian), *Probl. Fiz. Mat. Tekh.* **2011** (2011), no. 4(9), 86–91.
- [19] A.F. Vasil'ev, T.I. Vasil'eva and V.N. Tyutyanov, Finite groups of supersolvable type, *Sib. Math. J.* 51 (2010), no. 6, 1004–1012.
- [20] A. F. Vasil'ev, T. I. Vasil'eva and A. S. Vegera, Finite groups with a generalized subnormal embedding of Sylow subgroups, *Sib. Math. J.* 57 (2016), no. 2, 200–212.
- [21] E. P. Vdovin, Carter subgroups of finite groups, *Siberian Adv. Math.* **19** (2009), no. 1, 24–74.
- [22] The GAP Group: GAP Groups, Algorithms, and Programming. Version 4.8.7, released on 24 March 2017, http://www.gap-system.org.

Received June 27, 2017; revised October 5, 2017.

Author information

Victor S. Monakhov, Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Sovetskaya Str. 104, 246019 Gomel, Belarus. E-mail: victor.monakhov@gmail.com

Irina L. Sokhor, Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Sovetskaya Str. 104, 246019 Gomel, Belarus. E-mail: irina.sokhor@gmail.com