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ABSTRACT 

The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu 

phytoavailability, Cu-induced soil phytotoxicity and Cu phytoextraction was assessed on a Cu-

contaminated soil series (13-1020 mg Cu kg-1) obtained by fading a sandy topsoil from a wood 

preservation site with a similar uncontaminated soil. Morphological and functional plant responses as 

well as shoot, leaf and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, 

shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. 

Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted 

by sigmoidal curves. The half-maximal effective concentration (EC50) of morphological parameters 

ranged between 203 and 333 mg Cu kg-1 soil, corresponding to 290-430 µg Cu L-1 in the soil pore 

water, and 20±5 mg Cu kg-1 DW in the shoots. The EC10 for shoot Cu concentration (13-15 mg Cu kg-1 

DW) coincided to 166 mg Cu kg-1 soil. Total chlorophyll content and total antioxidant capacity (TAC) 

were early biomarkers (EC10: 23 and 51 mg Cu kg-1 soil). Their DRC displayed a biphasic response. 

Photosynthetic pigment contents, e.g. carotenoids, correlated with TAC. Ionome was changed in Cu-

stressed roots, shoots and leaves. Shoot Cu removal peaked roughly at 280 µg Cu L-1 in the soil pore 

water. 
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Highlights:  

▶ Leaf area, hypocotyl length, root and shoot dry weight yields correlated with total 

Cu concentration in the soil and the soil pore water. 

 

▶ Total chlorophyll content and antioxidant capacity in the second leaf pair earlier 

sensed Cu excess than morphological parameters.  

 

▶ Shoot Cu removal peaked at 280 µg Cu L-1 in the soil pore water. 

 

 

Keywords: antioxidant capacity; biomarker; carotenoid; Helianthus annuus L.; 

phytotoxicity; phytoremediation 

 

 

Abbreviations: ABTS: 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate), AOA: 

antioxidant activity, APX: ascorbate peroxidase, AsA: ascorbate, Carot: carotenoid content, 

CEC: cation exchange capacity, Chl a: chlorophyll a content, Chl b: chlorophyll b content, 

ChlTOT: total chlorophyll content, CuSH: shoot Cu concentration, CuSPW: total Cu 

concentration in the soil pore water, CuTOT: total soil Cu, DHAR: dehydroascorbate 

reductase, DMA: dimethylamine, DMF: N,N-dimethylformamide, DPPH: 2,2-diphenyl-1-

picrylhydrazyl, DRC: dose-response curve, DW SH: shoot dry weight yield, DW RT: root dry 

weight yield, EC: effective concentration, EL: epicotyl length, FW: fresh weight, FRAP: 

ferric reducing antioxidant potential, GR: glutathione reductase, GSH: reduced glutathione, 

GSSG: oxidized glutathione, HL: hypocotyl length, IRT: iron-regulated transporter, MDHAR: 

monodehydroascorbate reductase, NA: nicotianamine, OM: organic matter, ORAC: oxygen 

radical absorption capacity, ROS: reactive oxygen species, SL: stem length, SOD: superoxide 

dismutase, S/R: shoot dry weight yield: root dry weight yield ratio, TAC: total antioxidant 

capacity, TE: trace element, TEAC: Trolox equivalent antioxidant capacity, TF: translocation 

factor, TLA: total leaf area, ZIP: zinc- and iron-regulated transporter  
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1. INTRODUCTION 

Copper is a pivotal micronutrient for plants through numerous metabolic processes, 

e.g. electron transfer reactions of respiration (cytochrome c oxidase, alternate oxidase) and 

photosynthesis (plastocyanin), detoxification of superoxide radicals (Cu-Zn superoxide 

dismutase), lignification of plant cell walls (laccases), perception of the plant hormone 

ethylene, carbohydrate metabolism, and phenolic compound production in response to 

pathogens (Hänsch and Mendel 2009; Palmer and Guerinot 2009; Shi et al. 2011; Ravet and 

Pilon 2013). Plants regulate Cu homeostasis by controlling its uptake through the expression 

and stability of Cu transporters, e.g. COPper Transporter family (COPT) (Yuan et al. 2011; 

Hötzer et al. 2012; Peñarrubia et al. 2015). At higher impregnation than the cellular Cu 

homeostasis (5-20 µg Cu g-1 DW), Cu excess can impact many physiological processes and 

induce toxicity symptoms (e.g. biomass reduction, root growth inhibition, bronzing, chlorosis, 

Fe, Zn and P uptake reduction, chloroplast integrity loss, etc.) (Yruela 2009; Marschner 

2011). One driver of Cu toxicity is its contribution to reactive oxygen species (ROS) 

formation likely through Fenton and Haber-Weiss reaction (Sharma and Dietz 2009; 

Nehnevajova et al. 2012). ROS can peroxide lipids and oxide proteins and guanine (Verdoni 

et al. 2001; Mendoza-Soto et al. 2012).  

To better assess the phytotoxicity of Cu-contaminated soils, chemical indicators of soil 

Cu exposure must be complemented with plant assays combining morphological endpoints 

and biomarkers (Vangronsveld and Clijster 1994; Lequeux et al. 2010; Mocquot et al. 1996; 

Verdoni et al. 2001; Meers et al. 2006). Biochemical biomarkers such as antioxidant 

responses are more sensitive to metal excess in such plant tests (Mocquot et al. 1996; Hartley-

Whitaker et al. 2001; Meers et al. 2006; Qi et al. 2006; Lyubenova et al. 2009; Korpe and 

Aras 2011; Nehnevajova et al. 2012). However, the Cu concentration in plant parts may show 

contradictory results depending on organ and plant species (Cuypers et al. 2000, 2002; Boojar 

and Goodarzi 2007; Thounaojam et al. 2012). Several methods are used to estimate total 

antioxidant capacities in plant extracts, e.g. DPPH, TEAC, FRAP, and ORAC assays (Prior et 

al., 2005; MacDonald-Wicks et al. 2006; Dudonne et al. 2009). One relevant method is 

TEAC, which uses the ABTS+• radical scavenging capacity (Re et al., 1999; Dudonne et al., 

2009). However its potential to assess in a routine way the phytotoxicity of metal-

contaminated soils, and notably the Cu-contaminated ones under phytomanagement, with 

various plant species, is not investigated.  

Sunflower (Helianthus annuus L.) is a promising candidate to phytomanage Cu-

contaminated soils (Mench et al. 2010; Kolbas et al. 2011; Herzig et al. 2014; Kidd et al. 

2015). On one hand, morphological and physiological traits of young and adult sunflower 

plants are responding to Cu excess allowing its use for biomonitoring (Lin et al. 2003; 

Madejon et al. 2003; Kolbas et al. 2011; 2014; Nehnevajova et al. 2012). On the other hand, 

several sunflower mutant lines obtained by chemical mutagenesis phytoextract more metals 

(Cu, Zn, Cd, and Pb) than their mother lines in field conditions (Nehnevajova et al., 2009; 

Kolbas et al. 2011; Herzig et al. 2014), and show an increased antioxidant status at high metal 
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exposure (Nehnevajova et al. 2012). The use of such metal-tolerant sunflowers to improve 

plant assays and to appraise phytoextraction option for Cu-contaminated soils was explored 

(Kolbas et al. 2014). In a previous Fluvisol series, soil Cu contamination however was 

imposed by its spatial variability across the sampled field plots. Consequently, total Cu 

concentrations in the soil and soil pore water corresponding to effective concentrations (EC10, 

EC50) for morphological parameters of a sunflower mutant line exposed to Cu excess were not 

accurately determined. Moreover biochemical endpoints such as TAC were not considered. 

This pot experiment aimed at appraising the morphological and functional responses of the 

same metal-tolerant sunflower mutant on a soil series obtained by mixing a sandy Cu-

contaminated soil from a wood preservation site and an uncontaminated soil of the same type 

in various proportions, i.e. the fading technique, allowing a steady increase in soil Cu 

exposure. Such soil series, more realistic than hydroponics and spiked soils, is generally 

useful to gain dose-effect relationships for determining both upper critical metal(loid) 

concentrations for plant parameters and related effective metal(loid) concentrations in the soil 

and soil pore water (Verdoni et al. 2001; Japenga et al. 2007; Marchand et al. 2016). The 

following questions were addressed:  

(1) How the morphological and functional parameters of a metal-tolerant sunflower mutant 

are changing across a soil series with a steady increase in Cu exposure? Which sunflower 

parameters are more relevant to assess the phytotoxicity of Cu-contaminated soils? 

(2)  What are the earlier Cu effective concentrations, i.e. EC10 and EC50, for these plant 

parameters and the corresponding values for soil Cu exposure? 

(3) What is the potential shoot Cu removal of this sunflower mutant depending on soil Cu 

exposure? 
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2. MATERIALS AND METHODS 

 

2.1 Soil series 

The sandy coarse Cu-contaminated soil (UNT soil, Fluvisol – Eutric Gleysols, World 

Reference Base for soil resources, 1020 mg Cu kg-1 soil) was sampled in the 0-25 cm soil 

layer at the P1-3 sub-site (plot #31, Kolbas et al. 2011) of a wood preservation site, Saint 

Médard d'Eyrans SW France (Tab. 1). The uncontaminated soil (CTRL soil, 13 mg Cu kg-1), 

with the same soil type, was sampled (0-25 cm) in a field plot cultivated with maize at the 

Couhins INRA experimental farm, located 18 km from the contaminated site (Villenave 

d’Ornon, Gironde, France). Both soils were sieved at 5 mm and air-dried. The soil series was 

made by carefully mixing (run-over-run) the UNT soil with the CTRL soil in a ratio from 

0:100% to 100:0% with a 10% step (Tab. 2). Soil samples (1 kg DW) were placed in plastic 

pots (1.3 L) to consist 11 treatments (in quadruple) labeled from C0 to C100. 

One Rhizon MOM moisture sampler (Eijkelkamp, The Netherlands) was inserted with 

a 45o angle into each potted soil. Soils were watered with deionised water, maintained daily at 

70% of field capacity (10% of air-dried soil mass), and allowed to react, notably regarding the 

microbial communities, for one month prior sowing. For all soils, soil pore waters (10 mL) 

were collected three times with a week interval and kept at 4°C prior to analysis to make a 30-

mL sample. The pH in pore water was measured (Hanna instruments, pH 210, combined 

electrode Ag/AgCl - 34) and elements were analyzed by ICP-AES (Varian Liberty 200). 

 

2.2 Plant growth and morphological parameters  

Sunflower seeds of Mutant 1 line [M6 (6th generation), 1/67-35-190-04] obtained by 

chemical mutagenesis using ethyl methane sulfonate (Nehnevajova et al. 2009), showing the 

best results in previous phytoextraction field experiments (Lyubenova et al. 2009; Kolbas et 

al. 2011), was used. Sunflowers were sowed in each potted soil (n=4) in a climatic chamber, 

with the following conditions: 14 h light/10 h darkness regime, 150 µmol m-2 s-1, 25°C/22°C, 

and 65% relative humidity (ISO 2012). Pots were arranged in a fully randomized block design 

and watered daily with deionized water (50% water holding capacity of soil). The soils were 

fertilized twice, i.e. just before the start of plant cultures and two weeks after, with a modified 

Hoagland n°2 nutrient solution supplying no Fe and other trace metals (Hewitt 1966; Kolbas 

et al. 2014). The experiments were carried out in two batches: one to study the morphological 

parameters and the ionomes of plant parts, and the second to investigate the functional plant 

parameters. 

Sunflower plants were collected after 1 month, at growth stage B3/B4 when the 2nd-

pair leaves reached 4-cm length (Terres Inovia 2017). Shoots and roots were collected for 

each plant (roots being firstly carefully washed with tap water, then rinsed with distilled 

water, and blotted on filter paper), weighted (FW), and visible symptoms were recorded. 

Fresh weight biomasses and morphological parameters were measured, i.e. SL, HL, EL, and 

TLA (scanner EPSON Expression 10000 XL, software WINFOLIA). Plant parts thereafter 
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were rinsed in distilled water, oven-dried at 50°C for 48h, and shoot and root DW yields and 

water content were determined. 

The Chl a, Chl b, Chl TOT and total carotenoids were extracted with DMF from the 

2nd pair leaves (L2) and their foliar contents were computed from measurements of the 

extracts at 470, 647 and 664.5 nm (spectrophotometer CARY 100 Scan, Lagriffoul et al. 

1998). 

 

2.3 Trolox equivalent antioxidant capacity (TEAC)  

The antioxidant capacity of plant extracts was determined using the ABTS radical 

cation (ABTS+•) decolorization assay modified by Ozgen et al. (2006), which is based on the 

reduction of ABTS radicals by extractable antioxidants of plant samples. 

 

2.3.1 Chemicals 

All reagents, i.e. 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium 

salt (ABTS), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), PBS 

(phosphate-buffered saline) (pH=7.4), potassium persulfate, sodium acetate trihydrate, and 

acetic acid (glacial) were purchased from Sigma-Aldrich (France). 

 

2.3.2 Sample preparation 

Fresh weighed aliquots (0.2 g) of L2 leaves were sampled at noon and immediately 

ground, using a benchtop homogenizer (Polytron PT 35/4.00, Kinematica GMBH, Luzern - 

Switzerland) in 4 mL PBS. The homogenate was left at 4C° for 10 min, then centrifuged 

(12000 g) for 30 min at 4°C, and the supernatant was used for measurements.  

 

2.3.3 Spectrophotometric analysis 

The stock solution of ABTS radical cation was produced by dissolving 75 mg ABTS 

and 12 mg of potassium persulfate in distilled water in 20 mL flask and allowing the mixture 

to stand in the dark at room temperature for 12-16 h before use. The ABTS+• working solution 

was diluted in PBS (pH=7.4) to an absorbance of 0.7±0.02 at 734 nm (spectrophotometer 

CARY 100 Scan). Its absorbance (Acontrol) was controlled before the measurement of plant 

samples. 100 μL of plant extract (supernatant) were mixed with 3 mL of ABTS+• solution, and 

the sample absorbance (Asample) was read after 10 min at 734 nm. All solutions were daily 

prepared and used. All determinations were carried out in triplicate. The antioxidant capacity 

in plant samples was expressed in relative (a) and absolute (b) values: 

(a) the scavenging inhibition capacity of ABTS·in the extract, expressed in percent, was 

computed from the following equation: % inhibition = [(Acontrol-Asample)]/(Acontrol)]*100; 

(b) a calibration curve was determined using Trolox (1.25-250 μg mL-1), and the total 

antioxidant capacity (TAC) in plant samples was quantitatively expressed in µg Trolox 

equivalent mL-1 leaf extract and in µg Trolox equivalent g leaf FW-1. 
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2.4 Ionome of plant tissues 

Plant samples were ground in a titanium mill (Retsch MM200), and weighed aliquots 

(0.5 g DW) were wet digested under microwaves (Marsxpress, CEM) with 5 mL supra-pure 

14 M HNO3 and 2 mL 30% (v/v) H2O2 not stabilized by phosphates. Certified reference 

material (maize V463 BIPEA - Bureau Inter-Professionnel d’Etudes Analytiques, France) and 

blank reagents were included in all series. Element concentrations in digests were determined 

by ICP-AES (Varian Liberty 200). All elements were recovered (>95%) according to the 

standard values and standard deviation for replicates (n=3) was < 5%. The translocation factor 

(TF) was calculated on the basis of foliar and root element concentrations: TF = Cleaves / Croot  

 

2.5 Statistical analysis 

A principal component analysis (PCA) was performed for plant parameters and 

indicators of soil Cu exposure. The degree of co-linearity of soil properties was determined 

using the Pearson correlation coefficient test. One-way analysis of variance (ANOVA test) 

was performed to evaluate differences in soil and plant parameters across the soil series. 

Normality and homoscedasticity of residuals were met for all tests. Post-hoc Tukey’s HSD 

tests were used to assess mean multi-comparison. Differences were considered significant for 

p-value <0.05. Mean values followed by the same letter are not different at the 5% level (SNK 

test using foreign and agricolae packages). A PCA and one-way ANOVA were carried out for 

the ionome of plant parts. Pearson correlation coefficients between plant parameters, foliar 

ionomes, and total Cu in soil and soil pore water were determined. 

The DRC - package was used for modeling the dose-response curves between plant 

parameters and indicators of Cu exposure (Knezevic et al. 2007). A symmetric model was 

used for the DW SH, DW RT, HL and TLA parameters, with a four-parameter log-logistic 

equation: Y = c + (d-c/1+exp[b(log X-log E)]) 

where, Y is the response variable, c is the lower limit, d is the upper limit, X is the Cu dose 

(e.g. total soil Cu), E is the Cu dose required for 50% response (e.g., an effective 

concentration, EC50, required to halve the shoot biomass), and b is the slope of each curve. 

A hormesis model was used for SL, TAC, and photosynthetic pigment contents, with 

the addition of term f in the numerator, but in that case, the effective concentrations could not 

be determined on the whole DRC: 

Y = c + (d+fX-c/1+exp[b(log X-log E)])  

The effective concentrations at 10, 50 and 90% levels (EC10, EC50, and EC90) were 

computed. All statistical analyses were performed using R software (version 2.14.1, R 

Foundation for Statistical Computing, Vienna, Austria).  
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3. RESULTS AND DISCUSSION 

3.1 Soil parameters and Cu exposure 

Total soil Cu varied between 13 and 1020 mg Cu kg-1 (Tab. 2) and its values were 

better distributed than in the previous soil series sampled in field plots (Kolbas et al. 2014). In 

the soil pore water, the pH values ranged from 5.93 to 7.15 and total Cu increased from 0.19 

to 0.80 mg L-1 (2.99-12.6 µM Cu). Total Cu in the soil and the soil pore water were correlated 

(r² = 0.6). Similar ranges (in mg Cu L-1) were reported in the soil pore water of topsoils from 

the same wood preservation site, i.e. 0.37-1.78 (Bes et al. 2010), 0.13-0.92 (Kolbas et al. 

2014), and 0.22-0.68 (Oustrière et al. 2017) with influences of soil pH, CuTOT and dissolved 

organic matter (DOM). Total Cu in soil pore water can vary from 0.009 to 16.8 mg L-1, the 

percentage of free Cu2+ in total soluble Cu ranging from 0.02 to 96% depending on pore water 

pH and, to a lesser extent, on dissolved organic C (Vulkan et al. 2000). Total Cu in pore 

waters collected in field conditions can range between 2 - 104 µg Cu L-1 (0.03-1.64 µM) in 

uncontaminated soils and between 25 - 27,100 µg Cu L-1 (0.39-426 µM) in contaminated soils 

(Moreno-Jimenez et al. 2011).  

 

3.2 Plant parameters 

The PCA graph for the plant parameters and indicators of soil Cu exposure roughly 

explained 77% of the total variance (axis #1 – 57.81%, axis #2 – 19.15%) and showed several 

parameter groups (Fig. 1a and b). Morphological and functional parameters were separated by 

both axes (Fig. 1c and d; Tab. S1). Axis #1 corresponded to changes in Cu concentrations in 

the soil, the soil pore water and shoots, which opposed to most morphological parameters 

(Fig. 1, 2a, b and d). Axis #2 mainly matched with biochemical parameters and SL (Fig. 1b, 

2c, e and f). The S/R ratio, showing the biomass allocation, was related to Cu concentrations 

in soil and plant parts, but its significance in PCA was low, as well as those of relative water 

content and TAC which were more correlated with photosynthetic pigment contents. The SL 

was located at an independent median position. In contrast, the HL negatively correlated with 

Cu exposure and positively with other morphological parameters. Correlation analysis (Fig. 

1b) and one-way ANOVA on the axis #1 and #2 coordinates of PCA showed a sigmoid curve 

and three soil groups, i.e. C0 to C20, C30, C40 to C100 for the axis #1 (Fig. 1c). The axis #2 was 

characterized by more complex patterns and included four soil groups: (1) C0, C40 and C50; (2) 

C10, C 20 and C80; (3) C30, C60 and C70; and (4) C90 and C100 (Fig. 1d).  

 

3.2.1 Morphological responses 

The CuSPW and CuTOT strongly correlated with the majority of morphological 

parameters, i.e. TLA, HL, DW SH, DW RT and their ratio (S/R), except for SL and EL (Tab. 

S3). As Cu exposure increased, the values of these parameters were gradually reduced (e.g. 

DW SH, Fig. 2a). Decreases in shoot and root DW yields, and leaf area well fitted a 

symmetric sigmoidal DRC (Fig. 2), demonstrating that a linear response of such parameters to 

soil Cu exposure is not relevant for this metal-tolerant sunflower mutant line (Markert et al. 
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1997). The S/R ratio strongly depended on Cu exposure (R=0.89; Tab. S3), confirming 

previous findings (Kolbas et al. 2014). 

Effective concentrations are listed in Tab. 3. Roots were earlier impacted by Cu excess 

than shoots, i.e. EC50 for root DW yield was 203 mg Cu kg-1 soil (290 µg Cu L-1 in soil pore 

water) whereas EC50 for shoot biomass was 333 mg Cu kg-1 soil (432 µg L-1 in soil pore 

water). The curve slope decreased more sharply for roots than for shoots (Fig. 2a and b). This 

was explained by preferential Cu accumulation in sunflower roots (see below), in agreement 

with Lin et al. (2003), Jones et al. (2016) and Cicatelli et al. (2017). In comparison, using the 

shoot length of Lolium perenne L., EC10, EC25 and EC50 of total soil Cu (in mg kg-1) as 

phytotoxic Cu thresholds were 327, 735 and 1144 (Verdejo et al. 2015). Root and shoot 

growth reductions were likely due to (1) Cu-induced oxidative stress and its consequences and 

(2) changes in cellular nutrient homeostasis related to reduced nutrient uptakes by damaged 

roots (Mocquot et al. 1996; Cuypers et al. 2002; Nehnevajova et al. 2012; Luo et al. 2016; 

Rizwan et al. 2016). Copper is acquired by roots from the soil via high-affinity Cu+ 

transporters of the COPT family of transmembrane proteins, which are pivotal to maintain Cu 

homeostasis, while endogenous Fe, Mn, and Zn concentrations in plants may influence their 

expression (Yuan et al. 2011). An enzyme cascade, e.g. ascorbate peroxidase, glutathione 

reductase, catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, 

dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II, act in 

synergy for efficient protection against ROS-damage in addition to detoxification, chelation 

and compartmentation of Cu excess (Hossain et al. 2012; Luo et al. 2016). Copper storage in 

roots likely limits Cu export through the symplast, xylem loading and long-distance transport 

with chelators, such as nicotianamine (Burkhead et al., 2009).  

Several morphological parameters had significant changes but their use in 

phytoindication required non-linear models: e.g. SL increased at relatively low Cu exposure 

and peaked at C50 (416 mg Cu kg-1 soil, Fig. 2c) whereas shoot and root DW yields were 

halved; this may reflect a re-allocation of resources and the stem role as a conducting element 

rather than a sink for Cu accumulation. The less sensitive morphological parameters were HL 

(Fig. 2d) and SL as its EC10 was 355 mg Cu kg-1 soil (Tab. 3, Fig. 2c). The particular response 

of the hypocotyl to Cu excess confirmed previous findings (Lin et al. 2003). 

 

3.2.2 Functional responses 

3.2.2.1. Photosynthetic pigment contents  

Cu excess induces changes in pigment compositions and ultrastructure of chloroplast, 

decreases net photosynthesis rate, reduces ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCo) efficiency, and affects electron transport and PSII activities (Saglam et al. 2016). 

Total chlorophyll content in sunflower leaves varied from 70 mg to 384 mg m-2 (Fig. 2e). The 

carotenoid content ranged between 6.2 mg and 41.2 mg m-2 and Chla/Chlb ratio between 1.3 

and 2.9. The contents of photosynthetic pigments followed a complex curve with two peaks 

corresponding to 214 and 1020 mg Cu kg-1 (Fig. 2e). As total soil Cu increased in the 100-200 



11 

 

mg Cu kg-1 range, the chlorophyll and carotenoid contents rose. This increase in 

photosynthetic pigments may balance the reduced photosynthesis, notably the potential Cu-

induced reduction in CO2 fixation through decrease in RUBISCO activity and/or content 

(Saglam et al. 2016). In this interval of soil Cu contamination, foliar Cu concentration (13-21 

mg kg-1, Tab. 4) remained just below its upper critical threshold for sunflower (Tab. S2). The 

potential damages caused by this slight increase in Cu exposure may be quenched by the 

antioxidant defenses, as suggested by the TAC peak (Fig. 2f). In the 315-517 mg Cu kg-1 soil 

range, corresponding to 20-40 mg Cu kg-1 in the leaves (Tab. 4), both shoot DW yield and 

total chlorophyll content decreased (Fig. 2) and interveinal chlorosis developed especially on 

young leaves, likely due to impacts on chlorophyll biosynthesis, decrease in foliar Mg and Fe 

concentrations (Tab. 4) and ultrastructural changes in chloroplasts (Singh et al. 2004; Feigl et 

al. 2015; Saglam et al. 2016). Excess Cu in shoots can lead to lipid peroxidation, reduce 

network of thylakoid membranes in the chloroplast and predispose photosystem II to 

photoinhibition by outcompeting iron (Pätsikkä et al. 2002; Yruela 2009). In the chlorophyll 

biosynthesis, Cu excess can affect the protochlorophyllide reductase and Mg-chelatase 

activities (Liotenberg et al. 2015). Magnesium activates more than 300 enzymes and is 

involved in many physiological processes during plant growth, including its function as 

central atom of chlorophyll and in protoporphyrin IX Mg-chelatase, S-adenosyl-L-

methionine:Mg-protoporphyrin IX methyltransferase, and Mg-protoporphyrin IX monomethyl 

ester oxidative cyclase (Guo et al. 2016). Cu in excess may substitute to Mg in chlorophyll 

molecules, thus reducing photosynthesis (Küpper et al. 2003; Gerola et al. 2011), and may 

displace Mg required for chlorophyll biosynthesis. Here, foliar Cu concentrations were 

significantly negatively correlated with foliar Mg and Mn concentrations (Tab. 4 and S3), 

however both remained in their range for optimal plant growth in vegetative parts, i.e. 1.5–3.5 

g Mg and 10-30 mg Mn kg-1 (Marschner 2011; Guo et al. 2016).  

The content of chlorophyllous pigments well correlated with foliar Fe concentration 

(R=0.70-0.78, Tab. S3). Foliar chlorosis caused by Cu/Fe antagonism in Cu-stressed plants is 

documented (Pätsikka et al. 2002; Yruela 2009). Here, foliar Fe concentrations decreased 

from 56 to 29 mg kg-1 as foliar Cu concentration increased from 10 to 40 mg kg-1 (Tab. 4) but 

both parameters did not correlate across the whole soil series (Tab. S3) as foliar Fe 

concentration increased after 718 mg Cu kg-1 soil because the shoot biomass, including the 

stem and hypocotyl, fell down (Fig. 2a). 

Over 617 mg Cu kg-1 soil and 40 mg Cu kg-1 in the leaves (Tab. 4), total chlorophyll 

content increased again (Fig. 2e) and foliar Fe concentration as well (Tab. 4). This symptom, 

so-called “leaf bronzing”, would have two reasons. The first is the decreased leaf size and 

simultaneously the increase in cell number per leaf surface unit. Here, the linear increase in 

chlorophyll content at high Cu exposure (Fig. 2e) matched with the decrease in shoot biomass 

(Fig. 2a). While the foliar content of chlorophyllous pigments increased, their total foliar 

amounts (TLA × ChlTOT) remained the same, confirming previous findings (Gruber et al. 

2009). The second reason would be the increased concentrations of atypical pigments and 
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cellular metabolites, such as Cu-chlorophyll, anthocyanins, and carotenoids, followed by the 

inhibition of cell expansion by Cu (Kato and Shimizu 1987; Gerola et al. 2011). The 

restructured Cu-chlorophylls are unsuitable for photosynthesis, have antioxidant function, and 

senescent plants remain dark green (Küpper and Kroneck 2005). This sunflower mutant line 

can produce a higher carotenoid amount than other cultivars when grown on metal-

contaminated soils (Nehnevajova et al. 2012), having a potential advantage against metal-

induced oxidative stress. The direction of structural adaptations in photosynthetic leaf 

apparatus depends on plant species and the Cu level. Oregano plants exposed to 0.3-25 µM 

Cu g-1 soil showed a linear decrease in chlorophyll content and a compensatory mesophyll 

thickening (Panou-Filotheou et al. 2001). For sunflower, such responses were only observed 

in the 214-517 mg Cu kg-1
 soil range (Fig. 2e) corresponding to 20-40 mg Cu kg-1 in the 

leaves. Increase in Chla/Chlb ratio may indicate the reduction of the grana structure (Küpper 

et al. 2003) when the synthesis of the photosystem cores takes metabolic preference over the 

synthesis of the light-harvesting complex II (Pätsikkä et al. 2002; Mijovilovich et al. 2009). 

Here, the Chla/Chlb ratio significantly negatively correlated with foliar Cu concentration 

(Tab. S3). 

 

b. Antioxidant plant responses  

Leaf TAC (in µg Trolox equivalent g-1 leaf FW) increased three times from 50 in C0 

plants to 155 in C10 plants, and then, gradually fell down for C50 plants growing at 517 mg Cu 

kg-1 soil (Fig. 2f). Over 617 mg Cu kg-1 soil (i.e. 40 mg Cu kg-1 in leaves), leaf TAC slightly 

increased again as ChlTOT and varied in the 80-100 range (Fig. 2f). Such complex response 

to increasing soil Cu exposure may reflect the combination of various factors, i.e. increase in 

CuSPW, the development of oxidative stress, reduction in shoot biomass (as for 

photosynthetic pigments) and carbohydrate synthesis (Marschner 2011). Leaf TAC displayed 

a similar DRC and well correlated with chlorophyll (r=0.72) and carotenoid (r=0.80) contents 

(Tab. S3), raising questions about their interaction with antioxidant responses for this 

sunflower mutant (Nehnevajova et al. 2012). The leaf TAC was more sensitive than the 

chlorophyll content (EC10: 23 and 51 mg Cu kg-1, respectively; Tab. 3), confirming previous 

findings (Sun et al. 2010). Due to its DRC (inverted U-shape), leaf TAC was not correlated to 

the indicators of soil Cu exposure (e.g. CuTOT and CuSPW) and CuSH on the whole soil 

series (Tab. S3). For characterizing soil Cu phytotoxicity, use of leaf TAC as endpoint must 

be combined with either the shoot or foliar Cu concentrations (Fig. 2f, Tab. 4). 

 

Copper excess in plants generally increases the activity of antioxidant enzymes (e.g. 

GPOD, APX, CAT and SOD), notably in roots, and changes the concentrations, redox status 

and cellular compartmentation of related metabolites (e.g. GSH/GSSG, AsA/DMA) and 

enzyme activities (DHAR, MDHAR, and GR) involved in the ascorbate–glutathione cycle, 

which may affect cellular homeostasis and redox potential (Mocquot et al. 1996; Cuypers et 

al. 2000; Nehnevajova et al. 2012; Thounaojam et al. 2012; Peñarrubia et al. 2015). Decrease 
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in leaf TAC in sunflowers between 214 and 517 mg Cu kg-1 soil may reflect a progressive 

decline in antioxidant enzymatic system, AsA and GSH concentrations, and reducing power 

in cells as Cu-induced chlorosis developed and damages to the PSII reaction centre and 

electron transport increased (Thomas et al. 2013). Copper excess can inhibit the activity of 

certain antioxidant enzymes, e.g. SOD, by replacing another element such as Fe and Mn in 

their active site but also by changing their structure (Perry et al. 2010). 

 

3.2.3 Shoot, leaf and root ionomes and mineral masses 

Cu: Shoot Cu concentrations (CuSH, in mg Cu kg-1 DW) progressively increased from 

7.3 ±1.2 for C0 plants to 49.8 ± 12 for C70 plants (corresponding to 718 Cu kg-1 in soil and 480 

µg Cu L-1 in soil pore water) and thereafter levelled off at higher soil Cu exposures (Fig. 2g), 

which likely reflected impacts on roots. CuSH strongly correlated with total Cu in soil and 

soil pore water (0.73 and 0.83, respectively; Tab. S3), confirming previous findings (Kolbas 

et al. 2011, 2014; Nehnevajova et al. 2012; Rivelli et al. 2012). Foliar Cu concentrations (mg 

Cu kg-1 DW) ranged from 10 to 55.4 (Tab. 4). 

Root Cu concentrations were higher than shoot and foliar Cu concentrations (Fig. 2, 

Tab. 4). Root Cu concentration can indicate soil Cu phytoavailability in controlled conditions 

(Chaignon et al. 2003), but this endpoint often has shortcomings for characterizing soil 

phytotoxicity due to the iron plaque trapping metals on root surface and root contamination 

with substrate particles unremoved after washing. Therefore, shoot and foliar Cu 

concentrations are more use to determine upper critical threshold values (Macnicol and 

Beckett 1985; Verdejo et al. 2015; Tab. S2). 

Plants in uncontaminated conditions require 5 - 20 mg Cu kg-1 DW in the shoots and 6 

- 100 mg Cu kg-1 DW in the roots depending on the species (Kabata-Pendias and Pendias 

2011; Marschner 2011). Upper critical threshold values for shoot and root Cu concentrations 

of several plant species grown in hydroponics, pot and field conditions are presented in Tab. 

S2. Maximum upper critical threshold value reported for foliar Cu concentration in sunflower 

is 70 mg kg-1 but in hydroponics for plantlets (Lin et al. 2003), while it reached 36 mg kg-1 in 

shoots for 1-month sunflower plants grown in potted soils from field plots (Kolbas et al. 2014, 

Tab. S2). Both values framed the plateau reached by the shoot Cu concentration in our 

experiment, which is usually lower than foliar Cu concentration due to the dilution caused by 

the lower Cu concentration of stem biomass. For the soil series sampled in field plots, CuTOT 

varied between 21 and 1170 mg kg-1, CuSPW ranged between 0.22 and 0.76 mg L-1, and 

shoot Cu concentration was in the 6-36 mg Cu kg-1 range (Kolbas et al. 2014). 

Based on decrease in shoot DW yield (Fig. 2a), the EC10 for shoot Cu concentration 

was in the 13-15 mg Cu kg-1 DW range. The EC50 often used to characterize Cu-tolerance 

reached 25 mg Cu kg-1 DW (i.e. 0.46 mg Cu L-1 in the soil pore water), which matched with 

previous findings for H. annuus (Rivelli et al. 2012), Zea mays (Mocquot et al. 1996), 

Lactuca sativa (Verdejo et al. 2016) and Chloris gayana (Sheldon and Menzies 2005) (Tab. 

S2). Such half maximal effective concentrations in plant tissues and soil pore water can be 
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used for investigating in a routine way the soil phytotoxicity in initial and residual risk 

assessments and the effectiveness of remediation options and amendments for Cu-

contaminated soils (Ali et al. 2002; Kopittke et al. 2009; Verdejo et al. 2016). 

Sunflower generally accumulates Cu mainly in roots, with a relatively low root-to-

shoot Cu translocation (Madejon et al. 2003; Kolbas et al. 2014). Here, differences between 

accumulation capacities of roots and leaves progressively increased as Cu excess rose, which 

significantly reduced the translocation factor (TF) from 0.095 for the C0 plants to 0.028 for 

the C90 plants (Tab. 4). The excluder strategy of this sunflower mutant line is confirmed. 

Roots can fix Cu on the epidermal Fe plaque and cell walls, bound to pectins and 

glycoproteins, and manage Cu absorption and translocation by activating efflux pumps and 

COPT Cu transporters (Batty et al. 2000; Boojar and Goodarzi 2007; Pilon 2011). Other 

mechanisms promote detoxification and sequestration in root cells, mostly in the primary 

cortex, from the parenchymal cells to endodermal barrier, and the xylem parenchyma, e.g. 

production of Cu-complexing compounds, which can be divided into two main groups: 

metallothionein-like compounds and phytochelatins and other thiols (Sanchez-Pardo et al. 

2014; Ravet and Pilon, 2013; Printz et al. 2016). 

Changes in plant biomass and tissues Cu concentration across the soil series can 

influence the mineral mass of elements in the shoots (e.g. here referred to shoot Cu removal 

as the product of DW SH × CuSH). For this sunflower, shoot Cu removal peaked up to 200 

µg Cu plant-1 between 114 - 416 mg Cu kg-1 soil, and then decreased at higher Cu exposures 

to reach a plateau around 100-120 µg Cu plant-1 (Fig. 2h). 

Other elements 

Copper excess led to imbalances in foliar nutrient concentrations, their intensity 

depending on Cu exposure (Tab. 4; Fig. S1). Foliar Ca, Mg, Mn and Zn concentrations were 

highly related to foliar Cu concentration, total soil Cu, and Cu in pore water (Tab. 4; Tab. S3). 

Foliar Ca concentration was positively correlated with foliar Cu concentration (Tab. S3). The 

reverse occurred for Mg, Mn and Zn, despite increase in their total soil content across the soil 

series (Tab. 1). This may affect enzyme activities having Mg, Mn or Zn as co-factors in plant 

parts, e.g. cytochrome c oxidase in the mitochondrial respiratory chain. By comparison, in the 

Cu-contaminated soil series from field plots, both shoot Ca and Mg concentrations were 

enhanced as soil Cu exposure increased (Kolbas et al. 2014). Copper excess in the cytosol of 

root cells causing the OH● generation and their interaction with the cytosolic OH●-binding 

site of plasma membrane cation channels may activate Ca2+-influx channels, for allowing root 

growth and prospection for element acquisition, but also open K+ efflux channels and prevent 

auxin redistribution, which inhibit root elongation (Printz et al. 2016).  

 

As foliar Cu concentration increased from 10 to 31 mg kg-1 (Tab. 4) and roots less 

developed (Fig. 2b), foliar Fe concentration was roughly halved from 56 to 29 mg kg-1. In 

contrast, the root-to-leaf Zn transfer increased (Tab. 4 and Fig. S1) even though the Zn 

concentration in the soil pore water did not differ significantly (Tab. 2). Consequently the 
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shoot Zn : shoot Fe concentration ratio (expressed in mmol kg-1 for both metals) increased 

from 0.6 to 1.4 in the 0.15-0.6 mmol Cu kg-1 range for shoot Cu concentration. The 

development of Fe deficiency and oxidative stress can induce many molecular mechanisms to 

restore the cellular Fe homeostasis, which likely result in higher root-to-shoot Zn transfer 

(Sinclair and Krämer 2012). Under Cu excess, Cu and Fe are key-players in both root and 

shoot processes and may compete not only in the epidermal cells but also for the intercellular 

and intracellular transport in roots (Shi et al. 2011; Printz et al. 2016). Cu 

acquisition/redistribution and Fe homeostasis are linked (Ravet and Pilon 2013). Regarding 

Cu translocation, the membrane protein AtYSL2 involved in the maintenance of Fe 

homeostasis can transport Cu-nicotianamine complexes (Printz et al. 2016). 

Lignification/inhibition of the root cell elongation may impact inducible Fe and Zn membrane 

transporters essential for Zn and Fe uptake (e.g. ZIP, IRT, etc.) (Palmer and Guerinot 2009). 

The expression of ZIP2 and ZIP4 able to mediate the transport of divalent cations is 

influenced by Cu availability (Printz et al. 2016).  

Changes in element uptake and distribution in plant parts induced by Cu excess were 

integrated by changes in translocation factor. For Zn, K and P, TF values increased, whereas 

they decreased for Mg, Mn, and B (Tab. 4, Fig. S1). The TF curve of Mg (Fig. S1b) mimicked 

the DRC pattern of photosynthetic pigments (Fig. 2e) and leaf antioxidant activity (Fig. 2f)). 

Mg is a key player in chlorophyll biosynthesis, carbon partitioning from shoots to roots, and 

cytoplasmic pH regulation. Copper can substitute Mg in chlorophyll molecules, disrupting the 

normal course of metabolic processes (Küpper et al. 2003). Both cellular Ca and Mg 

homeostasis can help to quench oxidative stress in Cu-stressed plants and alleviate metal 

toxicity (Kinraide et al. 2004; Yruela 2009). 

The Mn TF value transiently increased for the C10 and C20 plants (Tab. 4; Fig. S1) 

which matched with increase in total soil Mn (Tab. 1), leaf TAC (Fig. 2e), total chlorophyll 

content (Fig. 2) and shoot Cu removal (Fig. 2h). Foliar P concentration was less reduced than 

root P concentration, and therefore the TF value for P increased (Tab. 4, Fig. S1). This may 

have consequences as notably P-type ATPases belong to a large superfamily of ATP-driven 

pumps involved in the transmembrane transport of many cations across cell membranes, e.g. 

P-type ATPases (HMA) 5 to 8 (Burkhead et al. 2009). As COPT2 is delivering Cu to the 

multi-copper oxidases LPR1 and LPR2 (low phosphate roots 1 and 2), this may interact in 

phosphate sensing and root growth response to low phosphate, whereas ethylene due to Cu 

stress responses may be involved in various external and internal plant adaptations to 

limitation of nutrients including P (Printz et al. 2016). 

 

CONCLUSIONS 

• On this soil series with total soil Cu ranging from 13 to 1020 mg Cu kg-1 soil, biochemical 

parameters of the sunflower mutant were early endpoints based on the EC10, with a high 

signal intensity. Between 13 and 517 mg Cu kg-1 in the soil (194-505 µg Cu L-1 in soil 

pore water, 3.05 – 7.94 µM), their dose-response curves peaked indicating both the rise of 
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oxidative stress and impacts on the chlorophyllous pigments. Morphological parameters of 

sunflower showed simpler DRC. 

• Based on changes in shoot and root DW yields, the EC50 value reflecting Cu tolerance of 

this sunflower mutant line was in the 203-333 mg Cu kg-1 soil range, corresponding to 

280-460 µg Cu L-1 in soil pore water (4.40 -7.24 µM).  

• Shoot Cu removal peaked at 214 mg Cu kg-1 soil (280 µg Cu L-1 in soil pore water, 4.4 

µM). The potential Cu phytoextraction was significantly higher on the 114-416 mg Cu kg-

1 soil range, and it decreased at higher total soil Cu. Non-enzymatic, antioxidant status 

quantified by TAC, total chlorophyll, and foliar Mn and Zn concentrations peaked also for 

such soil Cu exposures. 

• Over 617 mg Cu kg-1 soil, the dose-response curves for foliar antioxidant activity and the 

contents of photosynthetic pigments, mirrored by the development of a leaf bronzing, 

were likely explained by the inhibition of cell expansion and changes in leaf histology 

with smaller, compacted cells.  
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Table 1. Soil physico-chemical parameters 

 

Parameters* unit CTRL UNT 

Sand g kg-1 742 858 

Silt g kg-1 216 83 

Clay g kg-1 42 59 

organic C g kg-1 7.05 8.42 

Total N g kg-1 0.531 0.562 

C/N - 13.3 15 

OM g kg-1 12.2 14.6 

pH  7.1 6.2 

CEC cmol kg-1 2.71 3.21 

Olsen-extractable P** g kg-1 0.067 0.029 

K g kg-1 3.97 8.24 

Ca g kg-1 8.2 24.1 

Mg g kg-1 0.24 0.996 

Na g kg-1 0.55 2.24 

Al g kg-1 7.3 18.6 

Ni mg kg-1 2 5.56 

Fe g kg-1 2.66 7.13 

Mn mg kg-1 50 208 

Cu mg kg-1 13 1020 

Zn mg kg-1 13.2 38.5 

Cd mg kg-1 0.116 0.067 

Cr mg kg-1 9.85 24.6 

As mg kg-1 - 8.5 

Co mg kg-1 - 2.01 

Mo mg kg-1 0.21 0.40 

Pb mg kg-1 1.3 26.2 

Tl mg kg-1 0.14 0.29 

Se mg kg-1 - 0.17 

Sb mg kg-1 - 0.37 
 

*All soil analyses were performed at the INRA Laboratoire d'Analyses des Sols (LAS, Arras, 

France) using standard methods (INRA LAS 2014). CTRL: uncontaminated soil; UNT: 

untreated contaminated soil. ** extracted by the Olsen method. 

Each soil sample was made from the collection of 10 sub-samples (6 kg FW each, 0-25 cm 

soil layer) on a circle and combined in a final sample of 60 kg FW. 
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Table 2. Total soil Cu, and mineral composition (in mg L-1) and pH of soil pore water across the soil series 

 

Soils CTRL  

(%) 

UNT 

(%) 

CuTOT** 

(mg kg-1) 
Al B Ca Cu Fe Mg Mn P K Zn pH 

C0 100 0 
13 

0.176a 

±0.079 

0.136b 

±0.007 

77.6c 

±8.6 

0.194e 

±0.011 

0.103* 

±0.097 

10.3a 

±6.5 
 

0.86bc 

±0.28 

14.1c 

±4.0 

0.0053* 

±0.0046 

7.15a 

±0.03 

C10 90 10 
114 

0.064ab 

±0.016 

0.161b 

±0.006 

111.0abc 

±19.1 

0.332de 

±0.061 

0.001* 

±0.001 

10.3a 

±1.7 
 

0.29c 

±0.04 

30.0bc 

±6.1 

0.0037* 

±0.006 

7.03ab 

±0.07 

C20 80 20 
214 

0.044b 

±0.004 

0.152b 

±0.031 

115.0abc 

±22.5 

0.289de 

±0.053 

0.015* 

±0.026 

14.6a 

±4.0 
 

1.16bc 

±0.20 

30.9bc 

±8.6 
 

6.79abc 

±0.16 

C30 70 30 
315 

0.106ab 

±0.038 

0.373a 

±0.022 

106.7abc 

±15.5 

0.459cd 

±0.025 

0.059* 

±0.029 

13.6a 

±1.8 
0.0076* 

1.77bc 

±0.40 

84.2a 

±16.3 

0.0062* 

±0.0108 

6.62abc 

±0.20 

C40 60 40 
416 

0.066ab 

±0.029 

0.168b 

±0.029 

92.2abc 

±23.3 

0.426cd 

±0.040 

0.028* 

±0.048 

  9.3a 

±0.6 
 

1.76bc 

±0.36 

21.6bc 

±5.6 

0.0033* 

±0.0057 

6.60bc 

±0.21 

C50 50 50 
517 

0.118ab 

±0.047 

0.203ab 

±0.021 

84.2bc 

±11.3 

0.505bcd 

±0.034 

0.088* 

±0.051 

10.5a 

±1.7 
 

4.43bc 

±0.45 

44.3abc 

±7.3 

0.0132* 

±0.0151 

6.32cd 

±0.10 

C60 40 60 
617 

0.069ab 

±0.009 

0.223ab 

±0.041 

116.2abc 

±10.2 

0.497bcd 

±0.028 

0.026* 

±0.026 

14.1a 

±2.3 
0.0086* 

5.26bc 

±0.26 

43.5abc 

±6.7 

0.0089* 

±0.0090 

6.48cde 

±0.23 

C70 30 70 
718 

0.064ab 

±0.011 

0.220ab 

±0.029 

120.8abc 

±19.5 

0.486bcd 

±0.047 

0.018* 

±0.016 

15.3a 

±3.1 
0.0111 

3.64bc 

±0.43 

47.9abc 

±9.7 

0.0033* 

±0.0057 

6.35cde 

±0.26 

C80 20 80 
819 

0.046b 

±0.015 

0.201ab 

±0.037 

154.3a 

±11.2 

0.707ab 

±0.045 

0.019* 

±0.018 

13.1a 

±1.0 
 

5.86b 

±0.51 

40.4abc 

±2.8 

0.0047* 

±0.0081 

6.30cde 

±0.30 

C90 10 90 
919 

0.017b 

±0.007 

0.216ab 

±0.017 

120.3abc  

±21.6 

0.635abc 

±0.026 

0.046* 

±0.008 

10.6a 

±1.9 
  

12.02a 

±1.93  

68.9ab 

±11.9 
 

6.05de 

±0.29 

C100 0 100 
1020 

0.092ab 

±0.007 

0.322ab 

±0.022 

141.7ab  

±17.6 

802a 

±0.058 

0.001* 

±0.001 

15.3a 

±2.2 
0.0076* 

4.19bc 

±0.36 

63.6abc 

±8.5 

0.0141* 

±0.003 

5.93e 

±0.09 

 

Mean values (n=3) followed by the same letter are not different at the 5% level; <dl (below detection limit: Mn <0.005; Zn<0.001 mg L-1);* one replicate below the detection 

limit (n<3); (mg kg-1): total soil Cu  
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Table 3. Effective concentrations (EC, expressed in total soil Cu, mg Cu kg-1) at 10%, 50% 

and 90% for several parameters of sunflower plants, calculated using the DRC-package. 

 

 

* computed on the C0-C60 soil series, with total soil Cu varying from 13 to 517 mg Cu kg-1  

  

Plant parameters 
EC 

10 50 90 

Shoot DW yield (DW SH) 166 333 668 

Root DW yield (DW RT) 74 203 552 

Total leaf area (TLA) 201 335 559 

Stem length (SL)* 355 407 485 

Total chlorophyll content (Chl TOT)* 51 329 442 

Total antioxidant capacity (TAC)* 23 301 436 

Shoot Cu concentration (CuSH)* 83 322 583 
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Table 4. Ionome of sunflower leaves and roots and transfer factor (TF) 
 

Elements Al B Ca Cu Fe Mg Mn P K Zn 

Soils  mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 g kg-1 g kg-1 mg kg-1 

C0 

leaves 12.5 A 53.5 ABC 24.2 C 10.0 E 56.5 AB 6.5 AB 37.3 A 4.3 A 29.5 A 38 A 

±SD 1.2 5.2 3.6 1.2 4.2 0.7 1.7  0.4 4.3 5.3 

roots 2130 abc 18.8 a 7 b 105.1 d 2466 ab 2.4 abc 49.2 bc 5.1 a 19.3 a 72.1 a 

±SD 155.4 3.6  0.3  25.8  1057.9  0.3 10.3  0.5  2.9 13.1 

TF 0.006 2.84 3.5 0.095 0.023 2.7 0.76 0.84 1.5 0.53 

C10 

leaves 16.1 A 53.2 ABC 24.6 C 13.1 DE 46.2 AB 7 A 31.6 ABC 2.7 AB 24.5 A 37 A 

±SD 2.0  6.8 2.3  2.5 4.3 1.1 6.6  0.4 10.6 1.6 

roots 1318 c 17.8 a 12.8 ab 225 cd  1009 b 1.8 c 27 c 3 ab 13.7 ab 52.8 ab 

±SD 53.9 2.8  1.2 22.7 123.8  0.1  4.1  0.5 4.4 7.6  

TF 0.012 2.99 1.9 0.058 0.046 3.9 1.17 0.91 1.8 0.7 

C20 

leaves 30.7 A 61.4 A 26.2 BC 21.3 CDE 54.7 AB 5.8 ABC 35 AB 2.1 AB 26 A 46.7 A 

±SD 2.8 6.2  2.4  3.2 6.7 0.7 5.4  0.4 4.9 4.6 

roots 2059 abc 21.6 a 8 ab 550 bcd  1623 ab 2 bc 36.8 bc 2.1 b 15.8 a 48 abc 

±SD 157.5 2.6  0.6  93.8  111.3  0.5  4.2  0.3  4.7  2.9  

TF 0.015 2.84 3.3 0.039 0.034 2.9 0.95 1 1.7 0.98 

C30 

leaves 15.7 A 54.9 ABC 24 C 20.8 CDE 42.1 AB 5.6 ABC 30.2 ABCDE 1.7 B 26.5 A 49.3 A 

±SD 3.4  2.4 3.7  1.9 6.6 1.1 12.2 0.4 7.7 6.6 

roots 1971 abc 23.5 a 9.8 ab 673 abc  2172 ab 2.9 abc 48.8 bc 1.9 b 10.9 ab 42.3 bcd 

±SD 213.5 4.8  2.7  177.3 459.6 0.1  11.0 0.1  2.8  5. 

TF 0.008 2.33 2.4 0.031 0.019 1.9 0.62 0.94 2.4 1.17 

C40 

leaves 15.4 A 57.1 AB 24.9 BC 29 BCDE 32.7 B 4.1 BC 29.9 ABCDE 1.88 B 25.7 A 53.1 A 

±SD 1.4  7.8  2.3  5.9 4.3 1.0 5.1 0.4 10.7 10.8 

roots 1591 24.7 12 810  1914 3.9 51.7 1.73 5.5 31.3 

±SD 262.3 bc 2.4 a 1.5 ab 117.9 ab 227.3 ab 0.3 abc 6.6 bc 0.4 b 0.9 b 7.4 bcde 

TF 0.01 2.31 2.1 0.036 0.017 1.03 0.58 1.08 4.7 1.7 

C50 

leaves 19 A 53.7 ABC 26.4 BC 31 BCD 29.3 B 3.9 C 30.9 ABCD 2.18 AB 19.7 A 47.2 A 

±SD 2.5  5.3  1.5  2.1 3.6 0.3 5.4 0.4 1.7 8.4 

roots 2028 abc 25.3 a 14.2 a 904 ab 2127 ab 4.6 a 55.4 abc 1.85 b 4.4 b 24.9 cde 

±SD 220.9 3.3  1.3  250.7  247.4  0.5  6.4  0.2  0.5  4.4  

TF 0.009 2.12 1.86 0.035 0.014 0.85 0.56 1.18 4.48 1.89 

C60 

leaves 16.0 A 56.7 AB 29.2 ABC 40 ABC 29.8 B 3.6 C 25.8 ABCDE 2.32 AB 18.9 A 50.4 A 

±SD 4.2  5.5  2.0 2.5 0.8 0.4 5.9 0.2 3.6 4.4 

roots 2159 abc 25.4 a 10.6 ab 959 ab 2415 ab 4 abc 63.5 ab 1.51 b 4.11 b 28.6 bcde 

±SD 212.7 5.7 1.9  60.2  786.5  0.3 13.0 0.1  0.4  6.5 

TF 0.007 2.23 2.74 0.042 0.012 0.91 0.41 1.53 4.58 1.76 

 

Mean values (n=3) followed by the same letter are not different at the 5% level (leaves: capital letters; roots: lowercase letters);  

one replicate below the detection limit. 
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Table 4: to continue 

Elements Al B Ca Cu Fe Mg Mn P K Zn 

Soils  mg kg-1 mg kg-1 g kg-1 mg kg-1 mg kg-1 g kg-1 mg kg-1 g kg-1 g kg-1 mg kg-1 

C70 

leaves 27.1 A 41.1 ABC 31 ABC 47.0 AB 49.4 AB 4.5 ABC 17 CDE 2.4 AB 17.7 A 41.9 A 

±SD 3.5 9.0  5.2 7.6 5.3 0.3 5.3 0.3 6.0 2.0 

roots 2269 ab 22.5 a 10.8 ab 947 ab 2518 ab 4.1 ab 66.5 ab 1.57 b 4.2 b 22.3 de 

±SD 471.6  3.6  1.1 101.0  165.0  0.5  7.5  0.2  0.3  3.2  

TF 0.012 1.83 2.87 0.05 0.02 1.1 0.25 1.53 4.21 1.88 

C80 

leaves 16.3 33.8 33.8 39 66.1 4 14.8 2.73 19.4 44.9 

±SD 4.3 A 9.0 C 3.6AB 2.7ABC 9.7AB 1.5BC 2.5DE 0.1AB 3.4A 12.1A 

roots 2200 abc 21.1 a 12.5 ab 1035 ab 2351 ab 4.1 ab 67.9 ab 1.75 b 5.29 b 18.6 de 

±SD 267.5  4.9  3.2  203.1  988.0  0.9  10.2  0.5  2.0  5.2  

TF 0.007 1.6 2.7 0.038 0.028 0.99 0.22 1.56 3.67 2.41 

C90 

leaves 3.2* 34.6 BC 36.3 A 40 BCDE 41.9 AB 3.3 C 13.4 E 2.6 AB 18.71 A 40.9 

±SD * 2.1  3.5  2.7 3.5AB 0.4C 0.7E 0.5AB 2.9A 7.0A 

roots 2977 a 19.4 a 10 ab 1056 a 3061 a 4.02 abc 87.5 a 1.63 b 5.37 b 22.9 de 

±SD 750.2 2.8  1.1  151.3  250.6  0.9  17.7  0.1 1.0  5.6  

TF 0.001 1.78 3.62 0.028 0.014 A 0.82 C 0.15 1.6 3.49 1.78 

C100 

leaves 29.7 A 34 C 36.1 A 55.4 E 92.9 A 3.7 C 18.6 BCDE 3.7 AB 19.87 A 61.9 A 

±SD 6.7  5.0  3.5 6.6 35.0  0.4 4.8 0.6 2.7 6.7 

roots 2145 abc 20.9 a 9.7 ab 1000 ab 2111 ab 3.3 abc 62 abc 1.59 b 4.31 b 16.8 e 

±SD 378.8 3.1 1.2  87.2  242.8  0.5  11.7  0.5  0.4  2.5  

TF 0.014 1.62 3.71 0.055 0.044 1.13 0.3 2.32 4.61 3.69 

** leaves     19-24  3-12  50-200  1.5-3 10-30   29-38 20-100  

 

Mean values (n=3) followed by the same letter are not different at the 5% level (leaves: capital letters; roots: lowercase letters);  

one replicate below the detection limit **concentrations for optimal plant growth
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Figure 1. Principal Component Analysis (PCA) for parameters of the sunflower plants and soil Cu 

exposure: (a) 2D plane of principal axis and (b) correlation circle of plant parameters and indicators 

of soil Cu exposure; (c) the class distribution for PC axis #1; (d) the class distribution for PC axis 

#2; (e) 2D plane of principal axis and (f) correlation circle of shoot ionome and indicators of soil Cu 

exposure  

d = 2 

C0 

C10 

C100 

C20 

C30 

C40 
C50 

C60 

C70 

C80 

C90 

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Dim 1 (57.81%)

D
im

 2
 (

1
9
.1

5
%

)

CuSPW

CuTOT

SL

HL

DWRT

DWSHS/R

TLA

ChlTOT

Chla/Chlb

Carot

TAC

CuSH

C0 C10 C20 C30 C40 C50 C60 C70 C80 C90 C100
-2

0
2

4

a

a

a

b

c

c

c

c

c

c

c

C0 C10 C20 C30 C40 C50 C60 C70 C80 C90 C100

-2
-1

0
1

2

d

d

b

d

b

a

b

c

c

c

a

Axis 1

Axis 2

C0 C10 C20 C30 C40 C50 C60 C70 C80 C90 C100

-2
0

2
4

a

a

a

b

c

c

c

c

c

c

c

C0 C10 C20 C30 C40 C50 C60 C70 C80 C90 C100

-2
-1

0
1

2

d

d

b

d

b

a

b

c

c

c

a

Axis 1

Axis 2

PC 1 (57.81%) 

d = 2 

C0 

C10 

C100 

C20 

C30 

C40 
C50 

C60 

C70 

C80 

C90 

P
C

2 
(1

9.
15

%
) 

P
C

2 
(1

9.
76

%
) 

PC 1 (37.73%) 

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Dim 1 (37.73%)

D
im

 2
 (

1
9
.7

6
%

)

CUTOT

CuSPW

Al

B

Ca

Cu

Fe

Mg

Mn

P

K

Zn



30 

 

  

 

 

  

Figure 2. Phenotypic responses of sunflower plants. 

(a) shoot DW yield; (b) root DW yield; (c) stem length; (d) hypocotyl length; (e) total chlorophyll 

content (f) total antioxidant capacity in leaves (µg Trolox equivalent g leaf FW-1 x leaf FW yield) ; 

(g) shoot Cu concentration; and (h) shoot Cu removal.  

The curves for plant parameters were obtained using the DRC-package; for figures e, f, and h 

modelling was made only in the 13-617 mg Cu kg-1 soil range 

Symbols represent means ± standard errors (n=4); means followed by the same letter are not 

different at the 5% level. X axis: CuTOT, total soil Cu (mg Cu kg-1 soil DW) 
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Supplementary materials 

 

Table S1. Variable contributions to axes for Principal Component Analysis (PCA) of the 

sunflower and soil Cu exposure parameters 

 
Factor Correlation P value 

Dimension 1 

TLA 0.966 <0.001 

DW SH 0.951 <0.001 

DW RT 0.916 <0.001 

HL 0.825 <0.001 

Chla/Chlb 0.821 <0.001 

ChlTOT 0.779 <0.001 

Carot 0.774 <0.001 

TAC 0.433 <0.001 

S/R -0.602 <0.001 

CuTOT -0.687 <0.001 

CuSPW -0.745 <0.001 

CuSH  -0.856 <0.001 

Dimension 2 

Carot 0.569 <0.001 

ChlTOT 0.552 <0.001 

CuSPW 0.510 <0.001 

TAC 0.543 <0.001 

Chla/Chlb 0.480 <0.001 

TAC 0.477 <0.001 

CuTOT 0.442 <0.001 

HL -0.395 <0.001 

SL -0.795 <0.001 
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Table S2. Upper critical threshold Cu concentrations reported for plant species (in mg Cu kg-l DW). 

 

Upper critical concentrations Plant species  Experiment Soil type Cu contamination  References  

Leaves Shoot  Roots   

26  290 Chloris gayana  H    0.2 – 7 µM, Cu-resin  Sheldon and Menzies 2005 

70    138 Helianthus annuus H    copper sulfate 10 µM – 1mM Lin et al. 2003 

25.6     Helianthus annuus P  clay loam Cu sulfate spike (400 mg/kg)  Rivelli et al. 2012 

20-30 15-20   Helianthus annuus F  sandy  wood preservation site  Kolbas et al. 2011 

36  1233 Helianthus annuus P  sandy  wood preservation site  Kolbas et al. 2014 

21  620 Helianthus annuus P  sandy  wood preservation site  this study 

    41 Vigna mungo  P    Cu spike    Kalyanaraman and Sivagurunathan 1993 

    337 Zea mays  H    Cu sulfate 0-80 µM  Ouzounidou et al. 1995 

21    26 Zea mays  H    Cu sulfate 0.01-10 µM  Mocquot et al. 1996 

21  174 Zea mays  H    Cu sulfate 0.5-157 µM  Ali et al. 2002 

55  3060 Phragmites australis H    Cu sulfate 0.5-157 µM  Ali et al. 2002 

15  2300 Triticum aestivum H    Cu sulfate 0-50 µM  Taylor and Foy 1985 

10  134 Triticum aestivum F    Porphyry Cu mineralisation Cook et al. 1997 

20  66 Vigna unguiculata H    Cu sulfate 0-3 µM  Kopittke et al. 2011 

  11-39  128-705 Triticum durum  F calcareous/non-calcareous former vineyard soils  Michaud et al. 2007 

  39   Lolium perenne  P clay loam to sandy mining    Verdejo et al. 2015 

  21   Lactuca sativa   P clay loam to sandy mining    Verdejo et al. 2016 

P: Pot experiment; H: Hydroponics; F: field plot 
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Table S3. Pearson correlation coefficients between plant parameters, foliar element concentrations, and total Cu in soil and soil pore water for 4-week 

old sunflower plants. 

 
 

Morphological parameters Biochemical parameters Foliar element concentrations 

TLA SL HL EL DW SH DW RT S/R Chla Chlb Chla/Chlb ChlTOT Carot TAC Al B Ca Cu Fe Mg Mn P K Zn 

SL 0.31ns 
            

          

HL 0.93** 0.55ns 

           
          

EL -0.40ns 0.67* -0.19ns 

          
          

DW SH 0.99** 0.33ns 0.94** -0.38ns 

         
          

DW RT 0.95** 0.16ns 0.84** -0.51ns 0.95** 

        
          

S/R -0.82** -0.43ns -0.76** 0.11ns -0.84** -0.76** 

       
          

Chla 0.65* -0.23ns 0.55ns -0.69* 0.62* 0.58ns -0.30ns 

      
          

Chlb 0.52ns -0.35ns 0.41ns -0.71* 0.48ns 0.45ns -0.14ns 0.98** 

     
          

Chla/b 0.77** -0.16ns 0.62* -0.67* 0.73* 0.70* -0.45ns 0.93** 0.86** 

    
          

ChlTOT 0.63* -0.26ns 0.52ns -0.69* 0.59ns 0.55ns -0.26ns 0.99** 0.99** 0.92** 

   
          

Carot 0.63* -0.23ns 0.52ns -0.67* 0.59ns 0.55ns -0.30ns 0.99** 0.96** 0.93** 0.99** 

  
          

TAC 0.32ns -0.06ns 0.31ns -0.36ns 0.29ns 0.17ns -0.18ns 0.76** 0.74** 0.62* 0.76** 0.80** 

 
          

Al -0.63* -0.04ns -0.53ns 0.21ns -0.63* -0.62* 0.69* -0.35ns -0.29ns -0.34ns -0.34ns -0.31ns 0.02ns           

B 0.05ns 0.55ns 0.20ns 0.29ns 0.09ns 0.08ns -0.15ns -0.39ns -0.42ns -0.43ns -0.40ns -0.42ns -0.17ns 0.19ns          

Ca -0.84** -0.38ns -0.78** 0.24ns -0.83** -0.77** 0.80** -0.57ns -0.41ns -0.74** -0.53ns -0.58 -0.41ns 0.41ns 0.10ns         

Cu -0.87** -0.25ns -0.74** 0.23 -0.87** -0.84** 0.88** -0.40ns -0.26ns -0.60* -0.37ns -0.39ns -0.04ns 0.76** 0.10ns 0.74**        

Fe 0.42ns -0.40ns 0.28ns -0.80** 0.39ns 0.49ns 0.03ns 0.71* 0.70*** 0.78** 0.71* 0.70* 0.39ns 0.11ns -0.32ns -0.37ns -0.16ns       

Mg 0.88** 0.36ns 0.91** -0.28ns 0.89** 0.82** -0.76** 0.43ns 0.33ns 0.49ns 0.41ns 0.38ns 0.14ns -0.69* 0.20ns -0.60* -0.75** 0.19ns      

Mn 0.84** 0.43ns 0.86** -0.26ns 0.85** 0.88** -0.61* 0.32ns 0.21ns 0.43ns 0.30ns 0.27ns -0.08ns -0.49ns 0.35ns -0.61* -0.66* 0.32ns 0.85**     

P 0.64* -0.23ns 0.49ns -0.76** 0.64* 0.81** -0.32ns 0.53ns 0.49ns 0.56ns 0.52ns 0.49ns 0.01ns -0.33ns 0.16ns -0.39ns -0.43ns 0.69* 0.54* 0.72*    

K -0.11ns 0.55ns 0.08ns 0.59ns -0.09ns -0.27ns -0.10ns -0.39ns -0.38ns -0.50ns -0.39ns -0.41ns 0.12ns 0.06ns 0.67* 0.23ns 0.17ns -0.65* 0.15ns -0.07ns -0.40ns   

Zn 0.77** 0.25ns 0.75** -0.43ns 0.77** 0.85** -0.43ns 0.41ns 0.33ns 0.48ns 0.39ns 0.36ns 0.03ns -0.30ns 0.39 -0.50ns -0.52* 0.51ns 0.71* 0.94** 0.85** -0.16ns  

CuSPW -0.92** -0.61 -0.95** 0.08ns -0.94** -0.85** 0.89** -0.37ns -0.22ns -0.49ns -0.34ns -0.35ns -0.18ns 0.58* -0.33ns 0.78** 0.83** -0.10ns -0.88** -0.85** -0.46ns -0.17ns -0.72* 

CuTOT -0.84** -0.65 -0.92** 0.09ns -0.86** -0.81** 0.75* -0.32ns -0.19ns -0.40ns -0.29ns -0.29ns -0.15ns 0.42ns -0.47ns 0.75** 0.73** -0.16ns -0.83** -0.91** -0.54* -0.18ns -0.81** 

 

Significance level:  ns Not significant, * P<0.05, **P<0.01 (in bold) 
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Figure S1. Changes in transfer factor (TF) for (a) micro- and (b) macro-nutrients in sunflower 

plants across the soil series (in % relative to maximum value). X axis – total soil Cu  
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