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Abstract. For operators defined in function spaces, the algebraic
interpolation formula of Hermite type is constructed. The interpolati-
on formula of similar type, containing the value of the Gateaux di-
fferential of an arbitrary order, is constructed for operators on the set
of matrices. Matrix analogues of the Leibniz formula are obtained.
The formula for approximate calculation of the Gateaux differential
of an arbitrary order of the matrix argument function is constructed.
Based on the matrix interpolation formula of the Hermite type, the
approximate method for solving the Cauchy problem for the matrix-
differential equation is obtained. The illustrative example of approxi-
mate solving the Cauchy problem for a first-order matrix-differential
equation is constructed. A parametric family of trigonometric matrix
interpolation polynomials of Hermite-Birkhoff type is constructed
and investigated.
Keywords: Generalized interpolation of Hermite-Birkhoff type, Ga-
teaux differential, Leibniz formula, matrix argument function, Ca-
uchy problem for the matrix-differential equation.
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Анотацiя. Для операторiв, заданих в функцiональних просто-
рах, побудовано алгебраїчну iнтерполяцiйну формулу ермiтово-
го типу. Iнтерполяцiйну формулу аналогiчного типу, що мiстить
значення диференцiала Гато довiльного порядку, побудовано для
операторiв на множинi матриць. Отримано матричнi аналоги фор-
мули Лейбнiца. Побудовано формулу наближеного обчислення
диференцiала Гато довiльного порядку вiд функцiї матричного
аргументу. На основi матричної iнтерполяцiйної формули ермi-
тового типу отримано наближений метод розв’язання задачi Ко-
шi для матрично-диференцiального рiвняння. Побудовано iлю-
стративний приклад наближеного розв’язування задачi Кошi для
матрично-диференцiального рiвняння першого порядку. Побудо-
вано та дослiджено параметричне сiмейство тригонометричних
матричних iнтерполяцiйних многочленiв Ермiта-Бiркгофа.
Ключовi слова: Узагальнене iнтерполювання Ермiта-Бiркгофа,
диференцiал Гато, формула Лейбнiца, функцiя матричного аргу-
менту, задача Кошi для матрично-диференцiального рiвняння.

Introduction

The fundamentals of the theory of operator interpolation are given in [1, 2].
Here, in particular, the problem of operator interpolation of Hermite-Birkhoff
type is investigated. The complexity of this problem lies in the fact that even
with different interpolation nodes it can either have a non-unique solution, or do
not have a solution at all. Some basics of matrix interpolation are also contained
in [1, 2]. The theory of matrix interpolation is quite fully given in [3]. The
papers [4–6] are devoted to the construction and research of Hermite-Birkhoff
generalized matrix interpolation formulas for concrete Chebyshev systems.

In the given work the interpolation formulas for functions of a scalar argument,
constructed and investigated in [7, 8], are summarized to the case of operators
defined in functional spaces and on the set of matrices. When proving the
theorems on the fulfillment of interpolation conditions for the respective polyno-
mials, matrix analogues of the Leibniz formula are used, which are also obtained
in this work. The parametric family of trigonometric matrix Hermite-Birkhoff
polynomials is constructed.

1. Algebraic interpolation

Let X be a certain given set of functions x = x(s), defined on the segment
[a, b], Y =

{
y(s, t), t ∈ T ⊂ RN

}
— some function space where T is a gi-

ven numerical set of N -dimensional space RN , and let F (x) ≡ F (t;x(s)) be
an operator mapping X into Y . Let’s assume that in the various elements
xk = xk(s) (k = 0, 1, . . . , n) of the set X, such that xk(s) 6= xν(s) on [a, b],
the values F (xk) of the operator F (x), x ∈ X are known. We choose in the set
X functions h1(s), h2(s), . . . , hn+1(s) such that h1(s)h2(s) · · ·hn+1(s) 6= 0 on
[a, b]. Let the value Dn+1(F ; xn+1) of the operator of the form

Dn+1F (x) = δn+1F [x;h1h2 · · ·hn+1],
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where δn+1F [x;h1h2 · · ·hn+1] is the Gateaux differential of the order n + 1 of
the operator F (x) at the point x in the directions h1, h2, . . . , hn+1, be known
in the node xn+1 = xn+1(s) ∈ X.

We now consider further the operator polynomials Pn+1 : X → Y of the
form

Pn+1(x) =

n+1∑
ν=0

aν(t, s)xν(s), (1)

where aν(t, s) are some functions of the variables t and s.
We introduce the polynomials ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)×

×(x− xk+1) · · · (x− xn), ωn(x) = (x− x0)(x− x1) · · · (x− xn).

Theorem 1. The interpolation polynomial

L̃n+1(x) = Ln(x) +
ωn(x)Dn+1F (xn+1)

(n+ 1)!h1h2 · · ·hn+1
,

where

Ln(x) =

n∑
k=0

ln,k(x)F (xk)

ln,k(xk)
, (2)

satisfies the interpolation conditions (k = 0, 1, . . . , n)

L̃n+1(xk) = F (xk); Dn+1

(
L̃n+1;xn+1

)
= Dn+1(F ;xn+1). (3)

The formula (2) is exact for the operator polynomials of the type (1) of the
degree not higher than n+ 1.

Proof. Since ln,k(xi) = δkiln,k(xk), where δki is the Kronecker symbol, and
ωn(xk) = 0, k, i = 0, 1, . . . , n, then the fulfillment of the first group of interpolati-
on conditions in (3) is obvious.

Since δn+1Pn[x;h1h2 · · ·hn+1] ≡ 0, where Pn(x) is an arbitrary operator
algebraic polynomial of a degree not higher than n, then

δn+1Ln[x;h1h2 · · ·hn+1] ≡ 0.

It is also obvious that δn+1ωn[x;h1h2 · · ·hn+1] = (n+ 1)!h1h2 · · ·hn+1. Taking
into account the structure of the polynomial (2), we will obtain that the last
condition in (3) also holds.

We now prove the invariance of the formula (2) with respect to the polynomi-
als of the form (1) of the degree not higher than n+ 1. If F (x) = Pn(x), where
Pn(x) is a polynomial of the form (1) of the degree not higher than n, then as is
known in [2, p. 361], Ln(Pn; x) ≡ Pn(x). And since in this case Dn+1Pn(x) ≡
≡ 0, then L̃n+1(Pn;x) ≡ Pn(x). Let further suppose F (x) = P̃n+1(x) =

= xn+1(s), then Dn+1P̃n+1(x) = (n+ 1)!h1h2 · · ·hn+1, and

L̃n+1(P̃n+1;x) = Ln(P̃n+1;x) + ωn(x).

By analogy with to the scalar case [7, p. 6], L̃n+1

(
P̃n+1; x

)
≡ P̃n+1(x).

Thus, the formula (2) is exact for operator polynomials of the form (1) of the
degree not higher than n+ 1. �
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We now consider the problem of interpolating operators on the set of matri-
ces. Let X be the set of functional or stationary square matrices A = A(t),
t ∈ T ⊂ R. Let’s introduce differential operator of type

DnF (A) =
dnF (z)

dzn

∣∣∣∣
z=A

, D =
d

dz
, z ∈ C, A ∈ X, (4)

where F (z) is the entire function.
The value of the operator (4) for the matrix function of the type B1F (A)B2,

where B1 and B2 are some fixed matrices from X, is calculated by the formula
Dn (B1F (A)B2) = B1D

nF (A)B2. The operator D, which is included in (4), for
the function of the type F (cA+B), where c ∈ C, and B is a certain fixed matrix
ofX, defined by the equalityDF (cA+B) = cF ′(z)|z=cA+B, and for the product
U(A)V (A) by the formulaD (U(A)V (A)) = DU(A)V (A)+U(A)DV (A). In the
last expression, it is important in what order the multipliers in matrix products
are taken. For example, D (V (A)U(A)) = DV (A)U(A) + V (A)DU(A), and
in the general case, D (U(A)V (A)) 6= D (V (A)U(A)). Similarly, the values of
higher-order operators are calculated, as well as operators from the products of
functions with a number of multipliers more than two.

In mathematical analysis, the Leibniz formula for the derivative of n-th order
(n ∈ N) of the product of two scalar functions is known [9]

(u(z) · v(z))(n) =
n∑
k=0

Cknu
(n−k)(z)v(k)(z), where Ckn =

n!

k!(n− k)!
, (5)

which holds if the functions u(z) and v(z) are n times differentiable at the
point z ∈ C. We generalize this formula to the case of functions of the matrix
argument and operator of the type (4).

Theorem 2. If the functions U(z) and V (z) (z ∈ C) are differentiable n times,
then the formula

Dn (U(A)V (A)) =
n∑
k=0

CknD
kU(A)Dn−kV (A), A ∈ X, (6)

is valid.

Proof. We apply the method of mathematical induction. When n = 1 we will
have

D1 (U(A)V (A)) = DU(A)V (A) + U(A)DV (A) =

= C0
1D

1U(A)V (A) + C1
1U(A)D1V (A).

Let’s assume that the formula (6) is exact for n = k. We prove that it also
holds for n = k + 1.

Dk+1 (U(A)V (A)) = D

[
n∑
k=0

CknD
kU(A)Dn−kV (A)

]
=

=

n∑
k=0

Ckn

[
Dk+1U(A)Dn−kV (A) +DkU(A)Dn−k+1V (A)

]
=
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= C0
nD

0U(A)Dn+1V (A) +
n∑
k=1

(
Ck−1n + Ckn

)
DkU(A)Dn−k+1V (A)+

+CnnD
n+1U(A)D0V (A).

Since Ck−1n + Ckn = Ckn+1, C0
n = C0

n+1 = 1, Cnn = Cn+1
n+1 = 1, then

Dk+1 (U(A)V (A)) =
n+1∑
k=0

Ckn+1D
kU(A)Dn+1−kV (A).

�

We now introduce the differential operator of the form

D̃n+1F (A) ≡ D̃n+1F (A; Hn+1Hn · · ·H1) = δn+1F [A; Hn+1Hn · · ·H1], (7)

where δn+1F [A; Hn+1Hn · · ·H1] is Gateaux differential of order n + 1 at the
point A ∈ X in the directions H1, H2, . . . ,Hn+1 from X. We assume that
D̃0F (A) ≡ F (A).

Theorem 3. If the functions U(A) and V (A) are Gateaux differentiable n
times at the point A ∈ X, then the formula

D̃n (U(A)V (A); HnHn−1 · · ·H1) =

=
n∑
k=0

∑
i1,...,ik

j1,...,jn−k

D̃kU(A; Hik · · ·Hi1)D̃n−kV (A; Hjn−k
Hjn−k−1

· · ·Hj1) (8)

holds true.
Here, for each value of k (0 ≤ k ≤ n) the summation is over for all disjoint

sets (i1, i2, . . . , ik) and (j1, j2, . . . , jn−k) such that 1 ≤ i1 < i2 < . . . < ik ≤ n;
1 ≤ j1 < j2 < . . . < jn−k ≤ n.

Proof. We use, as in the proof of theorem 2, the method of mathematical
induction. If n = 1 by the definition of the Gateaux differential we will have

D̃1 (U(A)V (A); H1) = δ [U(A)V (A); H1] = lim
λ→0

(
U(A+ λH1)V (A+ λH1)

λ
−

−U(A)V (A)

λ

)
= lim

λ→0

(
U(A+ λH1)V (A+ λH1)− U(A)V (A+ λH1)

λ
+

+
U(A)V (A+ λH1)− U(A)V (A)

λ

)
= δU [A; H1]V (A) + U(A)δV [A; H1] =

= D̃1U(A; H1)V (A) + U(A)D̃1V (A; H1). (9)

Hereinafter the expression of the form δ [U(A)V (A); H1] should be understood
as the Gateaux differential δW [A; H1], respectively, of the function W (A) =
= U(A)V (A) at the point A in the direction H1.

Let’s suppose that formula (8) is true when n = m. We show that it holds
for n = m+ 1. From (7)-(9) we have

D̃m+1 (U(A)V (A); Hm+1 · · ·H1) = δ
[
D̃m (U(A)V (A); Hm · · ·H1) ; Hm+1

]
=
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=
n∑
k=0

∑
i1,...,ik

j1,...,jn−k

(
D̃k+1U (A; Hn+1Hik · · ·Hi1) D̃n−kV

(
A; Hjn−k

· · ·Hj1

)
+

+D̃kU (A; Hik · · ·Hi1) D̃n+1−kV
(
A; Hn+1Hjn−k

· · ·Hj1

))
=

=
n+1∑
k=0

∑
i1,...,ik

j1,...,jn+1−k

D̃kU (A; Hik · · ·Hi1) D̃n+1−kV
(
A; Hjn+1−k

· · ·Hj1

)
.

Here the summation is carried out in the same way as in the formulation
of the theorem, while 1 ≤ i1 < i2 < . . . < ik ≤ n + 1; 1 ≤ j1 < j2 < . . . <
< jn+1−k ≤ n+ 1. �

In the special case, for example, for n = 3 the formula (8) has the form

D̃3 (U(A)V (A);H3H2H1) = D̃3U (A;H3H2H1)V (A) + D̃2U (A;H3H2)×
×D̃1V (A;H1) + D̃2U (A;H3H1) D̃1V (A;H2) + D̃2U (A;H2H1)×
×D̃1V (A;H3) + D̃1U (A;H1) D̃2V (A;H3H2) + D̃1U (A;H2)×

×D̃2V (A;H3H1) + D̃1U (A;H3) D̃2V (A;H2H1) + U(A)D̃3V (A;H3H2H1) .

We suppose that in the elements Ak(t) of the setX such thatAk(t)−Aν(t) are
invertible matrices, t ∈ T , k, ν = 0, 1, . . . , n, k 6= ν, the values of the operator
F (A) are known, as well as at the node An+1(t) the value D̃mF (An+1) ≡
≡ D̃mF (An+1;HmHm−1 · · ·H1) of the operator (7) from F (A), where 1 ≤ m ≤
≤ n, Hk ∈ X (k = 1, 2, . . . ,m) is known. Let’s introduce the notations
ω(A) = (A − A0)(A − A1) · · · (A − An), lk(A) = (A − A0) · · · (A − Ak−1)(A −
−Ak+1) · · · (A−An), Bk = D̃mlk(An+1), Ãk = BkAn+1+B−1k

m∑
i=1

D̃m−1lk(An+1;

Hm · · ·Hi+1Hi−1 · · ·H1)BkHi (k = 0, 1, . . . , n). We will assume that the matri-
ces Bk, lk(Ak), BkAk − Ãk (k = 0, 1, . . . , n) and D̃mω(An+1) are invertible.

Theorem 4. The matrix polynomial of the degree not higher than n+ 1

L̃n+1(F ;A) =

n∑
k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)+

+ω(A)
[
D̃mω(An+1)

]−1
D̃mF (An+1) (10)

satisfies the interpolation conditions

L̃n+1(Ak) = F (Ak) (k = 0, 1, . . . , n); D̃mL̃n+1(An+1) = D̃mF (An+1). (11)

Proof. Since lk(Ai) = δkilk(Ak) (k, i = 0, 1, . . . , n), where δki is the Kronecker
symbol, and ω(Ak) = 0 for the same values of k, then the first group of the
conditions in (11) is satisfied. By the formula (8)

D̃m

(
lk(A)(BkA− Ãk);Hm · · ·H1

)
= D̃mlk(A;Hm · · ·H1)(BkA− Ãk)+

+
m∑
i=1

D̃m−1lk(A;Hm · · ·Hi+1Hi−1 · · ·H1)D̃1(BkA− Ãk;Hi).
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Due to the fact that D̃1(BkA− Ãk;Hi) = BkHi, then for A = An+1

D̃m

(
lk(A)(BkA− Ãk);Hm · · ·H1

)∣∣∣
A=An+1

= Bk(BkAn+1 − Ãk)+

+
m∑
i=1

D̃m−1lk(A;Hm · · ·Hi+1Hi−1 · · ·H1)BkHi = 0.

Taking into account the structure of the formula (10), we will obtain that
the last condition in equation (11) also holds. �

Using the interpolation polynomial (10), we can construct a formula for
approximate calculation of the Gateaux differential of the m-th (1 ≤ m ≤ n)
order from the function of the matrix argument F (A) by its values at the nodes
A0, A1, . . . , An. Indeed, the relation

F (A) =
n∑
k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)+

+ω(A)
[
D̃mω(An+1)

]−1
D̃mF (An+1) +Rn(F ;A),

where Rn(F ;A) is the remainder term of the formula (10), holds true. Then,
expressing from the last equality D̃mF (An+1), we will have

D̃mF (An+1) = D̃mω(An+1)ω
−1(A)

(
F (A)−

n∑
k=0

lk(A)(BkA− Ãk)×

×
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)−Rn(F ;A)

)
. (12)

Discarding in (12) the remainder term Rn(F ;A) of the formula (10), we will
obtain the required approximate formula for calculating the Gateaux differential

δmF [A;HmHm−1 · · ·H1] ∼= D̃mω(An+1)ω
−1(A)×

×

(
F (A)−

n∑
k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)

)
. (13)

Here, the matrix A must be such that the matrices entering into the formula
are invertible.

2. The solving matrix-differential equations

Let X be the set of square stationary matrices of fixed size. We consider the
matrix equation containing the first-order Gateaux differential of the matrix
function

δU [A;H] = F (U,A), U(A0) = U0, A,H ∈ X, (14)

where U(A) is a function of the matrix argument, F is some generally non-
linear function of two arguments, δU [A;H] is the Gateaux differential at the
point A in the direction H satisfying the specified in (14) initial condition.
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For the approximate solving the Cauchy problem (14), we use the formula
(13) for approximating the Gateaux differential of the matrix argument functi-
on. In our case it takes the form

δU [A;H] = δω[A;H]ω−1(An+1)(U(An+1)−

−
n∑
k=0

lk(An+1)(BkAn+1 − Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
U(Ak)), (15)

where Bk = Bk(A) = δlk[A;H], Ãk = Ãk(A) = Bk(A)A + B−1k (A)lk(A)×
×Bk(A)H. Here A0, A1, . . . , An are the matrices from X such that the inverse
matrices in (15) exists.

Substituting (15) into (14), we obtain

δω[A;H]ω−1(An+1)

(
Yn+1 −

n∑
k=0

lk(An+1)(BkAn+1 − Ãk)×

×
[
lk(Ak)(BkAk − Ãk)

]−1
Yk

)
= F (Y,A), Y0 = U0, (16)

where Y0, Y1, . . . , Yn+1 is approximate solution of the problem (14) in the matrix
nodes A0, A1, . . . , An+1. If now we substitute the matrix nodes Ak
(k = 1, 2, . . . , n + 1) instead of A in (16), then we obtain the system (in the
general case, non-linear) matrix equations. Solving this system by some direct
or iterative method, we obtain the required approximate solution of the problem
(14).
Example. LetX be the set of square matrices of size 2. We consider the Cauchy
problem for the function of the matrix variable U(A), A ∈ X

δU [A;H] = 3U(A) + 2A, U(A0) = U0, (17)

where A0 =

(
0.312 0.467
0.457 0.02

)
, U0 =

(
0.316 0.338
0.23 0.002

)
, H =

(
0.021 0.43
0.405 0.223

)
.

Let’s introduce the matrix nodes A1 =

(
0.11 0.032
0.223 0.155

)
, A2 =

(
0.004 0.085
0.5 0.305

)
,

A3 =

(
0.234 0.028
0.2 0.004

)
, A4 =

(
0.051 0.291
0.176 0.498

)
.

For the approximate solving of the problem (14) we use the formula (16) for
n = 3. We construct a system of matrix equations. In this case, it is linear. We
have

Y0 = U0 =

(
0.316 0.338
0.23 0.002

)
, δω[Ai;H]ω−1(A4)

(
Y4 −

3∑
k=0

lk(A4) ×

×
(
Bk(Ai)A4 − Ãk(Ai)

) [
lk(Ak)

(
Bk(Ai)Ak − Ãk(Ai)

)]−1
Yk

)
=

= 3Yi + 2Ai, i = 1, 2, 3, 4. (18)

102



ALGEBRAIC AND TRIGONOMETRIC GENERALIZED INTERPOLATION

Let’s present numerically the system of the matrix equations (18) to within
3 significant digits to determine the unknowns Y0, Y1, Y2, Y3, Y4

Y0 = U0, −
(

0.992 0.186
0.180 0.0380

)
Y0 −

(
292 302
47.5 51.9

)
Y1 +

(
0.142 4.05
0.268 6.00

)
Y2 +

+

(
2.49 −15.5
2.00 −12.3

)
Y3 +

(
3.33 4.20
0.815 0.606

)
Y4 =

(
0.22 0.064
0.446 0.31

)
,(

2.48 14.1
−2.12 −12.1

)
Y0 −

(
1368 2630
−1190 −2289

)
Y1 −

(
246 297
−235 −285

)
Y2 +

+

(
−50.8 6.08
52.1 −6.20

)
Y3 +

(
−8.96 −14.4
7.56 12.5

)
Y4 =

(
0.008 0.17
1.0 0.61

)
, (19)(

8.20 −2.04
1.83 −0.441

)
Y0 −

(
211 135
49.2 32.5

)
Y1 +

(
13.7 21.9
2.06 3.15

)
Y2 +

+

(
−10.2 −34.7
1.20 8.53

)
Y3 −

(
7.12 12.0
1.92 2.75

)
Y4 =

(
0.468 0.056
0.4 0.008

)
,(

0.149 0.662
−0.286 −0.975

)
Y0 +

(
230 340
−363 −539

)
Y1 +

(
2.60 3.26
−1.86 −2.36

)
Y2 +

+

(
−0.991 0.424
0.727 −0.138

)
Y3 +

(
−14.4 −15.6
15.9 21.2

)
Y4 =

(
0.102 0.582
0.352 0.996

)
.

The system of the matrix equations (19) can be written element-by-element,
having obtained a system of 20 linear algebraic equations with respect to 20
unknowns (elements of matrices Y0, Y1, Y2, Y3, Y4). Immediately excluding Y0
from the remaining matrix equations in (19), we will obtain the system of 16
linear algebraic equations that can be solved, for example, by the Gauss method.
According to this method, the solution of the system (19) has the form

Y0 = U0, Y1 =

(
0.00221 0.00618
−0.00177 −0.00416

)
, Y2 =

(
−0.0393 0.00504
0.0264 −0.0223

)
,

Y3 =

(
0.133 0.132
−0.0130 −0.0395

)
, Y4 =

(
−0.171 −0.546
0.148 0.455

)
.

The solution of the problem (17) obtained in the matrix nodes can be
restored using the matrix interpolation formula [2, p. 459] of the form Ln0(A) =

=
n∑
k=0

lk(A)l−1k (Ak)F (Ak), where, as before, lk(A) = (A−A0) · · · (A−Ak−1)×

×(A − Ak+1) · · · (A − An) (k = 0, 1, . . . , n), satisfying the interpolation condi-
tions Ln0(Ak) = F (Ak) for k = 0, 1, . . . , n. In our case, n = 4, F (Ak) = Yk
(k = 0, 1, 2, 3, 4) and U(A) ≈ Y (A) = L4,0(A).

We introduce the matrices of the form Āi = (Ai−1 +Ai)/2 (i = 1, 2, 3, 4) and
define the norms of the residual matrices between the left and right sides of
the matrix-differential equation of the problem (14). We calculate the Gateaux
differential δY [A;H] = δL4,0[A;H] by the known [10] formula δY

[
Āi;H

]
=

= lim
λ→0

{
λ−1

[
Y (Āi + λH)− Y (Āi)

]}
.

We denote by Ri = ‖δY
[
Āi;H

]
− 3Y

(
Āi
)
− 2Āi‖2, i = 1, 2, 3, 4, where ‖·‖2

is the spectral norm of the corresponding matrix [11]. In our case, these norms
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are equal to R1 = 0.699, R2 = 0.528, R3 = 0.959, R4 = 0.250. The numerical
experiment shows that the discrepancy between the left and right sides of the
equation (14) is small, however, the accuracy of the approximation is not high.
To obtain a higher accuracy of the solution it is necessary to involve more nodes
or to use other methods of approximating the matrix-differential operator.

Analogous methods for solving matrix-differential equations can be obtained
using the formulas of trigonometric, exponential, and other types of matrix
generalized Hermite–Birkhoff interpolation.

3. Trigonometric interpolation

In [7] for 2π-periodic scalar functions the parametric family of trigonometric
interpolation polynomials of degree not higher than n+ 1 of the form

Tα,βn+1(x) = Hn(x) +
Ωα,β
n+1(x)D2n+1(f ;xj)

D2n+1(Ω
α,β
n+1;xj)

, (20)

where Ωα,β
n+1(x) =

(
α sin

x

2
+ β cos

x

2

) 2n∏
k=0

sin
x− xk

2
, α2 + β2 6= 0, Hn(x) is a

trigonometric interpolation polynomial of degree not higher than n of Lagrange
type, and the differential operator D2n+1f(x) is defined by the formula

D2n+1f(x) = (D2 + n2) · · · (D2 + 12)Df(x), D =
d

dx
,

is constructed. The polynomial (20) satisfies the interpolation conditions

Tα,βn+1(xi) = f(xi) (i = 0, 1, . . . , 2n); D2n+1(T
α,β
n+1;xj) = D2n+1(f ;xj).

We generalize the formula (20) in the case of functions of the matrix argument.
Let X be the set of square matrices, F (z) be an entire 2π-periodic functi-
on, z ∈ C. In different matrix nodes Ak such that the matrices Ak − Aν
(k, ν = 0, 1, . . . , 2n) are invertible, the values F (Ak) of the function F (A),
A ∈ X, are known. The value D2n+1(F ;Aj) of the matrix-differential operator

D2n+1F (A) = (D2 + n2) · · · (D2 + 12)DF (z)
∣∣
z=A

, D =
d

dz
, (21)

is also known in one of the nodes Aj .
Let’s consider the differential operator of even order

D2nF (A) =
(
D2 + (n− 1)2

)
· · ·
(
D2 + 12

)
D2F (z)

∣∣
z=A

. (22)

The values of the operator for functions of the forms B1F (A)B2, F (cA + B)
and U(A)V (A) are calculated similarly, as are the values of the operator (4)
for functions of this type. We assume that D0F (A) ≡ F (A).

Let’s generalize the Leibniz formula (5) to the case of functions of the matrix
argument, and when the differential operators (21) and (22) are taken instead
of the derivatives. Is valid
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Theorem 5. If the functions U(z) and V (z) (z ∈ C) are differentiable m times,
then the formula

Dm (U(A)V (A)) = D2p+1 (U(A)V (A)) =

m∑
k=0

CkmDm−kU(A)DkV (A), (23)

Dm (U(A)V (A)) = D2p+2 (U(A)V (A)) =
m∑
k=0

CkmDm−kU(A)DkV (A)−

−m(m− 1)

4

m−3∑
k=1,3,...

Ckm−2Dm−k−2U(A)DkV (A), A ∈ X, p = 0, 1, . . .

is valid.

The proof of the theorem 5 repeats the proof of the analogous theorem for
the scalar case [8, p. 18–21]. In this case, the order of the multipliers in the
matrix products must be strictly preserved: the values of the operators (21),
(22) from the function U(A) should be located to the left of the values of these
operators from the function V (A).

Lemma 1. For trigonometric polynomials of the form

Pn(A) = sin
A−B1

2
sin

A−B2

2
· · · sin A−B2n

2
,

where B1, B2, . . . , B2n are some matrices from X, the following identities are
valid

DjPn(A) ≡ 0, j = 2n+ 1, 2n+ 2, . . . . (24)

Proof. Let’s apply the method of mathematical induction. When n = 1

P1(A) = sin
A−B1

2
sin

A−B2

2
,

and by the formula (23) for m = 3 we have

D3P1(A) = D3 sin
A−B1

2
· sin A−B2

2
+ 3D2 sin

A−B1

2
·D1 sin

A−B2

2
+

+3D1 sin
A−B1

2
·D2 sin

A−B2

2
+ sin

A−B1

2
·D3 sin

A−B2

2
.

Since
D1 sin

A−Bk
2

= D sin
A−Bk

2
=

1

2
cos

A−Bk
2

,

D2 sin
A−Bk

2
= D2 sin

A−Bk
2

= −1

4
sin

A−Bk
2

,

D3 sin
A−Bk

2
=
(
D3 +D

)
sin

A−Bk
2

=
3

8
cos

A−Bk
2

(k = 1, 2),

then D3P1(A) ≡ 0.
For the operators (21), (22) the properties D2n+2F (A) = DD2n+1F (A),

D2n+3F (A) =
(
D2 + (n+ 1)2

)
D2n+1F (A), n ∈ N, where F (A) is some matrix

function for which the values of the operators (21) and (22) at the point A ∈ X
exist, are hold. Then it is obvious that DjP1(A) ≡ 0 when j = 4, 5, . . . .
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Let’s suppose that the relations (24) hold when n = k. We will show that
they are true when n = k + 1. By the formula (23) for m = 2k + 3 we have

D2k+3Pk+1(A) = D2k+3

(
Pk(A)P̃1(A)

)
=

2k+3∑
i=0

Ci2k+3D2k+3−iPk(A) ·DiP̃1(A),

where P̃1(A) = sin
A−B2k+1

2
sin

A−B2k+2

2
. For i ≤ 2, by assumption, the

identities D2k+3−iPk(A) ≡ 0 hold, and when i > 2 the identities DiP̃1(A) ≡ 0
are valid. Therefore D2k+3Pk+1(A) ≡ 0. �

Let α and β be some fixed matrices from X that are not simultaneously zero.

Theorem 6. The trigonometric polynomial

Tn+1(A) ≡ Tn+1(A;α, β) =

= Hn(A) + Ωn+1(A)
[
D2n+1(Ωn+1;An+1)

]−1
D2n+1(F ;An+1), (25)

where

Hn(A) =
2n∑
k=0

Ψk(A)Ψ−1k (Ak)F (Ak), (26)

Ψk(A) = sin
A−A0

2
· · · sin A−Ak−1

2
sin

A−Ak+1

2
· · · sin A−A2n

2
,

Ωn+1(A) ≡ Ωn+1(A;α, β) =

(
α sin

A

2
+ β cos

A

2

) 2n∏
k=0

sin
A−Ak

2
,

satisfies the interpolation conditions

Tn+1(Ak) = F (Ak) (k = 0, 1, . . . , 2n);

D2n+1(Tn+1;A2n+1) = D2n+1(F ;A2n+1). (27)

Proof. Since Ψk(Ai) = δkiΨk(Ak), where δki is the Kronecker symbol (k, i =
= 0, 1, . . . , 2n), then the polynomial (26) coincides with the operator F (A) at
the interpolation nodes A0, A1, . . . , A2n. It’s obvious that Ωn+1(Ak) = 0 when
k = 0, 2n. Therefore, the polynomial (25) coincides with F (A) at the above-
mentioned interpolation nodes.

We show that the last condition in (27) also holds. By the lemma
D2n+1Ψk(A) = 0 for k = 0, 1, . . . , 2n, so D2n+1Hn(A) = 0. Taking into account
the structure of the formula (25), we obtain that the condition stated above for
the polynomial Tn+1(A) is satisfied. �

Conclusion
In this work we obtained the following new results: interpolation formulas

for functions of a scalar argument are generalized to the case of operators
defined in functional spaces and on the set of matrices. The algebraic operator
and matrix interpolation Hermite–Birkhoff polynomials are constructed, as well
as the parametric family of trigonometric matrix interpolation polynomials of
Hermite type. Theorems on the fulfillment of the interpolation conditions are
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proved. For the operator interpolation formula, a class of polynomials for which
it is exact is found. Matrix analogues of the Leibniz formula for linear matrix-
differential operators of a special form are constructed. Based on the matrix
algebraic interpolation polynomial, the formula for the approximation of the
Gateaux differential of an arbitrary order of the matrix argument function is
obtained. This formula is used in the construction of the approximate method
for solving the Cauchy problem with a matrix-differential equation of the first
order. In the computer algebra system, the illustrative example of a numerical
solving the Cauchy problem of the indicated type is realized.
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