УДК 512.542

\mathcal{A} . \mathcal{A} . \mathcal{A} аудов 1 , A.A. $Tрофимук<math>^2$

¹магистрант специальности «Математика»

Брестского государственного университета имени А.С. Пушкина 2 канд. физ.-мат. наук, доц. каф. алгебры, геометрии и математического моделирования Брестского государственного университета имени А.С. Пушкина

РАЗРЕШИМЫЕ ГРУППЫ, У КОТОРЫХ СИЛОВСКИЕ ПОДГРУППЫ КОФАКТОРОВ ИМЕЮТ МАЛЫЙ НОРМАЛЬНЫЙ РАНГ

Получены оценки производной длины и нильпотентной длины разрешимой группы G, у которой нормальный ранг силовских подгрупп кофакторов подгрупп ограничен. В частности, производная длина такой группы G не превышает G, а нильпотентная длина группы G не превышает G.

Введение

Все рассматриваемые группы в данной работе предполагаются конечными. Кофактором подгруппы H группы G называется фактор-группа $\overline{H}^G=H/core_GH$, где $core_GH$ – ядро подгруппы H в группе G, т.е. наибольшая нормальная подгруппа в G, содержащаяся в H.

Важным направлением теории групп является изучение групп, у которых определённая система подгрупп обладает заданными свойствами. В данной работе в качестве определяющей системы подгрупп мы выбрали силовские подгруппы кофакторов подгрупп группы, а в качестве определяющего свойства — цикличность, бицикличность, ограничение на нормальный ранг.

Напомним, что группу G = AB называют бициклической, когда она является произведением двух циклических групп A и B.

В.С. Монахов [1] ввел понятие нормального ранга p-группы P следующим образом:

$$r_n(P) = \max_{X \triangleleft P} \log_p |X/\Phi(X)|.$$

Здесь $\Phi(X)$ — подгруппа Фраттини группы X , а запись $X \triangleleft P$ означает, что X — нормальная подгруппа группы P .

Очевидно, что для нечетного простого числа p класс p-групп, у которых нормальный ранг ≤ 2 шире, чем класс всех бициклических p-групп. Так, экстраспециальная группа S порядка 27 имеет нормальный ранг равный 2, но S не является бициклической. Кроме того, существуют бициклические 2-группы, которые имеют нормальный ранг 3. Так, группа

$$G = \langle a,b,c \mid a^2 = b^8 = c^2 = 1, [a,b] = c, [b,c] = b^4, [a,c] = 1 \rangle$$

является бициклической и $r_n(G) = 3$. При этом класс 2-групп, у которых нормальный ранг ≤ 3 шире, чем класс всех бициклических 2-групп.

Исследованию строения групп, у которых кофакторы подгрупп имеют малые порядки или порядки кофакторов подгрупп имеют известные канонические разложения, посвящены работы С.М. Евтуховой и В.С. Монахова [2; 3].

В работе [4] Говеньбинь изучил строение группы с циклическими кофакторами примарных подгрупп. Из основного результата этой работы вытекают оценки инвариантов групп (производной и нильпотентной длины), у которых порядки кофакторов подгрупп свободны от квадратов.

Естественным является развитие результатов, предложенных выше, за счёт исследования разрешимых групп с силовскими подгруппами кофакторов фиксированного нормального ранга. Доказана следующая теорема.

Теорема. Пусть G — разрешимая группа и $(\overline{H^G})_p$ имеет нормальный ранг ≤ 2 для нечётного p и нормальный ранг ≤ 3 для p=2, где H — произвольная подгруппа группы G . Тогда производная длина фактор-группы $G/\Phi(G)$ не превышает G0, а нильпотентная длина группы G3 не превышает G4. Здесь G6, — силовская G7 группа кофактора G8.

Основные определения и вспомогательные результаты

В настоящей работе применяют термины с соответствующими обозначениями, принятые в монографиях [5; 6].

Прописными готическими буквами обозначаются классы групп, т.е. всякое множество групп, содержащее вместе с каждой своей группой и все группы, изоморфные ей.

Пусть \mathfrak{F} — некоторая формация групп и G — группа. Тогда $G^{\mathfrak{F}}$ — \mathfrak{F} -корадикал группы G, т.е. пересечение всех тех нормальных подгрупп N из G, для которых $G/N\in\mathfrak{F}$. Произведение $\mathfrak{F}\mathfrak{F}=\left\{G\in\mathfrak{B}\,\middle|\,G^{\mathfrak{F}}\in\mathfrak{F}\right\}$ формаций \mathfrak{F} и \mathfrak{F} состоит из всех групп G, для которых \mathfrak{F} -корадикал принадлежит формации \mathfrak{F} . Как обычно, $\mathfrak{F}^2=\mathfrak{F}\mathfrak{F}$. Формация \mathfrak{F} называется насыщенной, если из условия $G/\Phi(G)\in\mathfrak{F}$ следует, что $G\in\mathfrak{F}$. Формации всех нильпотентных и абелевых групп обозначаются через \mathfrak{N} и \mathfrak{V} соответственно.

Лемма 1.1. Пусть \Im – формация. Тогда $\Im\Im$ – насыщенная формация.

Доказательство. Согласно ([6], с. 36), произведение $\mathfrak{N}\mathfrak{F}$ является локальной формацией. Поскольку насыщенная формация и локальная формация — эквивалентные понятия, то $\mathfrak{N}\mathfrak{F}$ — насыщенная формация.

Лемма 1.2 ([7], лемма 7). Пусть G — разрешимая группа и k — натуральное число. Тогда и только тогда $G/\Phi(G) \in \mathfrak{U}^k$, когда $G \in \mathfrak{N}\mathfrak{U}^{k-1}$.

Лемма 1.3. ([5], теорема 2.8). Пусть G — группа и H — ее подгруппа. Тогда фактор-группа $N_G(H)/C_G(H)$ изоморфна подгруппе группы автоморфизмов Aut H .

Лемма 1.4. ([5], теорема 1.65). Для каждой группы G и её силовской подгруппы P справедливы следующие утверждения:

- 1) если $K \triangleleft G$, то $P \cap K$ силовская p -подгруппа в K;
- 2) если $K \triangleleft G$, то PK/K силовская p -подгруппа в G/K.

Лемма 1.5. ([7], лемма 13).

- 1) Если $\,H\,$ разрешимая $\,A_4\,$ -свободная подгруппа группы $\,GL(2,p)\,,$ то $\,H\,$ метабелева.
- 2) Если H разрешимая A_4 -свободная неприводимая подгруппа группы GL(3,p) , то $H\in\mathfrak{U}^4$.

Лемма 1.6. Пусть \mathfrak{F} — насыщенная формация и G — разрешимая группа. Предположим, что G не принадлежит \mathfrak{F} , но $G/N \in \mathfrak{F}$ для всех неединичных нормальных подгрупп N группы G. Тогда G — примитивная группа.

Лемма 1.7. ([5], теорема 4.42). Пусть G — примитивная разрешимая группа с примитиватором M. Тогда справедливы следующие утверждения:

1) $\Phi(G) = 1$;

- 2) $F(G) = C_G(F(G)) = O_p(G)$ и F(G) является элементарной абелевой группой порядка p^n для некоторого простого p;
- 3) в группе G существует единственная минимальная нормальная подгруппа, совпадающая с F(G);
 - 4) $G = [F(G)]M \text{ if } O_n(M) = 1;$
 - 5) M изоморфна неприводимой подгруппе группы GL(n,p).

Лемма 1.8. Пусть H — разрешимая неприводимая подгруппа группы GL(4,2). Тогда производная длина подгруппы не превышает 5, а нильпотентная длина не превышает 3.

Доказательство. Заключение леммы проверяется элементарными вычислениями в компьютерной системе GAP.

Лемма 1.9. ([5], следствие из теоремы 4.24). В разрешимой группе с единичной подгруппой Фраттини подгруппа Фиттинга есть прямое произведение минимальных нормальных подгрупп.

Лемма 1.10. ([7], лемма 12). Пусть H — неприводимая разрешимая подгруппа группы GL(n,p) . Тогда:

- 1) если n=2, то $H \in \mathfrak{N}^3 \cap \mathfrak{U}^4$;
- 2) если n=3, то $H \in \mathfrak{N}^3 \cap \mathfrak{U}^5$.

Лемма 1.11. ([5], лемма 2.33). Если N_1 и N_2 нормальные погруппы группы G, то фактор-группа $G/(N_1 \cap N_2)$ изоморфна подгруппе, являющейся подпрямым произведением прямого произведения $(G/N_1) \times (G/N_2)$.

Лемма 1.12. ([5], следствие, стр. 86). Минимальная нормальная подгруппа группы либо элементарная абелева p-группа для некоторого простого p, либо является прямым произведением изоморфных простых неабелевых групп.

Лемма 1.13. ([2], леммы 1, 2).

- 1. Если H и K подгруппы группы G и $K \subseteq H$, то $\operatorname{core}_G K \leq \operatorname{core}_G H$.
- 2. Пусть N нормальная подгруппа группы G , H подгруппа из G и $N\subseteq H$. Тогда $N\le {\rm core}_G H$ и $({\rm core}_G H)/N\le {\rm core}_{G/N}(H/N)$.

Лемма 1.14. ([1], лемма 8). Если N — нормальная подгруппа p -группы P , то $r_n(P/N) \le r_n(P)$.

Доказательство теоремы

Выделим два вспомогательных результата.

Лемма 2.1. Пусть G — группа и H — произвольная подгруппа в G. Если все силовские подгруппы из $\overline{H^G}$ имеют нормальный ранг $\leq k$, то для любой собственной подгруппы X группы G все силовские подгруппы из $\overline{H_1^X}$ имеют нормальный ранг $\leq k$, где H_1 — произвольная подгруппа в X.

Доказательство. Так как X < G и $H_1 \le X$, то $H_1 < G$. Из леммы 1.13 следует, что $\operatorname{core}_G H_1 \le \operatorname{core}_X H_1$. Тогда $\overline{H_1}^X = H_1/\operatorname{core}_X H_1 \cong (H_1/\operatorname{core}_G H_1)/(\operatorname{core}_X H_1/\operatorname{core}_G H_1)$. Пусть $\overline{S} = \operatorname{core}_X H_1/\operatorname{core}_G H_1$. Поэтому $\overline{H_1}^X \cong \overline{H_1}^G/\overline{S}$ и $(\overline{H_1}^X)_p \cong (\overline{H_1}^G)_p \overline{S}/\overline{S}$ по лемме 1.4. Так как по условию нормальный ранг $(\overline{H_1}^G)_p$ не превышает k, то по лемме 1.14 нормальный ранг $(\overline{H_1}^X)_p$ также не превышает k.

Лемма 2.2. Пусть G — разрешимая группа, H — произвольная подгруппа в G и $N \lhd G$. Если все силовские подгруппы в $\overline{H^G}$ имеют нормальный ранг $\subseteq k$, то в фактор-группе $\overline{G} = G/N$ группы G все силовские подгруппы из $\overline{\overline{H_1}}^{\overline{G}}$ имеют нормальный ранг $\subseteq k$, где $\overline{H_1}$ — произвольная подгруппа из \overline{G} .

Доказательство. Так как $\overline{H_1}=H_1/N \leq \overline{G}=G/N$, то $N \leq H_1 \leq G$. Тогда $N \leq \mathrm{core}_G H_1$ и $\mathrm{core}_G H_1/N \leq \mathrm{core}_{\overline{G}} \overline{H_1}$ по лемме 1.13. Таким образом, получаем

$$\overline{\overline{H_1}^G} = \overline{H_1} / \operatorname{core}_{\overline{G}} \overline{H_1} \cong (H_1 / N) / (\operatorname{core}_G H_1 / N) \cong H_1 / \operatorname{core}_G H_1 = \overline{H_1^G}.$$

Очевидно, что $\left(\overline{\overline{H_1}^G}\right)_p \cong \left(\overline{H_1^G}\right)_p$. Так как по условию $\left(\overline{H_1^G}\right)_p$ имеет нормальный

ранг $\leq k$, то $\left(\overline{\overline{H_1}^{\overline{G}}}\right)_n$ имеет нормальный ранг $\leq k$. Лемма доказана.

Доказательство теоремы. Пусть $\mathfrak{F} = \mathfrak{N}\mathfrak{U}^5 \cap \mathfrak{N}^4$. Покажем, что $G \in \mathfrak{F}$. Пусть $\Phi(G) \neq 1$, то по лемме $2.2 \ G/\Phi(G) \in \mathfrak{F}$. Тогда, ввиду насыщенности формации \mathfrak{F} , получим, что $G \in \mathfrak{F}$. Поэтому в дальнейшем считаем, что $\Phi(G) = 1$.

По лемме 1.9 подгруппа Фиттинга $F(G) = N_1 \times N_2 \times ... \times N_k$, где N_i — минимальная нормальная подгруппа в группе G. Предположим, что $k \geq 2$. Тогда из леммы 2.2 следует $G/N_1 \in \mathfrak{F}$ и $G/N_2 \in \mathfrak{F}$. Поэтому $G \in \mathfrak{F}$ по лемме 1.11. Таким образом, в группе G существует единственная минимальная нормальная подгруппа G и F(G) = N. Тогда N — элементарная абелева группа порядка p^n по лемме 1.12.

Пусть X — максимальная подгруппа в F = F(G) , тогда |F(G):X| = p . Очевидно, что $\overline{X^G} = X/\mathrm{core}_G X \cong X$, так как $core_G X = 1$ ($core_G X \leq X \leq F(G) = N$) . Так как X имеет нормальный ранг ≤ 2 для нечётного p и нормальный ранг ≤ 3 для p = 2 и является элементарной абелевой p-группой, то $|X| \leq p^2$ или равен 8. Значит, $|F(G)| \leq p^3$ или равен 16. Таким образом, из леммы 1.3 G/F изоморфна циклической группе порядка p-1 либо неприводимой подгруппе группы GL(2,p) = AutF , либо неприводимой подгруппе группы GL(3,p) , либо неприводимой подгруппе группы GL(4,2) . Из лемм 1.8, 1.10 следует, что $G/F(G) \in \mathfrak{N}^3 \cap \mathfrak{U}^5$ и $G \in \mathfrak{F}$. Поэтому $G \in \mathfrak{N}\mathfrak{U}^5$ и по лемме 1.2 $G/\Phi(G) \in \mathfrak{U}^6$. Значит, производная длина фактор-группы $G/\Phi(G)$ не превышает $G/\Phi(G)$ не G/Φ

Следствие 2.1. Пусть G – разрешимая группа и $(\overline{H^G})_p$ – бициклическая для любого $p \in \pi(\overline{H^G})$. Тогда производная длина фактор-группы $G/\Phi(G)$ не превышает 6 , а нильпотентная длина группы G не превышает 4 .

Следствие 2.2. Пусть $G-A_4$ -свободная разрешимая группа, $(\overline{H^G})_p$ бициклическая для любого $p \in \pi(\overline{H^G})$. Тогда производная длина фактор-группы $G/\Phi(G)$ не превышает 5.

Доказательство. Учитывая все этапы доказательства теоремы и лемму 1.5, получим заключение следствия.

Следствие 2.3. Если G — разрешимая группа, $(\overline{H^G})_p$ — циклическая для любого $p \in \pi(\overline{H^G})$. Тогда производная длина группы $G/\Phi(G)$ не превышает 5 .

Доказательство. Пусть $\mathfrak{F}=\mathfrak{N}\mathfrak{A}^4$. По лемме 1.1 \mathfrak{F} — насыщенная формация. Предположим, что G — группа наименьшего порядка, не принадлежащая \mathfrak{F} . Из леммы 2.2 следует, что $G/N\in\mathfrak{F}$ для любой неединичной нормальной подгруппы N группы G . По лемме 1.6 G — примитивная группа. Тогда согласно лемме 1.7 в группе существует единственная минимальная подгруппа F=F(G), F — элементарная абелевая порядка p^n и G=[F]M, где M — примитиватор группы G . Так как $F\leq G$ и X — максимальная подгруппа в F, то |F:X|=p. Очевидно, что $\overline{X}^G=X/\mathrm{core}_GX\cong X$. Так как X — циклическая и элементарная абелева, то |X|=p . Значит, $|F|=p^2$. Поэтому из леммы 1.3 $G/F\cong \mathrm{Aut}F$. Так как $\mathrm{Aut}F=GL(2,p)$, то из леммы 1.10 $G/F\in\mathfrak{A}^4$. Поэтому $G\in\mathfrak{F}$. Противоречие. Значит $G\in\mathfrak{N}\mathfrak{A}^4$ и производная длина фактор-группы $G/\Phi(G)$ не превышает 5.

Следствие 2.4. Пусть G — разрешимая A_4 -свободная группа, $(\overline{H}^G)_p$ циклическая для любого $p \in \pi(\overline{H}^G)$. Тогда производная длина фактор-группы $G/\Phi(G)$ и нильпотентная длина группы G не превышает 3.

Доказательство. Повторяя доказательство следствия 2.3 и учитывая лемму 1.5, получим заключение следствия.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Монахов, В. С. О разрешимых конечных группах с силовскими подгруппами малого ранга / В. С. Монахов // Докл. НАН Беларуси. 2002. Т. 46, № 2. С. 25–28.
- 2. Евтухова, С. М. Конечные группы с порядками кофакторов подгрупп, свободными от квадратов / С. М. Евтухова, В. С. Монахов // Докл. НАН Беларуси. -2005.-T.49, № 2.-C.26-29.
- 3. Евтухова, С. М. О порядках кофакторов подгрупп конечной разрешимой группы / С. М. Евтухова, В. С. Монахов // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2005. № 4. С. 15—18.
- 4. Wenbin, Guo. Finite groups in which primary subgroups have cyclic cofactors / Guo Wenbin, Yi Xiaolan, Huang Jianhong // Bull. Malays. Math. Sci. Soc. -2011. -34, Note 2. -P. 337-344.
- 5. Монахов, В. С. Введение в теорию конечных групп и их классов / В. С. Монахов. Минск : Вышэйшая школа, 2006.
 - 6. Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М.: Наука, 1978.
- 7. Монахов, В. С. О конечных разрешимых группах фиксированного ранга / В. С. Монахов, А. А. Трофимук // Сиб. матем. журн. Т. 52, № 5. 2011. С. 1123–1137.

Рукапіс паступіў у рэдакцыю 19.10.2015

${\it Daudov~D.D.,~Trofimuk~A.A.}~{\rm On~Solvable~Groups~with~Small~Normal~Rank~of~Sylow~Subgroups~of~the~Cofactors~Subgroup}$

We obtain estimates of the derived length and the nilpotent length of a solvable group G whose normal rank of Sylow subgroups of the cofactors subgroup is fixed. In particular, the derived length of such group does not exceed 6 and the nilpotent length of such group does not exceed 4.