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ПРЕДИСЛОВИЕ 

Настоящая книга посвящена итерационным методам решения опера-

торных линейных уравнений в гильбертовом пространстве с ограничен-

ными и неограниченными, положительными, самосопряженными и неса-

мосопряженными операторами в предположении, что погрешности имеют-

ся не только в правой части уравнения, но и в операторе. Такими опера-

торными уравнениями задаются некорректные задачи, которые были 

сформулированы в начале XX в. и долгое время не изучались, поскольку 

считалось, что они не могут отвечать никакой физической реальности  

и поэтому их решение не имеет смысла.  

Однако потребности практики привели к необходимости решать не-

корректные задачи. Для их решения предложены и широко применяются 

метод регуляризации А. Н. Тихонова, метод квазирешений В. К. Иванова  

и метод невязки, предложенный Д. Л. Филлипсом и В. К. Ивановым. Наи-

большее распространение получили итерационные методы решения не-

корректных задач. Их частое использование связано с тем, что эти методы 

сравнительно легко программируются на персональных электронно-

вычислительных машинах (далее – ПЭВМ). 

В монографии предлагаются новые регуляризующие алгоритмы для 

некорректных задач, описываемых операторными уравнениями первого 

рода, в виде явных и неявных итерационных методов, обладающих более 

высокими скоростными качествами, чем ранее известные методы. Для по-

строения новых явных и неявных итерационных методов был использован 

наиболее общий из известных в настоящее время подходов к решению не-

корректных задач – подход, основанный на введенном А. Н. Тихоновым 

понятии регуляризатора. Проведено сравнение предложенных методов  

с наиболее изученным в литературе методом итераций Ландвебера [158]. 

В частности, метод простой итерации с попеременно чередующимся 

шагом для получения решения требует в три раза меньше итераций, чем 

метод Ландвебера. Семейство явных методов с более высокой степенью 

оператора, обобщающее метод простой итерации, для получения опти-

мального решения требует в k раз меньше итераций, чем метод Ландвебера.  

Неявные методы, представляющие собой семейства итерационных 

схем, зависящих от параметра k, в силу отсутствия ограничений сверху  

на шаг по антиградиенту позволяют получить оптимальное решение уже 

на первом шаге итераций. Один из предложенных неявных методов позво-

ляет решать операторные уравнения с неограниченным оператором, при-

том необязательно положительным. 

Для предложенных методов впервые проведено достаточно полное их 

исследование.  



 

 

8 

 

 

Сначала изучен априорный выбор числа итераций для уравнений  

с приближенно заданной правой частью и точным оператором. При этом 

установлены достаточные условия сходимости методов. Получены априор-

ные оценки погрешности в предположении, что известен класс истоко-

представимых решений, которому решение при данном )(ARy  принад-

лежит. Поскольку такая информация обычно недоступна или неточна, 

априорный выбор числа итераций имеет в основном теоретическое значе-

ние: он позволяет выявлять принципиальные возможности методов. 

Использование в работе энергетической нормы делает предложенные 

методы эффективными и в случае, когда нет сведений об истокопредстави-

мости точного решения. В этом случае удается получить априорные оценки 

погрешности и априорный момент останова методов уже без дополнитель-

ного требования на гладкость точного решения. Получены условия, когда 

из сходимости в энергетической норме следует сходимость в обычной нор-

ме гильбертова пространства. 

Предлагается и другой способ сделать методы эффективными и тогда, 

когда отсутствует дополнительная информация на гладкость точного реше-

ния. Для этого в монографии обосновано применение к итерационным ме-

тодам правил останова по малости невязки: выбирается то значение итера-

ций n, при котором невязка сравнима с уровнем погрешности правой части 

уравнения. Подобное согласование n c уровнем погрешности правой части 

принято называть принципом невязки. Оказывается, что при таком выборе  

n мы получаем оптимальные по порядку методы на классах истокопредста-

вимых решений, при этом сам выбор n не использует информацию истоко-

представимости и вообще какую-либо другую информацию, кроме оценки 

уровня погрешности правой части уравнения. Доказано, что предложенные 

итерационные методы сходятся к точному решению, для них получены 

оценки погрешности и оценки для момента останова. Обоснована также 

возможность применения к предложенным методам правила останова  

по разности соседних приближений: использование этого правила останова 

делает методы эффективными в случае отсутствия сведений об истоко-

представимости точного решения. 

Для всех методов исследован случай неединственного решения урав-

нения (нуль является собственным значением оператора). Показано, что то-

гда итерационные процессы сходятся к решению с минимальной нормой. 

Для некоторых из предложенных методов изучен априорный и апо-

стериорный выбор параметра регуляризации в случае приближенно задан-

ного самосопряженного и несамосопряженного оператора: доказана схо-

димость методов, получены оценки погрешности и оценки для апостери-

орного момента останова.  

Некоторыми из предложенных методов решены модельные некор-

ректные примеры. Для их решения использовались ПЭВМ, и программы 



 

 

9 

 

 

составлялись на языке программирования С#. При решении модельных за-

дач нашли подтверждение выводы о преимуществах предложенных мето-

дов по сравнению с наиболее изученным в математической литературе яв-

ным методом итерации Ландвебера.  

Рассмотренные в монографии итерационные методы найдут практиче-

ское применение в прикладной математике: они могут быть использованы 

для решения задач, встречающихся в динамике и кинетике, математиче-

ской экономике, геофизике, теории потенциала, синтезе антенн, акустике, 

автоматической обработке результатов физического эксперимента, опре-

делении формы радиоимпульса, излученного источником, диагностике 

плазмы, в наземной или воздушной геологоразведке (математическая об-

работка измерений), при решении обратной кинематической задачи сей-

смики, космических исследованиях (спектроскопии) и медицине (томогра-

фии). Разработанные методы позволят успешно решать задачи, часто 

возникающие в различных отраслях агропромышленного комплекса 

Республики Беларусь. 

Укажем еще на используемую систему нумерации. Все утверждения 

типа лемм, теорем, замечаний, следствий и т. д. имеют в книге общую для 

них всех сплошную нумерацию, задаваемую двумя числами. Первое число 

есть номер главы, а второе – порядковый номер утверждения в данной  

главе. Пронумерованные соотношения имеют аналогичную двойную  

нумерацию.  

Книга предназначена для научных работников и инженеров-исследо-

вателей, занимающихся применениями функционального анализа к при-

ближенным и численным методам или прикладной математикой, а также 

для иных специалистов, чьи интересы связаны с некорректными задачами. 

Ее можно использовать в курсе лекций и спецкурсах для студентов физи-

ко-математических факультетов университетов.  

В заключение считаю своим приятным долгом выразить глубокую 

благодарность рецензентам – профессору Гродненского государственного 

университета имени Я. Купалы Ю. М. Вувуникяну и профессору Брестско-

го государственного технического университета В. А. Головко, замечания 

которых способствовали улучшению содержания книги. Автор также 

весьма признателен доценту Брестского государственного университета 

имени А. С. Пушкина В. Ф. Савчуку и профессору Белорусского государ-

ственного университета П. П. Забрейко за обсуждение отдельных резуль-

татов исследования.  

 

О. В. Матысик 
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ВВЕДЕНИЕ 

Встречается большой класс задач, где решения неустойчивы к малым 

изменениям исходных данных, т. е. сколь угодно малые изменения исход-

ных данных могут приводить к большим изменениям решений. Задачи по-

добного типа принадлежат к классу некорректных задач.  

Значительная часть задач, встречающихся в прикладной математике, 

физике, технике и управлении может быть представлена в виде оператор-

ного уравнения первого рода 

YyXxyAx  ,,                                          (1) 

с заданным оператором YX:A   и элементом y. Ж. Адамаром (J. Hada-

mard) [140, 141] было введено следующее понятие корректности: 

Определение 1. Задачу отыскания решения x ∈ X уравнения (1) назы-

вают корректной (или корректно поставленной, или корректной  

по Адамару), если при любой фиксированной правой части уравнения 

Yyy  0  его решение: 

а) существует в пространстве X; 

б) определено в пространстве X однозначно; 

в) устойчиво в пространстве X, т. е. непрерывно зависит от правой 

части y ∈ Y. В случае нарушения любого из этих условий задачу называют 

некорректной (некорректно поставленной); более конкретно, при нару-

шении условия в) ее принято называть неустойчивой.  

Из определения видно, что корректность по Адамару эквивалентна 

однозначной определенности и непрерывности обратного оператора 1A  

на всем пространстве Y.  

На протяжении многих лет в математике считалось, что только кор-

ректные задачи имеют право на существование, что только они правильно 

отражают реальный мир. О некорректных задачах сложилось мнение, что 

они не имеют физической реальности, поэтому их решение бессмысленно. 

В результате долгое время некорректные задачи не изучались.  

Однако на практике все чаще и настойчивее стала возникать необхо-

димость решать некорректные задачи. К таким задачам относятся задача 

Коши для уравнения Лапласа, задача решения интегрального уравнения 

первого рода, задача дифференцирования функции, заданной приближен-

но, численное суммирование рядов Фурье, когда коэффициенты известны 

приближенно в метрике 2l , обратная задача гравиметрии, обратная задача 

теории потенциала, задача спектроскопии, задача аналитического продол-

жения функции, известной на части области, на всю область. Некорректны 

также и задача проектирования оптимальных систем, конструкций, задача 

создания систем автоматической обработки результатов физического  
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эксперимента, задача Коши для уравнения теплопроводности с обращен-

ным временем и т. д.  

Однако, обычные методы, применяемые для решения корректных  

задач, невозможно было применить к некорректным задачам. Поэтому 

необходимо было пересмотреть определение корректности по Адамару.  

И это было сделано в 1943 г. А. Н. Тихоновым [109]. 

Определение 2. Задача (1) называется корректной по Тихонову  

на множестве M ⸦ X, а само множество M – ее классом корректности, если: 

а)  точное решение задачи существует в классе M; 

б) в классе M решение задачи единственно при любой правой части 

y ∈ N = AM ⸦ Y;  

в) принадлежащее множеству M решение задачи устойчиво относи-

тельно правых частей y ∈ N. 

Если XM   и N = Y, то корректность по Тихонову совпадает с кор-

ректностью по Адамару.   

После работ А. Н. Тихонова систематическое изучение некорректных 

задач и способов их решения началось в 1950-х гг., но особенно широкий 

размах оно приняло в последние 50 лет. Основные результаты отражены  

в монографиях М. М. Лаврентьева [64], А. Н. Тихонова  и В. Я. Арсенина 

[111], В. А. Морозова [81], В. К. Иванова, В. В. Васина и В. П. Тананы [41], 

О. А. Лисковца [72], Г. М. Вайникко и А. Ю. Веретенникова [21],  

А. Ф. Верланя и В. С. Сизикова [24], В. В. Васина и А. Л. Агеева (V. V. Va-

sin and A. L. Ageev) [187], А. В. Бакушинского, М. Ю. Кокурина, М. М. Ко-

курина и А. В. Смирновой (A. B. Bakushinsky, М. Yu. Kokurin, М. М. Koku-

rin and A. V. Smirnova) [128, 129], С. И. Кабанихина (S. I. Kabanikhin) [151].  

Наиболее общим из известных в настоящее время подходов к ре-

шению некорректных задач является подход, основанный на введенном  

А. Н. Тихоновым понятии регуляризатора. 

Пусть имеется некорректная в классическом смысле задача матема-

тической физики.  

Определение 3. Параметрическое семейство операторов }{ R , 

действующих из пространства правых частей Y в пространство решений 

X, называется регуляризующим (регуляризующим алгоритмом или 

регуляризатором), если: 

а) при любом 0  оператор R  определен на всем пространстве Y;  

б) если существует точное решение исходной задачи x ∈ X, то для 

любого 0  существует )(  такое, что для всех yδ ∈ Y,  yy  

имеет место соотношение .0,0)(  X
xyR  Параметр  

  называется параметром регуляризации,   yRx )(,   – регуляризо-

ванными решениями. 
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Использование регуляризатора задачи дает возможность сколь угодно 

точного ее решения при достаточно точных исходных данных. В работе 

[110] А. Н. Тихонов предлагает способ построения регуляризующих опе-

раторов для уравнения (1). Это метод  регуляризации решения некоррект-

ных задач. Он оcнован на вариационном принципе. В методе рационально 

выбирается параметр регуляризации, используется априорный способ вы-

бора и предложены принципы невязки и сглаживающего функционала. 

Для решения некорректных задач В. К. Иванов в работе [38] излагает 

метод квазирешений. Большое применение для регуляризации некоррект-

ных задач имеет также и метод невязки, предложенный Д. Л. Филлипсом  

(D. L. Phillips) [173] и В. К. Ивановым.  

Особое место среди методов решения некорректных задач занимают 

итерационные методы. Еще в 1930-е гг. в работах Т. Карлемана (Т. Car-

leman)  [131], Г. М. Голузина и В. И. Крылова [27], И. Г. Малкина [76] 

были предложены первые методы приближений, дающие в пределе точные 

решения уравнения (1), если данные, т. е. оператор A и правая часть y, 

заданы точно. Для решения задачи Коши для уравнения Лапласа  

с точными данными итеративный метод изложен в работе Б. А. Андреева 

[2]. В общем виде итеративный метод сформулирован А. К. Маловичко 

[77]. Однако в этих работах отсутствует необходимое исследование влия-

ния погрешностей данных, которое весьма важно для решения некоррект-

ных задач. В работе [64] М. М. Лаврентьев обосновал сходимость метода 

последовательных приближений Ландвебера при приближенной правой 

части линейных уравнений и распространил полученные результаты  

на случай нелинейных уравнений. При других предположениях метод по-

следовательных приближений был исследован Ю. Т. Антохиным [4; 5]. 

Изучению итеративных методов посвящены работы Л. Ландвебера  

(L. Landweber) [158], В. М. Фридмана [113], В. Н. Страхова [105–107], 

М. А. Красносельского, Г. М. Вайникко, П. П. Забрейко, Я. Б. Рутицкого  

и В. Я. Стеценко [59]. Различные схемы итерационных методов, предло-

женные А. С. Апарциным [6], В. К. Ивановым [38; 39], А. С. Кряневым 

[63], М. М. Лаврентьевым [64], В. Липфертом (W. Lipfert) [159], 

А. Б. Бакушинским и А. В. Гончарским [8; 11], Г. В. Гроэтчем  

(G. W. Groetsch) [139], В. А. Морозовым [78–81], В. В. Васиным [22],  

С. М. Оганесяном и В.Ч. Старостенко [83], Л. Э. Сарвом [101], Г. В. Хро-

мовой [118], О. Аксельсоном (О. Axelsson) [127], М. Е. Килмером  

и Д. П. О’Лири (M. E. Kilmer and D. P. O’Leary) [153], Х. Бялым (H. Bialy) 

[130], С. Ф. Гильязовым и Н. Л. Гольдманом (S. F. Gilyazov  

and N. L. Gol’dman) [137], К. Р. Вогелем (C. R. Vogel) [188], применялись 

для решения многих некорректных задач в гильбертовых пространствах. 

Для решения некорректных задач в банаховых пространствах применялись 

методы итераций, предложенные в работах А. Б. Бакушинского  
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и В. Н. Страхова [9; 10]. Метод Ландвебера при приближенно заданных 

правой части и операторе изучался в работах О. А. Лисковца и Я. В. Кон-

стантиновой [55; 56]. Различные схемы явных и неявных итеративных ме-

тодов с априорным выбором числа итераций предложены в работах  

О. А. Лисковца и В. Ф. Савчука [69–71]. Методу Ландвебера также посвя-

щены работы А. М. Денисова [30], А. А. Самарского и П. Н. Вабищевича 

(A. A. Samarsky and P. N. Vabishchevitch) [182]. В некоторых из этих работ 

рассматриваются случай приближенно заданных операторов и случай не-

единственного решения. 

Большинство перечисленных работ посвящено априорному выбору 

числа итераций. Это означает следующее. В предположении, что точное 

решение уравнения (1) истокообразно представимо, т. е. ,0,  szAx s  

находилась оценка погрешности метода, которая затем оптимизировалась 

по ,n  т. е. вычислялось значение итераций ,оптn  при котором оценка по-

грешности являлась минимальной. 

Однако поскольку не всегда имеются сведения об истокопредстави-

мости точного решения, то трудно разумным образом определить число 

итераций оптn . Тем не менее, итерационные методы решения некоррект-

ных задач можно сделать вполне эффективными, если воспользоваться 

правилами останова по невязке и по соседним приближениям. Апостери-

орный выбор числа итераций для метода Ландвебера впервые был предло-

жен И. В. Емелиным и М. А. Красносельским [36; 37]. Дальнейшее разви-

тие идей, предложенных И. В. Емелиным и М. А. Красносельским в работе 

[36], получило в работах Г. М. Вайникко [18–20], Г. М. Вайникко  

и А. Ю. Веретенникова [21].  

В. Ф. Савчук [87–100] продолжил исследования в этом направлении. 

Им предложено несколько новых итерационных методов решения некор-

ректных задач в гильбертовом пространстве с ограниченным и неограни-

ченным, самосопряженным и несамосопряженным операторами. Обосно-

вана возможность применения правил останова по невязке и по соседним 

приближениям для различных схем методов итераций, явных и неявных, 

которые превращают предложенные итеративные методы в регуляризую-

щие алгоритмы для задачи (1), не требуя при этом знания истокопредста-

вимости точного решения, но в случае истокопредставимости обеспечива-

ют оптимальную в классе скорость сходимости. 

В монографии продолжено изучение явных и неявных итерационных 

методов. Предложены и изучены четыре явных и четыре неявных итераци-

онных метода решения некорректных задач в гильбертовом пространстве. 

Для них исследован априорный выбор числа итераций при точной и при-

ближенной правой части уравнения: доказана сходимость предложенных 

методов в исходной норме гильбертова пространства, получены априорные 
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оценки погрешности, вычислительная погрешность. Исследован случай 

неединственного решения и показано, что в этом случае имеет место схо-

димость методов к решению с минимальной нормой. Использование энер-

гетической нормы для исследования сходимости методов позволило полу-

чить априорные оценки погрешности и априорный момент останова итера-

ций без дополнительного требования на гладкость решения – его истоко-

образной представимости. Была обоснована возможность применения  

к итерационным методам правил останова по невязке и по соседним при-

ближениям, что сделало эти методы эффективными и тогда, когда нет све-

дений об истокопредставимости точного решения. Проведено сравнение 

предложенных явных методов между собой и с широко известным явным 

методом итерации Ландвебера. Показано, что для достижения оптималь-

ной точности зачастую изучаемыми методами требуется выполнить в не-

сколько раз меньше итераций, чем методом Ландвебера, хотя по мажо-

рантным оценкам погрешности все методы имеют один и тот же порядок  

и незначительно отличаются в ту или другую сторону только коэффициен-

тами пропорциональности. Проведено сравнение неявных методов между 

собой и с явными методами. Показано преимущество неявных методов 

итераций по сравнению с явными: за счет выбора итерационного парамет-

ра оптимальную оценку погрешности неявными методами можно получить 

уже на первом шаге итераций, что невозможно для явных методов.  

Для некоторых из предложенных методов изучен априорный и апо-

стериорный выбор параметра регуляризации в случае приближенно задан-

ного оператора: доказана сходимость методов, получены оценки погреш-

ности и оценка для апостериорного момента останова. 

Некоторыми из предложенных методов решены модельные некор-

ректные задачи. Для их решения использовались ПЭВМ, и программы со-

ставлялись на языке программирования С#. Причем при решении модель-

ных задач нашли подтверждение выводы о преимуществах предложенных 

методов по сравнению с наиболее изученным явным методом Ландвебера, 

т. е. подтвердилось то, что для достижения оптимальной точности предло-

женными в монографии методами требуется в несколько раз меньше ите-

раций, чем методом Ландвебера.  

Анализ предложенных итерационных методов позволил сформулиро-

вать общую схему построения таких методов, используя теорию функций 

от самосопряжeнных операторов. Для таких абстрактных методов после-

довательных приближений выяснена скорость их сходимости к точным 

решениям в исходной и в «ослабленных» нормах как на всем пространстве, 

так и на некоторых специальных подпространствах; исследовано поведе-

ние невязок и поправок при построении этих последовательных прибли-

жений; наконец, поведение соответствующих ошибок в случаях, когда 
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правые части заданы приближенно и когда сами вычисления производятся 

с некоторыми ошибками. 

Рассмотренные в монографии итерационные схемы найдут практиче-

ское применение в прикладной математике и в народном хозяйстве Рес-

публики Беларусь: они могут быть использованы для решения задач, 

встречающихся в наземной или воздушной геологоразведке (математиче-

ская обработка измерений), при решении обратной кинематической задачи 

сейсмики, в космических исследованиях (спектроскопии), медицине (томо-

графии), гравиметрии, теории потенциала, синтезе антенн, акустике, авто-

матической обработке результатов физического эксперимента, определе-

нии формы радиоимпульса, излученного источником, и формы электриче-

ского импульса на входе кабеля.  
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ГЛАВА 1 

АНАЛИТИЧЕСКИЙ ОБЗОР ЛИТЕРАТУРЫ  

ПО ТЕМЕ ИССЛЕДОВАНИЯ 
 

1.1. Настоящая работа посвящена теории итерационных методов ре-

шения некорректных линейных задач или, другими словами, теории итера-

ционных методов решения операторных уравнений первого рода. 

В последние десятилетия математическая наука обогатилась важным 

разделом – теорией некорректно поставленных задач и методов их при-

ближенного решения. Развитие этого раздела математики вызвано много-

численными приложениями в технике, физике, экономике и других есте-

ственных науках. 

Потребности практики приводят к необходимости решения подобных 

задач, которые во многих случаях описываются операторными уравнения-

ми первого рода. В настоящее время теория некорректных задач успешно 

применяется для решения широкого круга обратных задач оптики и спек-

троскопии, электродинамики, радиоастрономии, диагностики плазмы, гео-

физики, теории потенциала и гравиметрии. Для их решения широко ис-

пользуются итерационные схемы, позволяющие при обработке экспери-

ментальной информации существенно повысить точность определения ха-

рактеристик изучаемых физических явлений. Поэтому огромное значение 

имеют разработка и изучение новых итерационных методов решения не-

корректных задач, получение условий их сходимости, нахождение оценок 

погрешности и обоснование применения к методам правил останова в про-

цессе вычислений. Изложим некоторые факты из истории развития теории 

итерационных методов решения некорректных задач. 

Теория линейных некорректных задач появилась в начале XIX в. как 

теория линейных интегральных уравнений первого рода. Эти уравнения 

записываются в виде: 

 ( , ) ( ) ( ) ( ).K t s x s ds f t t



   (1.1) 

Здесь Ω – некоторый интервал на прямой или, более общо, некоторая об-

ласть конечномерного пространства, x(s) – неизвестная функция, функция 

K (t, s) (ядро уравнения) – заданная функция двух переменных t, s ∈ Ω, 

f (t) – заданная функция. Первоначально такие уравнения рассматривались  

в предположении, что ядро K (t, s) непрерывно на Ω × Ω за исключением 

диагонали ∆ = {(s, s) : s ∈ Ω} и искались, естественно, при непрерывных 

f (t) непрерывные решения; дальнейшие результаты были получены в слу-

чае, когда K (t, s) интегрируемо с квадратом на Ω × Ω, искались для функ-

ций f (t) с интегрируемым квадратом решения также интегрируемые  

с квадратом. 
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Один из первых результатов об уравнении (1.1) был получен уже  

Н. Абелем, который нашел в случае Ω = [0, T] и  

( ) , 0 ,
( , )

0, 0 ,

t s s t T
K t s

t s T

    
 

  

 

где Θ ∈ [0,1], явное решение соответствующего уравнения. К началу XX в. 

явные формулы для решений были получены и для многих других уравне-

ний с явно заданными ядрами. 

В первой половине XX в. появилось несколько книг и учебников, по-

священных линейным интегральным уравнениям. В них, помимо описания 

конкретных уравнений первого рода, для которых решения были получены 

в явном виде, излагались и первые результаты, относящиеся к интеграль-

ным уравнениям первого рода, ядра которых были на Ω × Ω непрерывны  

и могли иметь на диагонали ∆ разрывы первого рода. Как оказалось, такие 

уравнения сводились к линейным интегральным уравнениям второго рода: 

 ( ) ( , ) ( ) ( ), ( ),x t K t s f s ds f t t



    (1.2) 

исследование которых оказалось существенно более простой задачей,  

по сравнению с анализом линейных интегральных уравнений первого рода. 

В частности, для интегральных уравнений второго рода сначала с непре-

рывными ядрами (И. Фредгольм), а затем и интегрируемыми с квадратом 

ядрами (Т. Карлеман) были доказаны так называемые теоремы Фредгольма 

(геометрические аналоги классической теоремы Кронекера–Капелли о ре-

шениях произвольных систем линейных алгебраических уравнений). Опи-

санный выше переход от уравнений первого рода к уравнениям второго 

рода осуществлялся двумя методами; первый из них основывался на диф-

ференцировании один или несколько раз рассматриваемого уравнения по t, 

второй – на основе замены искомой функции x(t) ее первообразной первого 

или старшего порядков. Первый метод требовал дифференцируемости ядра 

K(t, s) по переменной t, второй – дифференцируемости ядра K(t, s) по пе-

ременной s. Следует сразу отметить, что оба описанных метода перехода 

от уравнений первого рода к уравнениям второго рода не являлись эквива-

лентными переходами; в частности, было выяснено, что аналоги теорем 

Фредгольма для линейных интегральных уравнений первого рода не вер-

ны. Почти одновременно с вышеописанными методами перехода от урав-

нений первого рода к уравнениям второго рода были установлены и еще 

два фундаментальных результата, относящихся к линейным интегральным 

уравнениям первого рода. Первый из них был получен Д. Гильбертом.  

Он показал, что в случае симметричности и непрерывности ядра K(t, s)  

(K(t, s) = K(s, t)) левая часть уравнения (1.1) представима в виде: 
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1

( , ) ( ) ( ) ( ) ( ) ,n n n
n

K t s f s ds t s x s ds


 

      

где ψn(t) (n = 1,2,...) – ортонормированная система собственных функций 

ядра K(t, s), λn(t) (n = 1,2,...) – его собственные значения, причем ряд в пра-

вой части сходится в среднем квадратичном. Это представление позволяло 

выписать условия разрешимости и решения уравнения (1.1) с произволь-

ной правой частью f (t) в явном виде. Условия разрешимости выписывают-

ся в следующем виде 

  

2

2
0

1
( ) ( ) 0 : 0 , ( ) ( ) ,

n

n n n

n

s f s ds n n s f s ds

  

      


   (1.3) 

а множество решений равенством 

 

0 0

1
( ) ( ) ( ) ( ) ( ),

n n

n n n n
n

x t s f s ds t c t

   

    


   (1.4) 

здесь cn (λn = 0) – произвольные постоянные. Первое из условий (1.3) пол-

ностью аналогично условиям разрешимости в теоремах Фредгольма. Од-

нако второе из условий (1.3) в случае, когда число ненулевых собственных 

значений λn бесконечно, является существенным ограничением на f (t) ино-

го типа; обычно оно реализуется как некоторое свойство гладкости функ-

ции f (t). Наличие этого (необходимого) условия разрешимости уравнения 

(1.1) и влечет за собой тот факт, что для уравнений первого рода теоремы 

Фредгольма не верны. Далее, Т. Карлеман установил справедливость  

теорем Гильберта и для симметричных ядер K(t, s), интегрируемых  

с квадратом. 

Несколько позднее Э. Шмидт фактически распространил утверждения 

теорем Гильберта–Карлемана на непрерывные или симметричные ядра, не 

обладающие свойством симметрии. В этом более общем случае ядро K(t, s) 

представимо в виде: 

1

( , ) ( ) ( ) ( ) ( ) ,n n n

n

K t s f s ds t s x s ds



 

      

здесь  n(t) (n = 1,2,...) – ортонормированная система собственных функций 

ядра K
*∗ K(t, s) =    ,  ,   K t K s d



   , ψn(t) (n = 1,2,...) – ортонормированная 

система функций ядра K ∗ K
*
(t, s) =    , ,K t K s d   , µn(t) (n = 1,2,...) – 

собственные значения этих ядер (числа Шмидта ядра K(t, s)), причем ряд  
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в правой части также сходится в среднем квадратичном. Условия разре-

шимости теперь записываются в виде: 

  

2

2
0

1
( ) ( ) 0 : 0 , ( ) ( ) ,

n

n n n

n

s f s ds n n s f s ds

  

      


       (1.5) 

а формула для решения – в виде: 

 

0 0

1
( ) ( ) ( ) ( ) ( ),

n n

n n n n
n

x t s f s ds t c t

   

    


   (1.6) 

где снова cn (λn = 0) – произвольные постоянные. 

Описанные утверждения являются классическими и вошли почти  

во все курсы по теории интегральных уравнений. Их наиболее полное из-

ложение содержится в работах  Э. Гурса, S. Fenyo, H. W. Stolle и A. Zaanen 

[29, 136, 189]. Последующие работы в указанных направлениях не носили 

принципиального характера.  

1.2. Как было отмечено в подразделе 1.1 для линейных интегральных 

уравнений первого рода теоремы Фредгольма не верны. Более того, в усло-

виях разрешимости таких уравнений помимо равенств, накладываемых на 

правые части этих уравнений, фигурируют принципиально иные требова-

ния: сходимость некоторых рядов, построенных по этим правым частям, 

гладкость этих правых частей и др. Анализ же формул для решений этих 

уравнений обнаруживает еще одно неприятное явление: малым изменени-

ям правых частей соответствуют сколь угодно большие изменения соот-

ветствующих решений. Именно это явление дало основание линейные ин-

тегральные уравнения первого рода и задачи, сводимые к ним, называть 

некорректными. 

Естественно возникает вопрос о выяснении причин столь различных 

свойств у линейных интегральных уравнений первого и второго рода. 

В начале ХХ в. возникла абстрактная схема исследования линейных 

задач. Эта схема основывалась на переходе от рассматриваемой задачи  

к операторному уравнению 

 Ax = y (1.7) 

с непрерывным линейным оператором A, действующим между подходя-

щими банаховыми пространствами X и Y. Операторное уравнение (1.1) как 

частный случай содержит прежде всего системы линейных алгебраических 

уравнений. Однако оно в той же степени позволяет рассматривать и крае-

вые задачи для обыкновенных дифференциальных уравнений и уравнений 

с частными производными, линейные интегральные уравнения различных 

типов и многие другие задачи. Естественно, при анализе уравнения (1.1)  

в первую очередь возникал вопрос о том, какие именно свойства оператора 
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A определяют, будет ли уравнение вести себя «хорошо», т. е. будут ли ма-

лым изменениям его правой части y ∈ Y соответствовать малые изменения 

соответствующих решений x ∈ X, или это уравнение является некоррект-

ным, т. е. при малых изменениях правых частей y ∈ Y соответствующие 

решения x ∈ X будут «прыгать» сколь угодно далеко или вовсе «исчезать». 

Несколько иначе этот вопрос можно сформулировать так: для каких опера-

торов A свойства уравнения (1.1) будут вполне аналогичны свойствам си-

стем линейных алгебраических уравнений и для каких A эти свойства бу-

дут совершенно иными. 

Как было выяснено Ф. Хаусдорфом и затем С. Банахом, основные 

теоремы в теории систем линейных алгебраических уравнений – теорема 

Кронекера–Каппелли – или ее геометрическая форма – теоремы Фредголь-

ма верны и в бесконечномерном случае лишь при дополнительном предпо-

ложении, что оператор A имеет замкнутую область значений (такие опера-

торы получили название нормально разрешимых). Точнее, в их работах 

была установлена эквивалентность следующих утверждений: 

(1) Oбласть значений оператора A на пространстве X является за-

мкнутым подпространством пространства Y. 

(2) Уравнение (1.1) разрешимо в том и только том случае, когда  

на его правой части y аннулируются все решения y∗
 ∈ Y

*
 однородного урав-

нения 

 A
*
y∗

 
= 0 (1.8) 

с сопряженным к A действующим из Y
* 

в X
*
 оператором A

* 
(здесь X

*  

и Y
* 
– сопряженные или дуальные пространства к пространствам X и Y).  

(3) Для оператора A справедливо неравенство 

 inf { х : Ax = y} ≤ L y , (1.9) 

где L – некоторая постоянная. 

Было также доказано, что аналоги этих эквивалентных утверждений 

верны и для пары уравнений 

 A
*
y∗

 
= x∗,   Ax = 0. (1.10) 

В частности, установлено, что оператор A является нормально разреши-

мым в том и только том случае, когда нормально разрешим оператор A
*
. 

Важным фактом теории систем линейных алгебраических уравнений 

является существование для соответствующего линейного оператора  

A квазиобратных операторов B. Так называются операторы B, для которых 

справедливо равенство ABA = A. Смысл этого определения заключается  

в справедливости следующего утверждения: если уравнение Ax = y имеет 

решение, то x = By является одним из решений этого уравнения. Частными 

случаями квазиобратных операторов B являются обычные левые обратные 

операторы (BA = I) , правые квазиобратные операторы (AB = I) и обычные 

обратные операторы (BA = I, AB = I). 
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Справедливость теорем Фредгольма для уравнения (1.1) (за исключе-

нием случая, когда оба пространства X и Y являются гильбертовыми) явля-

ется необходимым условием для существования квазиобратных операто-

ров, однако в общем случае не достаточным. Известно следующее утвер-

ждение: оператор A имеет квазиобратные в том и только в том случае, 

когда подпространство нулей оператора и пространство значений опе-

ратора A являются дополняемыми подпространствами. Более того, если 

оператор B является квазиобратным для оператора A, то оператор 

I − BA является проектором на подпространство нулей оператора A,  

а оператор AB оператором проектирования на множество значений  

оператора A. Операторы, имеющие квазиобратные, принято называть  

расщепляемыми. 

Детальному изучению подверглись частные классы расщепляемых 

операторов A, когда одно из подпространств Ker A или Im A является ко-

нечномерным. Операторы A, для которых оба этих подпространства конеч-

номерны, получили название фредгольмовых (или нетеровых); их теория 

полностью повторяет теорию систем линейных алгебраических уравнений. 

Для операторов A, не являющихся нормально разрешимыми, все пере-

численные выше утверждения оказываются неверными. Более того, сфор-

мулированное выше свойство (1.3) по сути означает, что существует такая 

сходящаяся к нулю последовательность (yn) ∈ Im A, для которой при любом 

выборе элементов xn ∈ X, для которых Axn = yn (n = 1,2,...) справедливо со-

отношение nх  → ∞ при n → ∞. 

В приложениях обычно в явном виде задается левая часть уравнения 

(1.7) (оператор A) в виде некоторой аналитической формулы, а простран-

ства X и Y выбираются таким образом, чтобы этот оператор оказывался не-

прерывным линейным оператором между этими пространствами. Является 

ли при этом оператор A нормально разрешимым зависит именно от выбора 

пространств X и Y. Более того, подбирая эти пространства, (почти) всегда 

можно добиться, чтобы уравнение (1.7) оказалось уравнением с нормально 

разрешимым оператором. Поэтому в течении первой половины XX в. в си-

туации, когда возникало уравнение с ненормально разрешимым операто-

ром считалось, что соответствующая модель, описанная этим уравнением, 

не является корректной. 

Однако выбор пространств X и Y часто диктуется иными соображени-

ями. Среди них наиболее естественным кажется требование совпадения 

пространств X и Y (X = Y), требование, чтобы пространства X и Y были до-

статочно простыми, а лучше хорошо изученными, такими как простран-

ство C непрерывных функций или пространство Lp (1 ≤ p ≤ ∞) интегрируе-

мых со степенью p при 1 ≤ p < ∞ или ограниченных функций при p = ∞. 

Выбор таких пространств часто диктуется также самой рассматриваемой 
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задачей. Тем самым, во многих случаях операторное уравнение (1.7) при-

ходится рассматривать с действующим и непрерывным из X в Y операто-

ром A, не являющимся нормально разрешимым. И к середине XX в. была 

осознана необходимость построения общей теории линейных уравнений, 

не обладающих свойством корректности. 

Изложенные выше результаты попали практически во все достаточно 

полные курсы функционального анализа. Здесь мы отметим курсы С. Ба-

наха, Н. Данфорда – Дж. Т. Шварца, Р. Иосиды, Л. В. Канторовича –  

Г. П. Акилова, А. Н. Колмогорова – С. В. Фомина и Л. А. Люстерника –  

В. И. Соболева. 

1.3. Важными частными случаями операторного уравнения (1.7) явля-

ются случаи, когда пространства X и Y совпадают (X = Y) и когда оператор 

A представим в виде A = K или A = I − K, где K – невырожденный (Im K  

не является конечномерным подпространством X) компактный линейный 

оператор. Именно к этому типу относятся линейные интегральные уравне-

ния первого рода в первом случае и линейные интегральные уравнения 

второго рода во втором. Это послужило основной причиной для детально-

го изучения обоих случаев. 

Основные результаты здесь были получены Ф. Риссом и Ю. Шауде-

ром. Они установили, что в случае A = K этот оператор обязательно не яв-

ляется нормально разрешимым, а в случае A = I − K он будет не только 

разрешимым, но и фредгольмовым, для которого dim Ker(I − A) =  

= codim Im(I − A). Именно эти результаты и являются объяснением  

столь различных свойств линейных интегральных уравнений первого  

и второго рода. 

Позднее результаты Ф. Рисса и Ю. Шаудера были распространены  

и на другие классы операторных уравнений (в частности, на случай, когда 

A = I − K с оператором K, для которого некоторая степень является ком-

пактным оператором). Методы Ф. Рисса и Ю. Шаудера были распростра-

нены также на произвольные фредгольмовы операторы. Систематическое 

изложение этих результатов приведено в работах З. И. Халилова, 

N. Danford и D. Shwartz [115, 133]. 

 1.4. Изложенные в подразделах 1.2 – 1.3 общие теоремы о линейных 

операторах объяснили причины, обуславливающие «плохое» поведение 

некорректных линейных уравнений, однако мало что добавляли в задаче  

о реальном построении решений таких уравнений. 

Между тем, попытки разработать разнообразные приближенные мето-

ды построения решений уравнения (1.7) с оператором A неоднократно 

предпринимались. Так Э. Пикар рассматривал непрерывные решения инте-

гральных уравнений (1.1) с ядрами, допускающими представление 

K(t, s) = K0(t, s) + h(t, s), 
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в котором ядро K0(t, s) обладало тем свойством, что линейный интеграль-

ный оператор 

      0 0 ,   K x t K t s x s ds



      (1.11) 

допускал аналитическое обращение 1
0K   (в частности, он рассматривал 

представления (1.11) с K0(t, s) = K(s, s) или K0(t, s) = K(t, t). Далее, вместо 

уравнения (1.1) фактически рассматривалось операторное уравнение 

1 1
0 0( ) ( ) ( ) ( ) ( , ) ( ) ,x t K Hx t K f t Hx t h t s x s ds 



 
    
 
 

  (1.12) 

решения которого строились методом последовательных приближений 

 1 1
1 0 0( ) ( ) ( ) 0,1,2,... .n nx t K Hx t K f t n 
            (1.13) 

Отметим еще раз, что переход от уравнения (1.11) к уравнению (1.12)  

не является эквивалентным – для произвольной непрерывной функции f (t) 

функция 
1

0 ( )K f t
, вообще говоря, не определена. 

Метод последовательных приближений решения линейных инте-

гральных уравнений систематически изучался в течение всей первой поло-

вины XX в., однако, в основном для уравнений второго рода (1.2). В аб-

страктном виде он применяется к уравнениям (1.7) вида 

 x = Bx + f, (1.14) 

с действующим в банаховом пространстве X непрерывным линейным опе-

ратором B; последовательные приближения записывается в виде 

или в виде 

xn+1 = Bxn + f   (n = 0,1,2,...)  (1.15) 

 
xn  =

0

n

n

k

B f



  (n = 0,1,2,...).  
  

Ясно, что вопрос о сходимости приближений (1.15) сводится к вопро-

су о сходимости операторного ряда 

0

n

n

B





 . Общим итогом проведенных 

исследований явился следующий абстрактный результат: ряд Неймана 

0

n

n

B





  сходится (в норме пространства L(X) действующих в X операто-

ров) в том и только в том случае, когда справедливо неравенство 
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 ( ) lim 1.nn

n
B A


                                          (1.16) 

Предел в этом равенстве всегда существует и получил название спек-

трального радиуса оператора B [59]. 

Долгое время этот результат считался необходимым и достаточным 

условием сходимости последовательных приближений (1.15). Однако это 

утверждение оказалось неверным. В работе В. М. Фридмана [113] было 

установлено, что для уравнения (1.1), ядро которого определяет положи-

тельно определенный и самосопряженный оператор A, последовательные 

приближения 

 xn+1 = xn + µ(y − Axn) (n = 0,1,2,...) (1.17) 

с любым начальным условием x0 сходятся при условии 
2

0
A

  . Эти 

последовательные приближения могут быть записаны в виде (1.15)  

с оператором 

 B = I − µA,   f = µy. (1.18) 

При условии 
2

0
A

   для оператора B справедливо равенство ρ(B) = 1. 

При этом ряд Неймана 

0

n

n

B





  не сходится по норме пространства L(X) дей-

ствующих в X операторов, однако он сходится сильно! 

Результаты работы В. М. Фридмана были существенно развиты в ра-

боте Г. Н. Положего [84]. В частности, в этой работе рассматривался слу-

чай, когда ядро K(t, s) не обладало свойством симметричности, но порож-

дало компактный линейный оператор K. В этом случае уравнение (1.7) за-

менялось уравнением 

A
* Ax = A

* f,                                                   

а последовательные приближения (1.17) заменялись приближениями 

(1.19) 

 xn+1 = xn + µ(A
* y − A

* Axn) (n = 0,1,2,...). (1.20) 

Эти результаты по существу не были новыми, т. к. приближения (1.20) 

являются приближениями (1.17), в которых оператор A заменен положи-

тельно определенным и самосопряженным оператором A
* A. 

Результаты В. М. Фридмана были распространены на произвольные 

положительно определенные и самосопряженные операторы в работе  

H. Bialy [130]. В 1961 г. М. А. Красносельский для самосопряженных опе-

раторов B с ρ(B) = 1, получил окончательный результат: для самосопря-
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женного оператора B последовательные приближения (1.15) сходятся при 

любом начальном условии x0 к одному из решений уравнения (1.14) при 

условии, что для оператора B число −1 не является собственным значени-

ем. Теорема М. А. Красносельского позволяет существенно усилить ре-

зультаты В. М. Фридмана, H. Bialy и Г. Н. Положего. 

Дальнейшие результаты по сходимости последовательных приближе-

ний (1.17) в критическом случае, когда для оператора B выполняется ра-

венство ρ(B) = 1 были получены в работе J. J. Koliha [157]. Он исследовал 

общий случай, когда оператор B действует в произвольном банаховом про-

странстве X. Основной его результат следующий: последовательные при-

ближения (1.17) для такого оператора сходятся сильно при любом началь-

ном условии x0  в том и только в том случае, когда выполнены условия 

lim 0 ( ), ( ) .n

n
B x x E I B X X


                 (1.21)  

В работе М. А. Красносельского и П. П. Забрейко [60] был приведен ряд 

уточнений этой теоремы. В частности, для общего случая, когда хотя бы 

одно из условий (1.21) не выполнено, там были описаны множества 

начальных условий x0 и правых частей f, для которых последовательные 

приближения (1.17) сходятся. 

Нужно отметить еще монографию S. I. Lyashko [160], в которой изу-

чались так называемые корректные операторы, класс которых по существу 

оказался совпадающим с операторами, удовлетворяющим условиям  

J. J. Koliha (1.21). 

Результаты, описанные в этом разделе, обладают одним существен-

ным недостатком. Формально они описывают условия сильной сходимости 

последовательных приближений к точным решениям уравнений с операто-

рами, не обладающими свойством нормальной разрешимости, или, иными 

словами, для некорректных линейных уравнений. Однако эта сходимость  

в определенном смысле не является устойчивой. При реальных вычисле-

ниях этих последовательных приближений на каждом шаге делаются ма-

лые ошибки. В некритическом случае (ρ(B) < 1) эти ошибки не влияют на 

сходимость и не накапливаются в процессе вычислений. В критическом 

же случае (ρ(B) = 1) эти ошибки не только «сбивают» эту сходимость,  

но и накапливаются; последнее означает, что при реальных вычислениях 

последовательные приближения (1.15) к решениям уравнения (1.14)  

не сходятся. Описанный недостаток теорем этого раздела, по-видимому, 

явился основной причиной того, что эти результаты оказались сравнитель-

но мало известными и дальнейшего развития практически не получили. 

1.5. К середине XX в. стало ясно, что исследование некорректных ли-

нейных уравнений является важной задачей в связи с тем, что многие 

практические задачи при переходе к операторному уравнению (1.7) приво-
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дили к ситуациям, когда соответствующий линейный оператор A оказы-

вался не нормально разрешимым, а пространства X и Y в этих задачах  

(чаще всего это было пространство C непрерывных функций) менять было 

нельзя. Революционный шаг в изучении некорректных линейных задач 

был в 1943 г. сделан А. Н. Тихоновым [109]. 

А. Н. Тихонов сначала ограничился простейшим случаем, когда ядро 

оператора A нулевое, а область его значений плотное в Y подпространство. 

В этом случае уравнение (1.7) с фиксированным y0 ∈ Y может быть как 

разрешимым, так и неразрешимым. Однако при любом δ > 0 для некото-

рых y ∈ B(y0, δ), где B(y0, δ) – шар с центром в точке y0 радиуса δ, это урав-

нение обязательно разрешимо. И тем самым, прообраз A
−1

B(y0, δ) шара яв-

ляется обязательно непустым замкнутым выпуклым множеством; эти про-

образы A
−1

B(y0, δ) убывают вместе с δ, а при δ → ∞ «стягиваются» к реше-

нию (если оно существует) уравнения (1.7) с y = y0 или к пустому множе-

ству (если решение отсутствует). Опираясь на этот факт, А. Н. Тихонов 

предложил вместо точного решения x0 уравнения (1.7) искать какое либо 

решение x ∈ A
−1

B(y0, δ) уравнения (1.7) с y ∈ B(y0, δ) при некотором фикси-

рованном ненулевом δ; такие решения для некоторых y ∈ B(y0, δ) всегда 

существуют! Особенно эффективным такой подход оказался в случаях, ко-

гда для решений уравнения (1.7) может быть получена априорная оценка 

об их принадлежности к некоторому множеству M ⊂ X, обладающем  

«хорошими» свойствами (ограниченность, компактность, слабая компакт-

ность и др.). 

Сам А. Н. Тихонов реализовал предложенную схему для уравнений 

(1.7) c оператором A: X → Y между гильбертовыми пространствами X и Y 

следующим образом. Уравнение (1.7) с y = y0 очевидным образом эквива-

лентно задаче о наименьшем значении функционала φ(x, y0) = kAx − y0k
2  

на всем пространстве X; однако эта задача очевидным образом близка к за-

даче о наименьшем значении «возмущенного» или «сглаживающего» 

функционала φ
ε
(x, y0) = kAx − y0k

2 
+ εΩ(x), где Ω(x) > 0 – регуляризующий 

(стабилизирующий) функционал, область определения которого априорно 

содержит точные решения уравнения (1.1) с y ∈ B(y0, δ). В построениях  

А. Н. Тихонова лебеговы множества {x ∈ {x : Ω(x)   h}, h > 0 были ком-

пактами; число ε – неотрицательный и достаточно малый параметр. В этом 

случае им было показано, что элементы xε,δ, минимизирующие функцио-

нал φ
(ε,δ)

(x, yδ) на одном из лебеговых множеств Ω, сходятся к точному ре-

шению x0 уравнения (1.7) с y = y0 (в предположениях А. Н. Тихонова такое 

решение обязательно существует!), если 0  и 
2

0.





 Им же был рас-
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смотрен частный случай, когда решение x0 априори имело вид x0 = А
*
h0, 

0 0h C ; в этом случае им были получены достаточно точные оценки бли-

зости между xε,δ и x0, а именно неравенство 0, hx x 


   


 (h выбра-

но так, что все возможные решения уравнения (1.7) с y = y0 лежат в лебего-

вом множестве Ω(h).  

В 1962 г. Д. Л. Филлипс (D. L. Phillips) [173] и В. К. Иванов [38] пред-

ложили удобную модификацию метода А. Н. Тихонова. Вместо описанно-

го в методе регуляризации А. Н.Тихонова функционала φ
ε
(x, y) они пред-

ложили минимизировать функционал Ω(x) при условии ρ(Ax, y)   δ. Ими,  

в предположении существования единственного решения x0 уравнения 

(1.7) с y = y0, было показано, что элементы xε,δ, минимизирующие функци-

онал Ω(x) при условии ρ(Ax, yδ)   ε, сходятся к точному решению x0 при 

δ → 0. В. К. Ивановым было введено важное понятие квазирешения урав-

нения (1.7): элемент x0 называется квазирешением уравнения (1.7) на мно-

жестве M, если он минимизирует функционал ρ(Ax, y) на этом множестве. 

В дальнейшем, предложенные А. Н. Тихоновым, Д. Л. Филлипсом  

и В. К Ивановым вариационные методы получили развитие в работах  

О. А. Лисковца, Я. В. Константиновой и др. 

1.6. Существенный вклад в развитие теории некорректных задач внес 

М. М. Лаврентьев. В монографии М. М. Лаврентьева [64] был предложен 

новый подход к исследованию некорректных задач, общая схема которого 

состояла в следующем: вместо исходного уравнения (1.1) рассматривалось 

уравнение 

 Aεx = yδ, (1.22) 

где Aε – оператор, который с одной стороны был бы близок к оператору A, 

а с другой стороны уравнение Aεx = yδ становилось уравнением с нормаль-

но разрешимым оператором; об yδ предполагалось, что yδ ∈ B(y, δ). В этом 

случае уравнение (1.22) определяет решение и возникает естественный во-

прос, является ли оно близким к решению уравнения (1.7), если последнее 

имеет решение. Естественно пытаться получить оценку близости между 

точным решением (1.7) и решением xε,δ уравнения (1.22) при малых ε и δ. 

Но, как оказывается, такие оценки можно получить лишь в исключитель-

ных случаях и, как правило, при жестких дополнительных ограничениях. 

Сам М. М. Лаврентьев рассматривал случай, когда оператор A был 

положительно определенным самосопряженным, а оператор Aε определял-

ся равенством Aε = εI +A. Более того, им предполагалось, что правая часть  

y уравнения (1.7) была представима в виде y = Bz, где B – коммутирующий  

с A оператор. Тем самым возникал вопрос о близости между xε,δ и точным 
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решением x уравнения (1.7) в предположении, что y = Bz. Такая оценка 

М. М. Лаврентьевым была получена в виде 

 ,
1( ) ,x x 
       (1.23) 

где ω(·) – некоторая построенная по операторам A и B функция, для кото-

рой ω(ε) → 0 при ε → 0. Тем самым, М. М. Лаврентьев обнаружил прин-

ципиально новое явление в поведении приближений xε,δ. Коротко это яв-

ление может быть выражено следующими словами: при стремлении  

ε к нулю приближения xε,δ сначала подходят достаточно близко к решению 

x уравнения (1.7), а затем начинают удаляться; при этом близость между 

соответствующими приближениями xε,δ и точным решением x уравнения 

(1.7) стремится к нулю при δ → 0. Формально это свойство выражается  

равенством  

 lim ,x x   = 0.  

δ→0, δε
−1

→0 

В той же монографии М. М. Лаврентьев рассмотрел и случай уравнения 

(1.7) с произвольным оператором A в гильбертовом пространстве. Уравне-

ние (1.7) сводилось стандартным способом к уравнению 

 A
* Ax = A

* f, (1.24) 

уже с положительно определенным самосопряженным оператором и, за-

тем, в предположении перестановочности операторов A
* A и B им была по-

лучена аналогичная оценка 

 , ( ) .xx 


    


 (1.25) 

Наконец, в той же монографии для уравнения (1.7) был рассмотрен и ите-

рационный метод 

 xn+1,δ = xn,δ − (Axn,δ − fδ) (n = 0,1,2,...)                    (1.26) 

для приближенного решения уравнения (1.7) с положительно определен-

ным самосопряженным оператором A и приближенно заданной правой ча-

стью fδ  (fδ ∈ B(f, δ)). При тех же предположениях им была показана оценка 

 ,
1

.
1

nx x n
n


 

     
 

 (1.27) 

Здесь снова ω(·) – определенная по операторам A и B функция, для кото-

рой ω(t) →0, t → 0. Неравенство (1.27) показывает, что приближения  

xn,δ при увеличении n сначала приближаются к точному решению, а затем  

от него удаляются; при этом близость «близких» к точному решению  

x приближений xn,δ стремится к нулю при δ → 0. Коротко это явление мо-

жет быть выражено следующим равенством 
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lim ,nx x   = 0. 

n→∞, nδ→0 
Описанную ситуацию можно также выразить равенством 

(1.28) 

 
0

,lim lim min 0.
n n

x x 
  

     
  

                        (1.29) 

Для уравнения (1.24) соответствующий итерационному методу (1.26) ме-

тод последовательных приближений записывается в виде 

 xn+1,δ = xn,δ − (A
* Axn,δ − A

* fδ) (n = 0,1,2,...); (1.30) 

для него М. М. Лаврентьев также получил аналог неравенств (1.27). Авто-

ром была обоснована сходимость предложенного метода последователь-

ных приближений для некоторых классов нелинейных операторных уравнений. 

 При других предположениях метод простой итерации был исследован  

Ю. Т. Антохиным [4]. Здесь рассматривается уравнение Ax = f в гиль-

бертовом пространстве, А = А
*
 – линейный, неограниченный оператор,  

со всюду плотной областью определения  AD . Для оператора нуль 

служит точкой его же спектра, но в тоже время не является собственным 

значением, т. е. существует последовательность  nx  такая, что 1nx , 

 nAxn ,0  и 0nAx  при 0x . В дальнейшем предполагается,  

что решение уравнения существует. Предложенная здесь схема  

явного метода последовательных приближений выглядит так: 

f
n

xA
n

Exfx nn
11

, 11 







  . Для данного метода при условии, что 

оператор А = А
*
 > 0, доказана сходимость  nxxR nn ,0

22
  

и, также, для предложенного метода еще получена оценка погрешности 

      




00

22
,, xxEdxxEdrR

A

nn
 

2

22

2
1

!

1
K

nn

K

















, где  1,0 : 

1nr  при 0 ;    nKrn 1  при  1n ; !nr n
n   при 

n , и в предположении, что   ,...,2,1,  nADf n
 причем KfAn 

 
( )(nKK  ) и Kx  . 

 А. С. Апарциным [6] в гильбертовом пространстве Н решается 

уравнение первого рода fA   с положительным самосопряженным 

вполне непрерывным оператором А. Предполагается, что уравнение 

разрешимо. Пусть   – нормальное решение, т. е. решение с минимальной 

нормой (случай неединственного решения рассматриваемого операторного 

уравнения). Хорошо известно, что задача нахождения   некорректна.  

В настоящей работе рассматривается явная итерационная процедура вида 
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   ,,1
0,0,1,1 ffAE

nnnnn    
которая является дискрет-

ным аналогом линейного дифференциального уравнения  

 
     ftWAEt

dt

tdW
 , где    tHWtW  ,00  – положительная моно-

тонно убывающая функция при 0tt   и   0lim 


t
t

. Доказана сходимость 

метода при условии ...,2,1,0,
2

0 


 n
An

 ( HHA : ). Также 

доказана сходимость предложенной процедуры при приближенной правой 

части уравнения и когда оператор А заменяют некоторым более удобным 

для вычислений «приближенным оператором» (если А – интегральный 

оператор, то его заменяют квадратурной формулой). 

 А. В. Крянев [63] решает линейное уравнение Ax = y, где  A HH :  – 

ограниченный, самосопряженный, линейный и неотрицательный оператор. 

Если А – вполне непрерывный оператор, то   HHA  (задача некорректна, 

т. к. не для всех Hy  разрешима). Рассмотрен случай неединственного 

решения данного уравнения. Вводится  В HH :  – ограниченный, само-

сопряженный, линейный и положительно определенный оператор, для 

которого  xBxM
x

B ,sup
1

 ,   0,inf
1




xBxm
x

B  и  xAxM
x

A ,sup
1

 . При 

сделанных предположениях определен оператор   BBAC
1

 , спект-

ральный радиус которого, очевидно, равен 1. Для решения линейного 

уравнения автор предлагает неявный итерационный процесс 

fBxBxAx nnn  1 , который можно переписать в эквивалентной 

форме:   fBACxx nn
1

1


  . Доказана сходимость метода при точной  

и приближенной правой части уравнения. Рассмотрен случай суммарных 

возмущений оператора и правой части уравнения: A  и f , получена 

оценка погрешности  
 

 












 O

m

MN
MqN

mq

q
nMxx

BB

n

n 1
1

1
00 , 

где   00,,,, 0  nMNffMAqC  при n   

и  ,)(,0)(0 0000  CCCCO    1
1




ABA . Автором решен 

следующий численный пример. Ищется решение уравнения Фредгольма 

первого рода       3,
3

3




ttfdssxstK ,   где  
 












.3,0

,3,3cos1

z

zz
zK  

Бралась такая функция f(t), которой соответствует решение x(t) = K(t). Ин-

теграл заменялся квадратурной формулой по правилу Симпсона (число то-

чек разбиения m = 29). В качестве матрицы В бралась трехдиагональная 
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матрица   29,2,1,29,1,2: ,11,   ibbibb iiiiiiij . Сначала рассмат-

ривается итерационная схема 0,1   fBxBxAx nnn , где BA  – 

положительно определенная симметричная матрица формата mm   

(А, В – положительно определенные симметричные матрицы формата 

mm , но А – плохо обусловленная), которая при достаточно больших 

0  хорошо обусловленная. Представляется CCBA T , где С – верх-

няя треугольная матрица и предложенная схема заменяется более удобной  

0,1   fBxCxC nn
T

, 

которой и решается рассмотренный численный пример. 

 В. М. Фридман в статье [114] для решения в гильбертовом простран-

стве уравнения первого рода 0 yAxLx  с линейным ограниченным 

оператором А  предлагает итерационный метод n

n

n
nn LxA

LxA

Lx
xx *

2
*

2

1  . 

С использованием интегрального представления оператора AA*  рассмот-

рен случай неединственного решения уравнения (рассматриваемая задача 

некорректна) и доказана сходимость предлагаемого метода: uPxxn  0 , 

где Hx 0  – начальное приближение, u – единственное решение уравне-

ния, P – оператор проектирования на подпространство нулей оператора А. 

 В. Н. Страховым [105] в гильбертовом пространстве Н решается урав-

нение первого рода   TEf , где оператор Т= 0* T  и 1T , 

 TERfST  ,1 . Для решения уравнения предлагается итерационная 

схема fT nn  1 , из которого следует  0 n
n T . С помо-

щью интегрального представления положительного самосопряженного 

оператора T получено:   00

1

0

22
,   Edn

n . Доказана 

сходимость метода, и для получения оценки погрешности 



















xn
n

О
1

 использовалось предположение об истокопредстави-

мости точного решения, т. е. что    0,  xTER
x

. 

 В работе [107] В. Н. Страхов решает операторное уравнение первого 

рода fA   1A   методом    fAEf nn  100 , , потре-

бовав 1 AE . Здесь 0f  произвольная функция из гильбертова про-

странства ),(2  LH . В работе доказана сходимость итерационного 
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метода:     .,00  nAE
n

n  Оценка погрешности мето-

да не получена. 

Наиболее подробно априорный выбор числа итераций для метода 

простой итерации Ландвебера [21, 30, 36, 37, 64, 69, 70, 84, 87, 90, 113, 

129, 130, 137, 151, 158] 

0),( ,0,,,1   xAxyxx nnn                          (1.31)  

изучен О. А. Лисковцом и Я. В. Константиновой [55]. Авторами показано, 

что метод (1.31) сходится к точному решению уравнения  yAx  

( HHA:  положительный ограниченный самосопряженный оператор) 

при условии 
A

2
0  , если ограничиться числом итераций )( nn , за-

висящим от   так, чтобы 0)( n  при ,n 0 . При условии 

A4

5
0   и в предположении, что точное решение истокопредставимо, 

т. е. 0,  szAx s
,  получена справедливая при всех 1n  оценка погреш-

ности  
 nzensxx ss

n )(, . Полученная оценка оптимизирована 

по n. Для этого при заданном   найдено такое значение числа итераций n, 

при котором оценка погрешности становится минимальной. Оптимальная 

оценка погрешности для  (1.31) имеет вид  ,nxx опт

1

1

11)1(






s

s

s

s

s

zes
 

и получается при nопт .
1

1

1

1

11 






 

s
ss

s

zes  Очевидно, для уменьшения 

nопт (здесь и далее nопт есть целое число) и, значит, числа итераций для по-

лучения решения x уравнения следует выбирать параметр   возможно 

большим из условия 
A4

5
0  . Также для итерационной процедуры по-

лучена погрешность в счете и изучен случай приближенно заданного опе-

ратора hA  : hAAh  . C учетом погрешности в операторе получена 

оценка погрешности    


  yhhnhnzensyx
nss

n
1

, 11)( , 

принимающая оптимальный для задач этого класса порядок 

  )1(
,


 

ss
n hOxy , если   )1(1 




 s
hn . 

В работе [130] H. Bialy решает уравнение первого рода yAx  , где 

H полное, сепарабельное гильбертово пространство, HHA: линей-
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ный ограниченный положительный оператор, 0 является его собственным 

значением (решение уравнения неединственно). Для решения рассматри-

ваемого уравнения используется итеративная схема: 

 
A

HxAxyxx nnn
2

0,, 011   . 

Доказана сходимость метода в случае неединственного решения. Автором 

рассматриваются обобщения метода простой итерации: 

  ,:,, 011 HHTHxAxyTxx nnn    ,*AT   
2

2
0

A
 ; 

и в случае, когда A эрмитов оператор    0,и, *  xAxHxAAA  

   
A

HxAxyxx n
n

nn
2

0,,1 01
1

1  


 . 

Для всех приведенных схем автор доказывает сходимость в случае не-

единственного решения.  

Впервые В. Ф. Савчуком и О. А. Лисковцом в работе [70] при условии 
1

20


 A доказана сходимость метода итерации (1.31) в энергетиче-

ской норме гильбертова пространства:  xAxx
A

, , где .Hx  Для по-

лучения оценок погрешности не потребовалось сведений об истоко-

представимости точного решения. Переход к энергетической норме как бы 

заменяет предположение об истокопредставимости порядка 21s  для 

точного решения. Полученная оценка оптимизирована по n  и найдено 

nопт  :     ,22735 4/12/14/1опт
,


  exxx

An   .2735 12/11
опт

21

xen  


 

Работа О. А. Лисковца и Я. В. Константиновой [56] посвящена реше-

нию в гильбертовом пространстве Н уравнения yAx   с положительным 

ограниченным самосопряженным оператором А. AS0 , но нуль не являет-

ся собственным значением оператора. Предполагается существование 

единственного решения уравнения. Для его отыскания строится градиент-

ный метод итерации с переменным шагом .0),( 011   xyAxxx nnnn  
При условиях  

A
i

2
0   , 



1n
n                                     (1.32)  

доказана сходимость предложенного метода при точной правой части 

уравнения. В случае, когда правая часть уравнения известна приближенно 

  yyy : , метод сходится при условиях (1.32) и если 

  .0,,0...21  nn  В предположении, что точное ре-
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шение x истокопредставимо и при условии 
 
A

cr i
i 0  (где )(cr  един-

ственный корень уравнения 0,1 







 c

er

c
r

c

)  получена общая оценка 

погрешности в случае приближенного оператора ( hAA h  ): 

     
 n

ss
n

s
n zesyx ...... 2121,

        
 yhhhhh nn

1
2121 1...1...11 . 

В статье Я. В. Константиновой [57] в случае, когда правая часть 

уравнения  yAx  задана приближенно, строится регуляризатор в виде 

неявного процесса .0,0),( ,0,1,,1   xyAxxx nnn  
Здесь доказы-

вается сходимость предложенного метода, но не получена эффективная 

оценка погрешности. 

Целая глава О. А. Лисковца в работе [62] посвящена некорректным 

задачам и методам их решений. Здесь для решения операторного 

уравнения первого рода  yAx  предлагаются вариационные методы 

решения (метод квазирешений Иванова, метод тихоновской регуляриза-

ции, метод и принцип невязки Филлипса и Иванова), обобщенное сумми-

рование рядов, конечноразностный метод и метод итераций Ландвебера. 

Даются определения корректности задачи по Адамару и по Тихонову, 

определения регуляризующего алгоритма рассматриваемой задачи, 

формулируются достаточные условия сходимости предлагаемых методов. 

С помощью метода квазирешений, метода невязки, метода регуляризации 

и явного итерационного метода   0,6,9 ,0,,,1   xAxyxx nnn  
в гиль-

бертовом пространстве )1,0(2L  решается модельная задача в виде урав-

нения 10),()(),(
1

0

 ttydssxstA  с симметричным положительным ядром 










,10),1(

,10),1(
),(

tsts

stst
stA  точной правой частью 

12

)1)(1(
)(

2 


tttt
ty   

и точным решением ).1()( tttx   Оператор, описанный выше интеграль-

ным уравнением, непрерывен, взаимнооднозначен и аддитивен. 

Работа О. А. Лисковца [72] посвящена обзору основных результатов 

по рассматриваемой теме. Здесь подчеркивается, что для линейного урав-

нения yAx   в гильбертовом пространстве H с самосопряженным опера-

тором *AA   некорректность задачи эквивалентна принадлежности значе-

ния 0  спектру оператора AS , поэтому для решения уравнения опера-
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тор А можно заменить близким к нему оператором, спектр которого отде-

лен от нуля. Эта идея была реализована различными способами. При по-

ложительном самосопряженном операторе 0*  AA  к нему можно до-

бавлять оператор E , где 0 , а Е – тождественный оператор, сводя тем 

самым исходную задачу к уравнению (метод Лаврентьева):  

,0,  yxAx                                         (1.33)  

при этом необходимым и достаточным для регуляризации является усло-

вие )( O , регуляризатором служит семейство линейных операторов 

  1
  EAR . При самосопряженном операторе A *A  к нему можно 

добавлять оператор Ei , где  i – мнимая единица,   – вещественное число, 

или оператор zE  с комплексным z, не принадлежащим спектру AS ; то же 

верно при симметричном замкнутом операторе. При общем линейном опе-

раторе к рассматриваемому уравнению после левой трансформации Гаусса 

(умножения слева на сопряженный 
*A ) применяют метод (1.31), сводя-

щийся в этом случае  к уравнению ;0,**  yAxAxA  регуляризато-

ром теперь служит семейство   *1* AEAAR


  . Для решения преобра-

зованного уравнения  yAAxA **
 в случае погрешности в операторе 

( hAA h  ) пригодны и нелинейные итерационные методы  

,0,, ,0,
*

,,1   xyxArrAxx nhnnhnnn  

    ,,,)(
1**





















nnhhnnhhnn rrAArrAA

 

называемые α-методами. При 1  априорный выбор   2
 hOn ,  

или выбор по невязке первого n, для которого ),( hdhbrn    

с заданными числами xdb  ,1  превращает эти методы в регуляризую-

щие алгоритмы. 

Работа И. В. Емелина, М. А. Красносельского и Н. П. Панских [35] 

посвящена спурт–методу построения последовательных приближений. 

Решается линейное уравнение fAxx  , где A самосопряженный по-

ложительно определенный оператор, действующий в конечномерном ев-

клидовом пространстве kR . В работе утверждается: 

1) если 1A , то последовательные приближения fAxx nn 1  

сходятся к точному решению уравнения;  

2) в случае, когда A  близка к единице (здесь скорость приближений 

из пункта 1) оказывается недостаточно быстрой) для ускорения сходимо-

сти при подсчете некоторых приближений лучше использовать итерацион-
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ную процедуру    cfxcAEcx nn  11 , где c некоторый параметр,  

не зависящий от nx . 

В итоге авторами был предложен следующий алгоритм спурт–схемы. 

Полагают fAxxA  )( ,    cfxcAEcxA  1)( , и выбирая Aq 0 , 

обозначают через fAxxr nnn   невязку. Выбрав какое-либо начальное 

приближение 0y , определяются последовательные приближения  ny  сле-

дующим образом: 

















.)( и0 если),(

, 0  либо,)(  либо,  либоесли),(

11

11

1
nnn-nn

nnn-nn

n
yAyq rr , nyA

nyAyqrryA
y  

Приближения ny  называют  итерациями, если )( 1 nn yAy , и  ите-

рациями, если )( 1 nn yAy . Из построения алгоритма следует, что пер-

вое вычисленное приближение  –  итерация; после  итерации всегда 

следует  итерация. При условии 
qA

c
A 


 2

2

2

2
 доказана сходи-

мость предложенного алгоритма. Показано, что метод сокращает объем 

вычислений по сравнению с методом Ландвебера. Недостаток спурт–

схемы – повышенная чувствительность к ошибкам округления.  

В статье И. В. Емелина и М. А. Красносельского [36] решается 

операторное уравнение fAx  , где HHA: ограниченный оператор. 

Известно, что AS0 ,  но не является собственным значением оператора. 

Предполагается, что 1A . Если уравнение разрешимо  )(ARf  , то при-

меняется процесс nnnn ufAAyAyy 
**

1 , где  nuff ,  

( nu ошибки вычисления итераций). В статье для решения уравнения 

используется останов по поправкам (по соседним приближениям) 















.

),(,

1

1

mm

nn

yy

mnyy
  Здесь   уровень останова. Доказана 

 Теорема 1.1. Пусть ),(  , тогда справедливы следующие 

утверждения: 

а) если ,2),(   то момент останова m  определен при любом 

начальном приближении Hy 0  и любых f  и  nu , удовлетворяющих 

условиям
 

 nuff , ; 

б) если  ,2),(   то справедлива оценка 

  
;

2

2
*

0






xy
m  
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в) если 0,,0),(   и при этом ),(),( pc   где 

),1,0(,1  pc  то  .0lim *

0,



xym  

 Этими же авторами в работе [37] при решении линейного уравнения 

fAx  , где HHA: ограниченный положительный самосопряженный 

оператор для метода простой итерации   fAxxx nnn ,,,1   
обосно-

вывается применение останова по малости невязки ,,   fAxn  

.),( ,   fAxmn m  Доказана 

Теорема 1.2. Пусть уровень останова )( предлагаемого итера-

ционного процесса удовлетворяет неравенству  )(  и стремится к ну-

лю при 0 . Тогда справедливо равенство 

0suplim ,
0




xxm
ff

, 

где ,mx приближенное решение, полученное предлагаемой процедурой с 

уровнем останова  . 

Недостаток работы – не получена для рассматриваемого метода оцен-

ка погрешности. 

Г. М. Вайникко в работе [20] получает оценки погрешности метода 

Ландвебера при решении уравнений первого рода с неточно заданными 

оператором и правой частью. Останов последовательных приближений 

осуществляется по невязке или по поправкам (по соседним приближени-

ям). Показано, что при останове по невязке автоматически делается нуж-

ное число итераций для получения оптимального по порядку результата,  

и при этом не нужно знать гладкости решения. Итак, автором решается 

уравнение 

,fAu                                                  (1.34) 

где   21, HHLA  линейный ограниченный оператор ( 21: HHA  ). Об-

ласть значений 2)( HAR   оператора А не замкнута (задача (1.34) не кор-

ректна, т. к. решение уравнения может не существовать), однако предпола-

гается, что )( ARf  . Уравнение (1.34) таким образом, разрешимо;  

решений может быть много, т. е. нулевое подпространство 

 0:)( 1  AuHuAN  нетривиально. Автор указывает, что в реальных 

задачах оператор А и элемент f известны лишь приближенно, вместо  

них в его распоряжении имеются некоторые приближения 

  ,,, 221 HfHHLA    где 

  ffAA , ,                                     (1.35) 
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1,1  AA .                                               (1.36) 

Условие (1.36) не ограничивает класса решаемых задач (1.34), так как вы-

полнение (1.36) можно всегда достичь, умножив (1.34) на подходящую 

константу. Для приближенного решения уравнения (1.34) автором строит-

ся итерационный процесс 

        ,
*

1
*

  fAuAAEu nn                                    (1.37) 

где E тождественный оператор,   21
*

,HHLA  сопряженный к A  

оператор. Здесь уравнение   

               ,
**

  fAuAA                                                (1.38) 

по которому последовательные приближения (1.37) строятся, может быть  

и неразрешимым. Тем не менее, если итерации (1.37) остановить  

в подходящий момент, то соответствующее nu  будет близким к решению 

уравнения (1.34).  Автором предлагается итерации (1.37) вычислять  

до такого номера n, при котором норма невязки   fuA n  или норма 

поправки 1 nn uu  достигнет заданного уровня малости. Здесь 

обозначается через *u нормальное решение (1) относительно 0u  (началь-

ного приближения), т. е. решение, для которого норма 0* uu   мини-

мальна по сравнению с другими решениями. Автор предлагает следующие 

правила останова для метода (1.37): 

Правило останова (П.0). Зададим 01 a  и 02 a ; итерации 

остановим на таком номере   ,nn , для которого впервые 

  211 aauu nn . 

Правило останова (П.1). Зададим 11 b  и ** ub  ; итерации 

остановим на таком номере   ,nn , для которого впервые 

  *1 bbfuA n . 

Правило останова (П.2). Зададим 11 b , 12 b  и 0a ; итерации 

остановим на таком номере   ,nn , для которого впервые будет 

выполнено хотя бы одно из неравенств   nn ubbfuA 21 , 

 221 


nubb

a
n . 

Доказаны  

Теорема 1.3. Пусть итерации (1.37) останавливаются по любому  

из правил останова П.0, П.1, П.2. Тогда 0*),(  uun  при 0,  , при 

этом для  ,n  в случае правила П.0 справедливо соотношение: 
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    0,  n  при 0,  , а в случае правил останова П.1 и П.2 

соотношение:     0,2  n   при 0,  . 

Соотношение 0*),(  uun  при 0,   означает, что правила П.0, 

П.1, П.2 последовательных приближений (1.37) определяют регуляризую-

щие алгоритмы решения операторного уравнения (1.34). 

Теорема 1.4. Пусть погрешность *0 uu   принадлежит области 

значений положительной степени оператора AA*  (требование истокооб-

разной представимости точного решения):   ,*
*0 vAAuu

p
 rvp  ,0 . 

Тогда в случае П.0 справедливы оценки:   )1(
,*),(


 

pp
rpn Cuu , 

    )1(1
,,




p
rpCn , а в случае правил останова П.1, П.2 – оценки: 

  )12(2
,*),(


 

pp
rpn Cuu ,     )12(2

,,



p

rpCn . 

Г. М. Вайникко и А. Ю. Веретенников в монографии [21] для решения 

операторного уравнения fAu  , где  21, HHLA  (в самосопряженном 

случае 21 HH  , MAAA  ,0* ) используют явную и неявную итера-

ционные схемы: 

  ,
2

0,11
A

fAuuu nnn     

,0const,1   fuAuu nnn  

которые в случае несамосопряженного оператора и приближенной правой 

части уравнения f  :  ff   запишутся 

  ,
2

0,
2,1

*
,1,

A
fAuAuu nnn    

.0const,*
,1,

*
,   fAuAuAu nnn  

Авторами подчеркивается, что в итеративных методах решение оператор-

ных уравнений, описывающих некорректные задачи, с приближенной пра-

вой частью f :  ff  в приближениях ,nu  нельзя устремлять  

n к бесконечности (при n  эти приближения, как правило, расходятся). 

Вместо этого следует указать такое согласование )( nn  числа итераций 

n с уровнем погрешности   правой части, чтобы при 0  соответствую-

щие приближения ,nu  стремились к точному решению уравнения. Это со-

гласование желательно провести так, чтобы получить оптимальные по по-

рядку, а при возможности оптимальные по точности методы. В этой же ра-

боте используются два основных способа выбора (согласования с ) пара-

метра регуляризации – априорный и апостериорный. В итерационных ме-
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тодах параметром регуляризации является номер итерации. Априорный 

выбор n возможен, если известен класс решений (например, класс истоко-

представимых решений), которому решение при данном )( ARf   принад-

лежит. Поскольку такая информация обычно недоступна или неточна,  

то априорный выбор n имеет в основном теоретическое значение: он поз-

воляет выявлять принципиальные возможности метода. Более практичен 

апостериорный выбор  по невязке (или по поправке, указанный в работе  

И. В. Емелина и  М. А. Красносельского [36]): выбирается то значение  

n, при котором норма невязки   fAun,  будет достаточно малой. По-

добное согласование n c   принято называть принципом невязки. Из моно-

графии оказывается, что при выборе n по принципу невязки получаются 

оптимальные по порядку методы на классах истокопредставимых решений 

и некоторых других классах, при этом сам выбор n не использует инфор-

мацию об истокопредставимости и вообще какую-либо другую информа-

цию, кроме оценки  ff . В монографии исследуется априорный вы-

бор числа итераций с приближенной правой частью уравнения. Для явного 

метода итераций доказана сходимость при 0,,0  nn  и в пред-

положении истокопредставимости точного решения уравнения 

  ,
2*

*0 vAAuu
p

   vp ,0  для них получены оценки погрешности. 

Также авторами рассматривается апостериорный выбор параметра регуля-

ризации, с этой целью обосновывается применение к явному методу ите-

раций следующих правил останова: 

Правило останова (П.3). Зададим 11 b  и 12 bb  . Если 

  20 bfAu , то положим 0n  (т. е. 0u  приближенное решение 

уравнения). В противном случае выберем такое 0n , для которого 

  2,1 bfAub n . 

Правило останова (П.4). Зададим 1b  и  1,0 . Если 

  bfAu0 , то положим 0n . В противном случае выберем любое та-

кое 0n , что ,,   bfAun    bfAun ,  для некоторого  nnn , . 

Кроме того в работе рассматривается случай, когда не только правая 

часть, но и оператор в линейном уравнении считаются известными при-

ближенно: вместо )( ARf   и  21, HHLA даны некоторые их прибли-

жения 2Hf  , и  ,, 21 HHLA  .,   AAff  И в этом слу-

чае при условии   ,n ,     ,0,  n  при 0,   доказана схо-

димость явного метода к точному решению уравнения. А при условии ис-

токообразной представимости начальной погрешности: ,*0 vAuu
p

   
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 vp ,0    получены оптимальные оценки погрешности итерационных 

методов   ,
)1(

,,опт*),(


 
pp

dpn Cuu  00 pp   при выборе 

   0
)1(1

опт 


ddn
p

. Здесь же рассматривается и апостериорный 

выбор параметра регуляризации: 

Правило останова (П.5). Зададим 11 b  и 12 bb  . Если   fuA 0  

  *2 ub , то положим 0n . В противном случае выберем такое 

0n , для которого      *2),(*1 ubfuAub n . 

Правило останова (П.6). Зададим 1b  и  1,0 . Если при 0n   

  fuA n ),(   *ub , то положим 0n , иначе выберем любое та-

кое 0n , при котором   fuA n ),(   *ub  выполнено, причем для 

некоторого  nnn ,      *),( ubfAun . 

В монографии рассматривается устойчивость предложенных итераци-

онных методов приближений относительно малых возмущений типа по-

грешностей округления: помехоустойчивость итерационных методов  

(в некорректных задачах подобные возмущения безопасны лишь при не 

слишком большом количестве итераций). В этом случае в правой части 

предложенных итерационных схем появятся слагаемые  1, nHn  

малые в каком-то смысле возмущения и n . Тогда в случае, когда 

,0*  AA  
*

  AA ,  AA , ,aA   ),(ARf   , ff  n  

 0  и ,*0 vAuu p  vp ,0  (и в случае несамосопряжен-

ной задачи тоже) получены оценки погрешности методов: 

*),,(
~ uun    


 pC

pp
pa 0,

)1(
,, . Здесь также рассмотрен слу-

чай нормально разрешимой задачи, т. е. задачи fAu   с оператором 

 ,, 21 HHLA имеющим замкнутую область значений 2)( HAR  . Изучены 

априорный и апостериорный выборы параметра регуляризации. Кроме это-

го авторы рассматривают предложенную ими явную итерационную проце-

дуру в некорректных задачах в условиях случайных ошибок: доказана схо-

димость методов по вероятности, сходимость методов в среднем квадра-

тичном, обоснован статистический подход к выбору числа итераций. 

 Различные схемы явных и неявных итеративных методов с априор-

ным выбором числа итераций предложены в работах О. А. Лисковца   

и В. Ф.  Савчука [69–71; 74]. В. Ф.  Савчук в работах [44; 45; 87–100] про-

должил исследования в этом направлении. Им предложено несколько но-

вых явных и неявных итеративных методов решения некорректных задач  
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в гильбертовом пространстве с ограниченным и неограниченным, самосо-

пряженным и несамосопряженным операторами. Для этих методов по-

дробно рассмотрен априорный выбор числа итераций, доказана их сходи-

мость, получены эффективные оценки погрешности. Для некоторых  

из предложенных итеративных схем обоснована возможность применения 

правил останова по невязке и по соседним приближениям, которые пре-

вращают эти методы в регуляризующие алгоритмы для задачи  yAx ,  

не требуя при этом знания истокопредставимости точного решения, но в 

случае истокопредставимости обеспечивают оптимальную в классе ско-

рость сходимости. 

А. М. Денисов в работе [30] решает операторное уравнение uAz  , 

где UZA:  линейный, вполне непрерывный оператор ( UZ,  сепара-

бельные гильбертовы пространства), AS0  и 0 не является собственным 

значением оператора А. Предполагается, что рассматриваемое уравнение 

имеет единственное решение z , элемент u  не известен, а задана при-

ближенная правая часть  uu . Для нахождения приближенного 

решения предлагается явный итерационный процесс 

  ,,...2,1,, *
01

**
1   nuAzAzAuAzz nnn  

где *A  оператор, сопряженный с А,   положительный числовой 

параметр. Показано, что справедливо   


   uAAAEuRz
in

i
nn

*

0

*
. 

Затем доказано, что если при 
AA*

2
0   выбирать   nn  так, что 

   nn ,0  при 0 , то предложенный метод сходится при 

приближенной правой части уравнения, т. е. что 0,0)(  zuRn .  

А. А. Самарский и П. Н. Вабищевич (A. A. Samarsky and P. N. Va-

bishchevitch) в монографии [182] рассматривают двухслойный итерацион-

ный метод для решения уравнения  fAu  с приближенной правой частью 

.,...2,1,0,
1

1 







 kfAu
uu

B k
k

kk  

Здесь HHB :  и 1B  существуют. Применение итерационного метода 

для симметризованной задачи соответствует использованию приближений 

.,...2,1,0,**

1

1 







 kfAAuA
uu

B k
k

kk  
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При EB   и постоянном итерационном параметре k  получим метод 

простой итерации Ландвебера .,...2,1,0,1 





 kfAu
uu

k
kk

 
Доказана 

его сходимость. Скорость сходимости последнего метода определяется 

постоянными 21,   в неравенстве EAE 21  . При 01   метод  

итерации сходится в H если 
2

2
0


 , а для числа итераций n, необхо-

димого для достижения точности  , справедлива оценка ,
ln

ln
)(

0
0




 nn  

,
1

1
0




  

2

1




 . Доказана  

Теорема 1.5.   Пусть   в   методе   последовательных   приближений   

,...2,1,0,1 





 nfAu
uu

n
nn  при условии 

2

2
0


  число итераций 

)(n  и .0,0)( n  Тогда  ,0)(  uun   если 0 . 

Рассматривается метод простой итерации и при более жестких 

ограничениях 
2

1
0


 , и в предположении истокопредставимости 

точного решения получена оценка погрешности. Справедлива 

Теорема 1.6.  Пусть точное решение уравнения принадлежит классу 

,0,  pMuA p  тогда для метода простой итерации с 00 u  

справедлива оценка погрешности ,1
p

n nMnz    MpMM ,,11  . 

Авторами проведена минимизация правой части полученной оценки 

погрешности и найдено 1

1

1

1

1
опт
















 pppM

n , т. е.    )1(1  pOn . 

Получена оптимальная оценка погрешности метода простой итерации 

1
2опт

 p

p

n Mz , где 
11

1
1

1

1
2




























p

p

p pM
M

pM
M . В работе 

A. A. Samarsky и P. N. Vabishchevitch [182] приводится программная 

реализация нахождения приближенного решения модельной двумерной 

задачи продолжения гравитационных полей (потенциала) с использова-

нием метода простой итерации со случайными погрешностями во входных 

данных. 

 В последние годы продолжено изучение приближенных методов ре-

шения некорректных задач. Над этой проблемой работают В. В. Васин, 
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А. Б. Бакушинский, М. Ю. Кокурин, А. С. Леонов, А. М. Денисов, П. Н. Ва-

бищевич, А. Л. Агеев, Г. В. Хромова, В. А. Морозов, С. Г. Солодкий, 

С. И. Кабанихин, А. С. Апарцин, U. Hämarik, R. Palm, T. Raus, S. F. Gi-

lyazov, N. L. Gol’dman, H. W. Engl, M. Hanke, A. Neubauer, B. Hofmann,  

L. Wolfersdorf, J. Janno, U. Tautenhahn, В. Kaltenbacher, А. Neubauer,  

О. Scherzer, E. Klann, M. Nussbaum, S. Pereverzev, B. Nguyen, R. Ramlau, 

И. В. Коннов, И. П. Рязанцева, В. Ф. Чистяков и др. [51; 54; 66–67; 82;  

85–86; 120; 122; 125; 129; 135; 142; 150–152; 154–155; 164–165; 171–172; 

175]. В работах [52–54; 145–149; 156; 161–163; 166–170; 174; 176; 179–181; 

183–184] исследуются свойства модификаций методов Лаврентьева, тихо-

новской регуляризации и различные схемы проекционно-градиентных  

методов. 

В рассмотренных выше работах построены итерационные методы 

решения некорректных задач и доказано, что среди приближений, 

полученных этими методами, есть сколь угодно близкие к точному 

решению. Естественно, возник вопрос об описании всего многообразия 

таких итерационных схем и их сравнительного анализа с точки зрения 

быстроты сходимости и оценки числа итераций для достижения нужных 

погрешностей. 

В настоящей монографии были собраны все результаты в этом 

направлении. В работе впервые предложены 8 регуляризующих 

алгоритмов для некорректных задач, описываемых операторными 

уравнениями первого рода, в виде явных и неявных итерационных 

методов, обладающих более высокими скоростными качествами, чем ранее 

известные методы. Проведено сравнение предложенных методов с наи-

более изученным в литературе методом итерации Ландвебера.
 

Более конкретно, явные методы: 

 а) метод простой итерации с попеременно чередующимся шагом  

,0),( ,0,1,,1   xyAxxx nnnn  

...,2,1,0,, 2212   nnn  

для получения оптимального решения требует в три раза меньше итераций, 

чем метод простой итерации с постоянным шагом Ландвебера;  

б) семейство явных методов с более высокой степенью оператора, 

обобщающее метод итерации Ландвебера  

  NkxyAEEAxAEx k
n

k
n  


 ,0,)()( ,0

1
,,1  

для получения оптимального решения требует в k раз меньше итераций, 

чем метод Ландвебера;  

в) явная итерационная схема, обобщающая метод Ландвебера 
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  NkxyAxAEx k
n

k
n  


 ,0, ,0

1
,,1  

эффективна в зависимости от выбора степени истокопредставимости s: для 

5s его удобнее применять при k = 1, а для 276  s – при k = 2; 

 г) двухшаговая процедура явного типа 

.0,)()(2 ,1,0
2

,2
2

,1,   xxAyxAExAEx nnn  
по мажорантным оценкам погрешности не уступает методу Ландвебера. 

Неявные методы, представляющие собой семейства итерационных 

схем, зависящих от параметра k : 

    NkxyAxAExAE k
n

k
n

k  


 ,0,2 ,0
1

,,1 , 

  NkxyAxxAE k
nn

k  


 ,0, ,0
1

,,1 , 

    ,,0,2 ,0
1

,

2

,1
22 NkxyAxAExAE k

n
k

n
k  


  

  ,,0, ,0
12

,,1
2 NkxyABxxBA k

nn
k  


  

в силу отсутствия ограничений сверху на шаг по антиградиенту позволяют 

получить оптимальное решение уже на первых шагах итераций. 

Последний из предложенных неявных методов позволяет решать 

операторные уравнения с неограниченным оператором, притом необяза-

тельно положительным. 

Для предложенных методов впервые проведено достаточно полное 

исследование.  

Сначала изучен априорный выбор числа итераций для уравнений  

с приближенно заданной правой частью и точным оператором. При этом 

установлены достаточные условия сходимости методов, получены апри-

орные оценки погрешности в предположении, что известен класс 

истокообразно представимых решений, которому решение при данном 

)(ARy  принадлежит. Поскольку такая информация обычно недоступна 

или неточна, априорный выбор числа итераций имеет в основном 

теоретическое значение: он позволяет выявлять принципиальные возмож-

ности методов. 

Использование в работе энергетической нормы ),( xxx
A

  позво-

лило получить априорные оценки погрешности и априорный момент оста-

нова методов уже без дополнительного требования на гладкость точного 

решения. Получены условия, когда из сходимости в энергетической норме 

следует сходимость в обычной норме гильбертова пространства. 
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Предлагается и другой способ сделать методы эффективными и тогда, 

когда отсутствует дополнительная информация на гладкость точного 

решения. Для этого в работе обосновано применение к итерационным 

методам правила останова по малости невязки: выбирается то значение 

итераций n, при котором невязка сравнима с уровнем погрешности правой 

части уравнения. Подобное согласование n c уровнем погрешности правой 

части принято называть принципом невязки. Оказывается, что при таком 

выборе n мы получаем оптимальные по порядку методы на классах 

истокопредставимых решений, при этом сам выбор n не использует 

информацию истокопредставимости и вообще какую-либо другую инфор-

мацию, кроме оценки уровня погрешности правой части уравнения. 

Доказано, что в этом случае предложенные итерационные методы сходятся 

к точному решению, для них получены оценки погрешности и оценки для 

момента останова.  

Также в монографии доказана сходимость рассматриваемых методов  

и получены оценки для апостериорного момента останова в случае 

применения к методам правила останова по разности соседних 

приближений (по поправкам): использование этого правила останова 

делает методы эффективными при отсутствии информации об истоко-

представимости точного решения. 

Для всех методов исследован случай неединственного решения 

уравнения (нуль является собственным значением оператора). Показано, 

что тогда итерационные процессы сходятся к решению, обладающему 

минимальной нормой. 

Для некоторых из предложенных методов изучен априорный и апо-

стериорный выбор параметра регуляризации в случае приближенной пра-

вой части уравнения и приближенно заданного самосопряженного и неса-

мосопряженного оператора: доказана сходимость методов, получены 

оценки погрешности, априорный момент останова и оценки для апостери-

орного момента останова.  

Некоторыми из предложенных методов решены модельные некор-

ректные задачи. Для их решения использовались ПЭВМ, и программы со-

ставлялись на языке программирования C#. Причем при решении модель-

ных задач нашли подтверждение выводы о преимуществах предложенных 

методов по сравнению с наиболее изученным явным методом Ландвебера.  

В работе выявлены общие свойства этих итерационных процедур  

и получен новый метод сведения решения поставленной задачи к решению 

специального вида уравнения второго рода, исследования которого было 

выполнено в работах М. А. Красносельского. На этом пути получены тео-

ремы о сходимости ошибок, невязок и поправок, даны оценки скорости 

этих сходимостей в норме исходного гильбертова пространства, а так-
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же показана возможность получения теорем о сходимости и скорости 

сходимости в «ослабленных» (в частности, энергетических) нормах. 

Все эти установленные факты являются новыми и вносят сущест-

венный вклад в теорию некорректно поставленных задач и методов их 

приближенного решения. 

Очень важно теперь пояснить, что мы понимаем под сходимостью 

предложенных итерационных процедур, когда правая часть операторного 

уравнения Ax = y задана приближенно (т. е. известен y , для которого 

 yy ). Полученные в работе для методов априорные оценки 

погрешности описываются неравенствами вида 

,,,   сnxxxxxxxx nnnnn               (1.39) 

где x точное решение уравнения Ax = y , .с R  

Из неравенств (1.39) сходимость ,nx  к x  не вытекает, т. к. правая 

часть в (1.39) при n  не стремится к нулю (и, более того, обычно 

стремится к бесконечности). Однако во многих случаях из этих неравенств 

вытекает, что, с одной стороны, при достаточно больших, но не слишком 

больших, номерах n приближения ,nx  находятся достаточно близко  

к точному решению x  уравнения Ax = y . Более того, эти приближения 

для достаточно малых в естественном смысле   «подходят» к точному 

решению x  сколь угодно близко! 

В монографии доказывается, что для некоторой стремящейся к нулю 

последовательности неотрицательных чисел n  справедливо неравенство 

nn xx   . Тогда неравенство (1.39) переписывается в виде     

   сnxx nn,   (n = 0, 1, 2, …).                          (1.40)   

Последовательность  сn  является возрастающей; она может быть как 

неограниченной, так и ограниченной. Особенности поведения последова-

тельности   cnn  удобно сформулировать в виде нижеследующего 

утверждения (лемма 6.2 из главы 6):  

Пусть последовательность  n  стремится к нулю, а последова-

тельность  сn  неубывающая. Тогда 

           .0lim
0,




cnn
nn

                                     (1.41) 

Иначе говоря, при заданном 0  при достаточно малых 0  выпол-

няется неравенство  cnn  на сколь угодно далеких и сколь угодно 

больших промежутках изменения n. 
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Соотношение (1.41) иногда записывается в виде 

            .0minlim
0

Ncnn
n




                       (1.42) 

Однако без дополнительного предположения о сходимости последова-

тельности  n  к нулю, это соотношение слабее (1.41). 

 Сделаем еще важное замечание. Неравенства (1.40) оказываются 

полезными лишь в тех случаях, когда при увеличении n правая часть 

 nn  уменьшается. Факт уменьшения на одном шаге этой правой части 

эквивалентен неравенству 1 nn . Тем самым, проведенные рассуж-

дения показывают, что последовательное вычисление приближений оказы-

вается полезным при  Nn ,0  лишь в случае, если .1

c

nn 
  

При выполнении последнего соотношения будем говорить, что 

соответствующий итерационный метод квазисходится. 

 Еще раз отметим, что в случае квазисходимости предложенных 

итерационных методов речь не идет об обычной сходимости соответ-

ствующих приближений к точному решению. Можно лишь утверждать, 

что при достаточно малых   эти приближения оказываются близкими  

к точному решению, а затем, как правило, от него удаляются; при этом эти 

приближения оказываются тем ближе к точному решению, чем меньше  

 . Более того, если   не является достаточно малым, то использование 

итерационных методов окажется бесполезным – эти приближения могут 

удаляться от точного решения. 

Таким образом, под сходимостью предложенных итерационных ме-

тодов понимается утверждение о том, что приближения ,nx  сколь 

угодно близко подходят к точному решению x  некорректного уравнения 

Ax = y  при подходящем выборе n и достаточно малых  , т. е. если 

0inflim ,
0

 


xxn
n

.    

Отметим еще, что в упомянутом выше «парадоксальном случае» 

0n  оказывается, что начальное приближение 0x  совпадает с решением 

x . Именно в этом случае рассуждения о последовательности   cnn , 

приведенные выше, вырождаются и оценка (1.40) делается бесполезной. 

Однако она и должна быть таковой – если начальное приближение 

совпадает с точным решением x , то уточнять это приближение какими-

либо итерационными процедурами бессмысленно.  
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Рассмотрим теперь поведение оценок   xxn,  для примера, когда 

 n
n

сnf n
1

 при  02,0;06,0;1,0;4,0 .  

Оптимизируем по n приведенную оценку погрешности. Для этого 

найдем значение числа итераций n, при котором оценка становится 

минимальной. Имеем оптn 0,
1





 
(причем 0,0 оптn ). 

Подставив полученное выражение для оптn  в оценку погрешности, найдем 

ее оптимальное значение 0,02,   опт
xxn .  

 

Тогда имеем: 

1) при 4,0  n
n

f 4,0
1

1  , ;3,1)(,2 1  оптопт nfn   

2) при 1,0  n
n

f 1,0
1

2  , ;63,0)(,3 2  оптопт nfn   

3) при 06,0  n
n

f 06,0
1

3  , ;49,0)(,4 3  оптопт nfn   

4) при 02,0  n
n

f 02,0
1

4  , 28,0)(,7 4  оптопт nfn .  

Графики функций  f (n) =  n
n

1
 изображены на рисунке 1.  
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Рисунок 1 – Графики функций f (n) =  n
n

1
.  
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ГЛАВА 2 

ЯВНЫЕ МЕТОДЫ ИТЕРАЦИЙ РЕШЕНИЯ ОПЕРАТОРНЫХ 

УРАВНЕНИЙ С ПРИБЛИЖЕННОЙ ПРАВОЙ ЧАСТЬЮ 

 
В настоящей главе предлагаются явные итерационные процедуры для 

решения некорректных задач, описываемых операторными уравнениями 

первого рода. Получены достаточные условия сходимости таких методов, 

априорные оценки погрешности. Изучается сходимость методов в энерге-

тической норме. Рассмотрен случай неединственного решения. Обоснова-

на возможность применения правил останова по невязке и по соседним 

приближениям, что делает эти методы эффективными и тогда, когда нет 

сведений об истокопредставимости точного решения. Проведено сравне-

ние предложенных методов с хорошо известным в математической лите-

ратуре методом простой итерации Ландвебера.  

2.1. Сходимость в гильбертовом пространстве метода итераций  

решения операторных уравнений 

2.1.1. Cходимость метода в случае априорного выбора числа итераций 

 В работе рассматривается уравнение  

yAx                                                      (2.1) 

с действующим в гильбертовом пространстве H ограниченным положи-

тельно определенным самосопряженным оператором HHA : в предпо-

ложении, что нуль принадлежит спектру этого оператора, однако, не явля-

ется его собственным значением. При сделанных предположениях задача 

о разрешимости уравнения (2.1) является некорректной. Если решение 

уравнения (2.1) все же существует и единственно, то для его отыскания 

естественно пытаться применить различные итерационные методы.  

В настоящей работе предлагается новый явный итерационный метод: 

               0,)()( 0
1

1  
 xyAEEAxAEx k

n
k

n .               (2.2) 

Здесь k – некоторое натуральное число, а оператор 1A , фигурирующий  

в (2.2), не означает, что для рассматриваемой схемы (2.2) необходимо его 

знать – нужно заметить, что после раскрытия скобок во втором слагаемом 

он сокращается и весь оператор в квадратных скобках является полино-

мом от оператора A:  

.)1( 1233221  kkk
kkk AACACEC   

Предложенный метод обобщает метод итерации Ландвебера, рас-

смотренный в работах [21; 30; 36–37; 55; 62; 64; 69–70; 84; 87; 113;  
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129–130; 137; 151; 158; 182], т. е. ,0),( 01  xAxyxx nnn  последний 

получается из (2.2) при 1k . 

Обычно правая часть уравнения известна с некоторой точностью  , 

т. е. известен y , для которого  yy . Поэтому вместо (2.2) прихо-

дится рассматривать приближения 

     .,0,)()( ,0
1

,,1 NkxyAEEAxAEx k
n

k
n  


     (2.3) 

Ниже, как обычно, под сходимостью метода (2.3) понимается утверждение 

о том, что приближения (2.3) сколь угодно близко подходят к точному ре-

шению уравнения (2.1) при подходящем выборе n и достаточно малых  . 

Иными словами, явный метод итерации (2.3) является сходящимся, если 

0inflim ,
0








  


n
n

xx . 

 Докажем сходимость метода (2.3). Получим оценки погрешности ме-

тода при точной правой части, при приближенной правой части уравнения 

(2.1) и погрешность в счете. Справедлива   

 Теорема 2.1.  Итерационный процесс (2.2) при условии 

A20                                              (2.4) 

сходится.  

Доказательство. По индукции нетрудно показать, что 

  .)(1 yAEEAx kn
n   Т. к. уравнение (2.1) имеет по предположению 

единственное точное решение, то yAx 1  и, значит,  

    yAEEAyAxx kn
n )(11 .)(1 yAEA kn  

  Воспользовавшись интегральным представлением самосопряженного 

оператора [43, с. 309]   

M

dEA
0

 ( E  – соответствующая спектральная 

функция, AM  ), получим   


M
kn

n ydExx
0

1 .)1(  Разобьем полу-

ченный интеграл на два интеграла:  





0

0

1 )1( ydExx kn
n

 

+ 

 

 





M
kn ydE

0

.)1(1  
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При условии (2.4) величина 11  , тогда 







M
kn ydE

0

)1(1
.,0)()(

00

0
1

0  






 nxdEqydEq

M
kn

M
kn

 

 

(Здесь ,1)(1 0  q  ],[ 0 M ). 

,0,0)1( 0
00

1

0

1
0

000

 















 xExdEydEydEkn  

т. к. 
0

E  сильно стремится к нулю при 00  в силу свойств спектраль-

ной функции [43, с. 302]. Следовательно, ,,0  nxx n  т. е. итера-

ционный процесс (2.2) сходится. Теорема 2.1 доказана. 

 Покажем, что при тех же условиях процесс (2.3) можно сделать схо-

дящимся,  если  нужным  образом  выбрать  число  итераций  n  в  зависи-

мости от уровня погрешности  . Имеет место 

Теорема 2.2. При условии (2.4) итерационный процесс (2.3) сходится,      

если выбирать число итераций n в зависимости от   так, чтобы 
,,0  nn .0   

Доказательство. Будем считать 0,0 x  и рассмотрим разность 

  )(, nn xxxx )( , nn xx . Как показано ранее,  nxx n ,0 . 

Используя интегральное представление самосопряженного оператора А, 

получим  

  )()(1
, 


  yyAEEAxx kn

nn   ).()1(1
0

1


   yydEkn
M

 

По индукции нетрудно показать, что   .)1(1)( 1   kng kn
n  То-

гда   ,nn xx kn . Поскольку  

  knxxxxxxxx nnnnn ,,  

и, как показано ранее, ,,0  nxx n  то для сходимости метода (2.3) 

достаточно, чтобы .0,,0  nn  Теорема 2.2 доказана. 

Оценить скорость сходимости метода (2.3) без дополнительных пред-

положений невозможно, т. к. неизвестна и может быть сколь угодно малой 

скорость убывания к нулю nxx  . Предположим, что точное решение  

уравнения (2.1) истокообразно представимо, т. е. .0,  szAx s
 Тогда 

zAy s 1  и, следовательно,  
M

kns
n zdExx

0

.)1(  Для оценки 
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nxx   найдем максимум модуля подынтегральной функции f(λ) = λ
s
(1– 

– αλ)
kn

. Приравняв к нулю производную от f(λ), получим 

  .0)1()1( 11   knskns  Первые два сомножителя не равны 

нулю, ибо в противном случае 0)( f . Поэтому .0)1(  kns  От-

сюда 
)(

*
kns

s


  – стационарная точка функции f(λ). Поскольку 

0)( * f , то *  – точка локального максимума для f(λ). Тогда 

kns

kns

s

kns

s
f 

























)(
1

)(
)( *

sknsskn sknskn   )()( ,)( ss ekns   

т. к. s
kns

e
kn

s












1  при всех 0n  [55]. Следовательно, .)()( *
ss eknsf   

Покажем, что последняя величина не меньше максимального значения 

)(f  для всех  , удовлетворяющих условию 
M4

5
0   более сильному, 

чем (2.4). (Можно было бы считать, что )2,0( M , но тогда последнее 

утверждение было бы верным лишь при достаточно больших n, а не для 

всех n). Чтобы проверить это, достаточно исследовать поведение функции 

f(λ) на концах отрезка  .,0 M  Очевидно, 0)0( f , и максимум в точке 

0  быть не может. Значит, может оказаться, что ).()( * fMf  Пока-

жем, что если взять 
M4

5
0  , то  .)()( ss eknsMf   При 



1

 функ-

ция )(f  имеет максимум, оцененный ранее. При 



1

  0)( f  при 

четных kn  и 0)( f  при нечетных kn , поэтому наибольшее значение 

)(f  получается в точке λ = M. Значение 
kns MMMf )1()(   тем 

больше, чем больше  , т. к. 1M  (напомним, что исследуется случай 

 1 ). Поэтому достаточно вычислить )(Mf  при максимальном 

M4

5
 . Докажем, что ss eknsMf  )()(  или ,)5()4(

4

1 sss
kn

s MknesM 







  

т. е. .4)5()4( knss knes   Обозначим  ss kness )5()4()(    и найдем макси-

мум функции φ(s). Итак,  
sss sknesss   )4()5)(1)4ln(()4()( )5ln()5( knekne s  

=  ))5ln(1)4ln(()5()4( knesknes ss   .45ln)5()4( sknknes ss
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Приравняв к нулю производную )(s , получим    .045ln)5()4(  sknknes ss
 

Поскольку ,0)5(,0)4(  ss knes  то    045ln skn , и, следовательно,  

45* kns   – стационарная точка функции φ(s). Т. к. 

  ,01)5()4()( *
**

**  


skness
ss

 

то *s  точка максимума  функции φ(s). Найдем его.  

 


** )5()4()( ss
ss kness  4545 )5()5( nknk nkenk .45nke  

Итак, докажем, что ,445 knnke   это очевидно при 1n , поскольку 

225 4e . Таким образом, при  , удовлетворяющих условию 
M4

5
0  , 

для любых 1n  справедливо неравенство 
 

ss

M
eknsf 


 )()(max

,0
, тогда 

zeknsxx ss
n

 )( . Общая оценка погрешности метода (2.3) при при-

ближенной правой части y ,  yy , запишется в виде 

 
 knzeknsxxxxxx ss

nnnn )(,, . 

 Итак, доказана 

Теорема 2.3. Если точное решение x уравнения (2.1) истокопредста-

вимо, то при условии 
M4

5
0   для метода (2.3) справедлива оценка по-

грешности  
 knzeknsxx ss

n )(, . 

Оптимизируем по n полученную оценку погрешности. Для этого 

найдем значение числа итераций n, при котором оценка становится мини-

мальной. Обозначим   knzeknsn ss )()(  и приравняем )(n  к ну-

лю. Имеем 0)(1   kzekssn sss . Отсюда, возведя обе части ра-

венства в степень )1(1  s , получим 
)1(1)1(1)1(1

опт )(
 

ssss zeksn . 

Подставив полученное выражение для оптn  в оценку погрешности, найдем 

ее оптимальное значение  

  )1(1)1()1(

опт, 1


 
sssss

n zesxx . 

Итак, доказана 

Теорема 2.4. Если точное решение x  уравнения (2.1) истокопредста-

вимо, то при условии 
M4

5
0   оптимальная оценка погрешности для 
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метода (2.3) имеет вид   )1(1)1()1(

опт, 1


 
sssss

n zesxx   

и достигается при 
)1(1)1(1)1(1

опт )(
 

ssss zeksn . 

Оптимальная оценка погрешности для метода (2.3) не зависит от па-

раметра  , но от него зависит оптn . Поэтому для уменьшения оптn  и, зна-

чит, числа итераций для получения приближенного решения, следует 

брать   по возможности большим, удовлетворяющим условию 

M4

5
0  , и так, чтобы оптn  было целым. 

Сравнение явного итерационного метода (2.3) с методом простой 

итерации Ландвебера показывает, что по мажорантным оценкам погреш-

ности эти методы одинаковы. Однако метод (2.3) имеет преимущество  

по сравнению с методом Ландвебера в следующем: выполнение одного 

шага итераций по методу (2.3) равносильно выполнению k шагов по мето-

ду Ландвебера. 

Рассмотрим погрешность метода (2.3) при счете с округлениями. 

Пусть ,nx  – точное значение, полученное по формуле (2.3), а nz  – значе-

ние, полученное по той же формуле с учетом вычислительных погрешно-

стей n , т. е. 

  .0,)()( 0
1

1  


 zyAEEAzAEz n
k

n
k

n     (2.5) 

Обозначим  ,nnn xz  и вычтем из (2.5) равенство (2.3), получим 

.)(1 nn
k

n AE    Т. к. нулевые приближения равны нулю, то 00  . 

По индукции получим i

n

i

ink
n AE  





1

0

)1()( . В силу (2.4) и принад-

лежности нуля спектру оператора A имеем 1 AE , поэтому  nn , 

где i
i

 sup . 

Таким образом, оценка погрешности метода (2.3) при счете с округ-

лениями имеет вид  

.)(,,  
 nknzeknszxxxzx ss

nnnn  

2.1.2.  Сходимость метода в случае неединственного решения 

 Покажем, что метод (2.2) пригоден и тогда, когда 0  – собственное 

значение оператора А (случай неединственного решения уравнения (2.1)). 

Обозначим через    0|  AxHxAN ,  AM  – ортогональное дополне-

ние ядра  AN  до H. Пусть  xAP  – проекция Hx  на  AN , а  xAП  – 

проекция Hx  на  AM . Справедлива 
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Теорема 2.5.  Пусть AHyA 20,,0  . Тогда для итераци-

онного процесса (2.2) верны следующие утверждения: 

а) yAxyAIyAxyAПAx
Hx

nn 

inf),(,)( ; 

б) последовательность nx  сходится тогда и только тогда, когда 

уравнение yAПAx )(  разрешимо. В последнем случае 

*
0)( xxAPxn  , где 

*x  – минимальное решение уравнения Ax = y. 

Доказательство. Применим оператор А к (2.2) и получим 

 1)( n
k

n xAEAAx   ,)()()( yAПyAPAEE k  где    yAПyAPy  . 

Т. к.   0yAAP , то имеем   .)()()( 1 yAПAEExAEAAx k
n

k
n   По-

следнее равенство запишем в виде 1)(  n
k

n vAEv , где 

  nn vyAПAx   и  AMvn  . Отсюда 0)( vAEv kn
n  . Имеем 0A   

и A – положительно определен в  AM , т. е.   0, xAx  для любого 

 AMx . Т. к. A20  , то 1 AE , поэтому справедлива цепочка 

неравенств  

 





0

0
0

0
00 )1()1()( vdEvdEvAEv kn

A
knkn

n  

 











A
kn

A
kn vdEqvdEvdE

0

00

0

0
0

0

0 )()1(  

  000000
)( vEvqvE kn

 

при 00  , n . (Здесь   11 0  q  при 0 , A   ). Следова-

тельно, 0nv , откуда  yAПAxn   и    HAyAП  . Тогда получим, 

что yyAПyAxn  )( ),()( yAIyAP  (по теореме 2.1 из [130]). 

Итак, утверждение а) доказано. 

Докажем б). Пусть процесс (2.2) сходится. Покажем, что уравнение 

 yAПAx   разрешимо. Из сходимости   Hxn   к Hz  и из а) следует, 

что  yAПAzAxn  , следовательно,    HAyAП   и уравнение 

  AxyAП   разрешимо. 

  Пусть теперь    HAyAП   (уравнение   AxyAП   разрешимо), сле-

довательно,    AxyAП , где x – минимальное решение уравнения 

yAx  (оно единственно в  AM ). Тогда (2.2) примет вид  

   


 1
1

1 )()()()( n
kk

n
k

n xAEyAПAEEAxAEx  
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     
 *

1
*1 )()()( xAEExAEAxAEEA k

n
kk  

  .)( 1
*

1   n
k

n xxAEEx  

Разобьем последнее равенство на два, т. к.    nn xAPx nxAП )( . Тогда  

     11
*

1 )()()()()( nn
k

nn xAPxxAEEAPxAPxAP  

   1
*)()(  n

k xxAPAEE = ,)()( 01 xAPxAP n    

т. к.   0)( 1
*  nxxAAP ; 

     11
*

1 )()()()()( nn
k

nn xAПxxAEEAПxAПxAП  

     ,)()()()()()( *
11

*
1 xxAПAEExAПxAПxAПAEE n

k
nn

k    

т. к.  AMx   и, значит, 
* *( ) .П A x x  Обозначим    xxAПw nn ,  

тогда 1)(  n
k

n wAEw , и, аналогично nv , можно показать, что 0nw , 

n . Итак,    xxAП n . Отсюда    nn xAPx      xxAPxAП n 0 .  

Теорема 2.5  доказана. 

        Замечание 2.1. Так как у нас 00 x , то  xxn , т. е. процесс (2.2) 

сходится к нормальному решению, т. е. к решению с минимальной нормой.  

2.1.3.  Сходимость метода в энергетической норме 

Сходимость процессов (2.2) и (2.3) в норме пространства H рассмот-

рена в подразделах 2.1.1 и 2.1.2.  Изучим  сходимость  метода  итераций 

(2.3)  в  энергетической  норме ),( xxx
A

 ,  где ,x H  в случае един-

ственного решения уравнения (2.1).  При этом, как обычно, число итера-

ций n нужно выбирать в зависимости от уровня погрешности  . Полагаем 

0,0 x  и рассмотрим разность 

)()( ,,   nnnn xxxxxx .                                (2.6) 

Запишем первое слагаемое в виде xAEyAEAxx knkn
n )()(1  

. 

Как было доказано в подразделе 2.1.1, nxx   бесконечно мало в нор-

ме пространства H  при n , но скорость сходимости при этом может 

быть сколь угодно малой, и для ее оценки делалось предположение об ис-

токопредставимости точного решения. При использовании энергетической 

нормы нам это дополнительное предположение не потребуется.  

Действительно, с помощью интегрального представления самосопря-

женного оператора имеем  
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  ),()1()(,)(
0

22
xxEdxAExAEAxx

M
knknkn

An   , 

где AM  , E  – соответствующая спектральная функция, E  – единич-

ный оператор. Для оценки интересующей нас нормы найдем максимум 

подынтегральной функции при  M,0 . Функция knf 2)1()(   – 

частный случай при 1s  функции, оцененной в подразделе 2.1.1. Поэтому 

при условии 

M4

5
0 

                                               
(2.7) 

 

1

,0
)2()(max 


 eknf

M
. Следовательно, при выполнении (2.7) справед-

лива оценка xeknxx
An

21)2(  . 

Таким образом, переход к энергетической норме как бы заменяет 

предположение об истокообразной представимости порядка 21s  точно-

го решения. 

 Оценим второе слагаемое в (2.6). Как показано в подразделе 2.1.1, 

справедливо равенство   )()(1
, 


  yyAEEAxx kn

nn . Восполь-

зовавшись интегральным представлением самосопряженного оператора, 

получим 

  )),(()1(1

2

0

12

, 


   yyyyEdxx
M

kn

Ann . 

Обозначим через )(g  подынтегральную функцию и оценим ее сверху при 

условии (2.7). Покажем, что при любом p N  выполняется неравенство  

    .1,45)1(1)(
21




ppg p                   (2.8) 

При 1p    45)( 2g . При 2p    2735)(g . По индукции 

докажем, что 

    .2,5435)1(1)(
21




ppg p                  (2.9) 

При 2p  утверждение верно. Предположим, что оно справедливо при 

,lp    т. е.     ,5435)1(1
21  ll  и покажем, что (2.9) выполняется 

при .lp 1   Рассмотрим интересующее нас выражение 

     )1(211211 )1()1(21)1(1 lll  
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      22121 )1(1)1()1(2)1(1 lll  

   )2()1()1(25435 2  lll . 

Чтобы доказать требуемое, достаточно убедиться, что 

.5435)2()1()1(2 2  llB                    (2.10) 

Рассмотрим три  случая. 

1. ,451   l – нечетное ( ).3l   Тогда .0)1(1  l   Преоб-

разуем левую часть неравенства (2.10), тогда (1 )lB     

12 (1 ) (1 ) .l l     
 

 Т. к.  l)1(2  ,0)1( 1  l  то 0B   

и тем более .5435B  

2. ,451   l  – четное ).2( l  Тогда .1)1(0  l  Требуется 

доказать  неравенство (2.10),  что  равносильно  ll 2)1()1(21  

2 1(1 ) 19 54 0,l     что в свою очередь равносильно 

  .05419)1(2)2()1(1 2  ll               (2.11) 

Имеем .0141   Следовательно, ,15419)1(2  l
 а поэтому 

неравенство (2.11) справедливо, и, значит, верно доказываемое  

неравенство (2.10). 

3.  l,10  любое ).2( l  Тогда .1)1(0  l  Неравенство 

(2.10) равносильно 
l)1(25435  ,0)1()1( 122  ll  которое 

в свою очередь равносильно такому 

  .0)1()1()1(212274 2122
  lll           (2.12) 

Т. к.   ,0)1(212
2
 l  то для доказательства справедливости (2.12) 

достаточно показать, что .0)1()1(274)( 212   ll
l  Не-

трудно убедиться, что 0)(
10

min 


l  для .2l  Отсюда вытекает 

справедливость неравенства (2.12) и, следовательно, неравенства (2.10). 

Эти три рассмотренных случая  исчерпывают индукцию, значит, неравен-

ство (2.9) справедливо. Таким образом,   ,5435 22

,   knxx
Αnn  .kn 2  

Отсюда имеем    ,45
21

,   knxx
Αnn    ,1kn   

   ,5435
21

,   knxx
Αnn   .2kn                          (2.13) 
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Покажем, что порядок оценки для 
Ann xx ,  нельзя улучшить, т. е.  

показатель степени, с которым n входит в оценку, найден правильно.  

Найдем )(ng . 

      1122 )1()1(12)1(1)( knknkn
n kng  

  .)1(2)1(1)1(1 12   knknkn kn  

Если 0)1(1  kn , то 0)( ng , и функция )(ng  не будет достигать 

максимального значения. Значит, точка максимума определяется из урав-

нения kn)1(1  0)1(2 1  knkn . Отсюда ).21()1(1 1   knkn  

 Пусть na , тогда последнее равенство перепишется в виде 

  .1)21(1
1




nn
kn

n knaaa                                (2.14) 

 Т. к. 11  na , то 11
1


kn
na . Значит, если бы na  не стремились  

к нулю при  n , а были бы лишь ограничены снизу, то равенство (2.14) 

не выполнялось бы. Таким образом, получаем, что 0na  при n .  

Из (2.14) следует, что  
n

kn
n

akn
a

)12(1

1
1

1





,  

n

nkn
n

akn

a
a

)12(1

1
1




 ,  

отсюда 

  kn
na )1(1 .

)12(1

2

n

n

akn

kna


                                (2.15) 

 В левой части (2.15) стоит величина ограниченная, следовательно,  

и в правой части должна быть ограниченная величина. В знаменателе пра-

вой части стоит величина, ограниченная снизу, поэтому, для ограниченно-

сти величины 
n

n

akn

kna

)12(1

2


, необходимо, чтобы na  стремилось к нулю  

не медленнее, чем n1 , т. е. nba nn  , где  nb  – ограниченная числовая 

последовательность:   Bbn0 . Подставим nba nn   в выражение 

для ),(ng  получим  

 





n

kn
n

n
a

a
g

2
)1(1

)(
 

 






2

2

)12(1

2

nn

n

akna

kna

 
.

)12(1

4

2

2

nbkn

nbk

n

n




 

Покажем, что нуль не является предельной точкой для последова-

тельности  nb . Предположим противное, что какая-то подпоследователь-

ность  mb , где 0 ,m N N   последовательности  nb  стремится к нулю 

при ,m   тогда .2~
)12(1

2

)12(1

2
m

m

m

m

m kb
mbkm

kb

akm

kma





 С другой стороны,  
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   11
km

m mb ....
6

)2)(1(

2

)1( 3

2

2






 mmm b

m

kmkmk
b

m

kmk
kb  

Следовательно, .~)1(1 m
km

m kbmb  Т. к. из (2.15) следует, что 

,
)12(1

2
)1(1

mbkm

kb
mb

m

mkm
m


                           (2.16) 

то mkb2  должно быть эквивалентно mkb , что неверно. Пришли к противо-

речию. Значит, mb  не стремится к нулю при m , и 0 не является пре-

дельной точкой числовой последовательности  nb . Значит, 0 .nb b B     

 Из 
 2

2

)12(1

4
)(

nbkn

nbk
g

n

n
n




  видно, что в оценку для 

Ann xx  ,  

n  входит с показателем степени 1 2.  Значит, найденная оценка для 

Ann xx  ,  верна по порядку. 

 Попытаемся уточнить константу 
21)5435( , фигурирующую в оценке 

Ann xx  , . Для этого найдем предельную точку числовой последователь-

ности  nb . Покажем, что  nb  сходится. Т. к.  nb  – ограниченная число-

вая последовательность и пространство H гильбертово, то по лемме Боль-

цано˗Вейрштрасса [43, с. 105] из нее можно выделить сходящуюся подпо-

следовательность  mb  такую, что 
*.mb b  

Перейдем к пределу в обеих частях равенства (2.16), получим 

         













k
mb

mbm
m

m

km
m

m

km
m

m
mbmbmb 1lim11lim111lim

,1
*kbe  .

21

2

)12(1

2
lim

*

*

kb

kb

mbkm

kb

m

m

m 



 

Таким образом, если обозначить через *kbz  , то получим следующее 

уравнение: 


  1,
21

2
1 zz e

z

z
e .21,

21

1
,

21

2
ze

z
e

z

z zz 





  Это 

уравнение имеет два решения: 01 z  и 25612 ,z  . Т. е. 0
*

1 b   

и kb 256,1
*
2   и т. к. нуль не является предельной точкой для последова-

тельности  nb , то kbbm 256,1
*
2  . Т. к.  mb  – произвольная подпосле-

довательность последовательности  nb , то и сама  nb  сходится к 
*

2 .b  
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 А теперь вернемся к уточнению константы 21)5435(  в оценке для 

Ann xx  , . Рассмотрим функцию 
 

2

2

4
( ) .

1 (2 1)

n
n

n

k nb
g

kn b n


 

 
 Отсюда 

 
.41,0

21

4)(
max

2*

*

450









 kb

kb

kn

gn

na
 Поэтому нельзя получить оценки луч-

шей, чем .)41,0( 21
,  knxx

Ann  Таким образом, полученная нами 

константа 21)5435(  завышена не более чем в 1,26 раза.  

Поскольку   AnAnnAnAn xxxxxxxx ,,  
1 2

35 54 ,kn     

2kn   и 0, ,n A
x x n    то для сходимости , 0,n A

x x    n ,  

достаточно, чтобы ,0n  ,n  0 . 

Таким образом, если в процессе (2.3) выбрать число итераций 

)( nn  зависящим от   так, что ,0n  ,n  ,0  то получим ре-

гуляризованный метод, обеспечивающий сходимость к точному решению 

в энергетической норме. 

 Запишем теперь общую оценку погрешности для метода (2.3) при вы-

полнении условия (2.7):  

   ,1,45)2(
212/1

,  
 knknxeknxx

Аn  

   .2,5435)2(
212/1

,  
 knknxeknxx

Аn         (2.17) 

Итак, доказана 

Теорема 2.6. Итерационный процесс (2.3) при условии (2.7) сходится 

в энергетической норме пространства ,Η  если  выбирать число итера-

ций n  из условия .0,,0  nn  Для процесса (2.3) справедлива 

оценка погрешности (2.17). 

 Оптимизируем полученную оценку (2.17) по n, т. е. при заданном  

  найдем такое значение числа итераций n, при котором оценка погреш-

ности становится минимальной. Приравняв к нулю производную по n от 

правой части неравенства (2.17), получим  

  .)(2735 12/11
21

опт xekn 


                            (2.18) 

Подставив оптn  в оценку (2.17),  получим ее оптимальное значение 

    .22735 4/12/14/1опт
,


  exxx

An                       (2.19) 

Из (2.19) вытекает, что оптимальная оценка погрешности не зависит от па-

раметра  . Но оптn  зависит от ,  поэтому для уменьшения n  и, значит, 
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объема вычислительной работы следует брать   возможно большим, удо-

влетворяющим условию (2.7), и так, чтобы оптn  было целым. Таким обра-

зом, доказана 

Теорема 2.7. В условиях предыдущей теоремы оптимальная оценка 

погрешности для итерационного процесса (2.3) имеет вид (2.19) и получа-

ется при оптn  из (2.18). 

 Рассмотрим вопрос о том, когда из сходимости в энергетической 

норме следует сходимость в обычной норме гильбертова пространства`H. 

Эти условия дает  

Теорема 2.8. Если выполнены условия 1) ,0,  nx  2) ,0x  где 





0

, d    фиксированное положительное число ),0( A  то  

из сходимости ,nx   к решению x  в энергетической норме следует сходи-

мость в обычной норме гильбертова пространства. 

Доказательство. Т. к. по условию теоремы 0,  nx  и ,0x  то 

0)( ,  xxn  и   0),( ,   xxxx n,n , т. е.  



0

, 0)),(( xxxxd n,n . 

Следовательно,  справедливо записать 0))(),((
1

,,
0








 xxAxxd nn . 

Тогда получим, что  

2

, xxn   


  ))(),((
1

,
0

xxAxxd n,n

M

  

=  





0

, ))(),((
1

xxAxxd n,n  




M

n,n xxAxxd ))(),((
1

, = 

 







M

n,n xxAxxd ))(),((
1

,
2

,
1

An xx 


 . 

Теорема 2.8 доказана. 

Замечание 2.2. Т. к. -1
, ( ) ,kn

nx A E E A y 
   
 

 то для того, чтобы 

,nx  удовлетворяло условию 0,  nx , достаточно потребовать, чтобы 

0y . Таким образом, если 0x  и 0y , то из сходимости  

метода итераций в энергетической норме следует его сходимость  

в обычной норме пространства H. Следовательно, для оценки погрешно- 
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сти не потребуется предположения истокопредставимости точного 

решения. 

2.1.4. Правило останова по невязке 

 Решается задача из подраздела 2.1.1. Для ее решения используется 

метод (2.3). Все результаты подраздела 2.1.1 получены в предположении, 

что точное решение x уравнения (2.1) истокопредставимо, т. е. 

0,  szAx s . Однако, поскольку сведения об элементе z и степени исто-

копредставимости s имеются не всегда, то на основании результатов под-

раздела 2.1.1 трудно определить число итераций n, обеспечивающих схо-

димость метода (2.3). Тем не менее, этот метод можно сделать вполне эф-

фективным, если воспользоваться следующим правилом останова по не-

вязке, аналогичным [20–21; 37; 90].  

 Определим момент m останова процесса (2.3) условием 

.1,
,

),(,

,

,
















bb

yAx

mnyAx

m

n
                (2.20) 

Предполагаем, что при начальном приближении ,0x  невязка достаточно  

велика, больше уровня останова  , т. е. .,0   yAx  Покажем возмож-

ность применения правила (2.20) к методу (2.3). Метод (2.3) с остановом 

(2.20) является сходящимся, если 0inflim ,
0








  


m
m

xx . Рассмотрим се-

мейство функций  kn
ng )1(1)( 1   из подраздела 2.1.1. Нетрудно 

показать, что для )(ng  выполняются условия 

,/20,,0,)(sup
0

MAMnkngn
M




              (2.21) 

,/20,1)(1sup
0

Mgn
M




                         (2.22) 

 ,/20,,0(,,0)(1 MMngn                (2.23) 

.
4

5
0,0,0,)(1sup

0 M
snn

ek

s
g s

s

n
s

M











 



     (2.24) 

Справедлива 

Лемма 2.1. Пусть * 0, .A A A M    Тогда для любого w H  

.,0))((  nwAAgE n  
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Доказательство. Воспользуемся интегральным представлением са-

мосопряженного оператора   

M

dEA
0

,  где E  – спектральная функция.  

Рассмотрим  wAAgE n ))((      

M
kn

M

n wdEwdEg
00

.)1())(1(  Т. к. 

при  MA ,,20 0  имеем ,11  q  то  

kn
M

kn qwdE  




0

)1( .,0

0




 nwqwdE kn
M

 

В силу свойств спектральной функции  








0

0

0

0

)1( wdEwdEkn  

0,0 00
  wE . Итак, ,0))((  wAAgE n n . Лемма 2.1 доказана.  

 Имеет место 

 Лемма 2.2.  Пусть * 0, .A A A M    Тогда для любого )(ARv  

имеет место соотношение 

.0,,0))((  snvAAgEAn n
ss                   (2.25) 

Доказательство. Так как (2.24) верно, то  

 


)(1sup))((
0

n
s

M

s
n

ss gnAAgEAn  ns , 0, 

где .

s

s

s

k e

 
   

 
 Воспользуемся теоремой Банаха – Штейнгауза [43, c. 151], 

по которой сходимость BuuBn   при n  для  Hu  имеет место то-

гда и только тогда, когда эта сходимость имеет место на некотором плот-

ном в H подмножестве и ,...2,1, nBn  ограничены независящей от n по-

стоянной. Здесь ,))(( sn
ss

n AAgEAnB   т. е. nB  совокупно огра-

ничены. В качестве плотного в )(AR  подмножества возьмем )(AR . Поло-

жим s1=s+1. Тогда для каждого )(ARAwv   имеем  

s
n

ss nvAAgEAn  ))((  wAAgEA n
s ))((1  













 



nwnwn
ek

s
n s

s
s

s ,0
1 1

1
)1(

1

, 

т. к. 1s . Лемма 2.2 доказана.  
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Справедлива 

 Лемма 2.3. Пусть .,0* MAAA   Если для некоторых 

 nn p const и )(0 ARv    при p  имеем   ,0)( 0  vAAgEAw
pnp  

то   .0)( 0  vAAgEv
pnp  

Доказательство. В силу (2.22)  последовательность pv  ограничена  

Npvvp  ,0 , поэтому в гильбертовом пространстве из этой последо-

вательности можно извлечь слабо сходящуюся подпоследовательность. 

Пусть  ,' NNpvvp  тогда  .'NpAvAvp  Но по условию 

 pAvw pp ,0 , следовательно, 0Av . Поскольку нуль не являет-

ся собственным значением оператора А, то 0v . Тогда   
 

       000

2
)(,,)(, vAAgvvvvAAgEvv

pp nppnpp  

    00 )(,, vAgAvvv
pnpp       ,0,)(,, 000  vvvAgwvv

pnpp  

т. к. 0,0  vwp  и по условию (2.21) nkknAg ppn )( . Следова-

тельно, 0pv . Итак, всякая слабо сходящаяся подпоследовательность 

указанной выше ограниченной последовательности pv  стремится к нулю 

по норме. Следовательно, и вся последовательность  pvp ,0 . Лем-

ма 2.3 доказана. 

 Используем доказанные леммы при доказательстве следующих 

 теорем. 

Теорема 2.9.  Пусть MAAA  ,0*  и пусть момент останова 

)(mm  в методе (2.3) выбирается по правилу (2.20). Тогда  xxm ,   

при 0 . 

Доказательство. Из подраздела 2.1.1 следует, что справедливо 

  .)(1
, 


  yAEEAx kn

n Тогда 

  .)())((, xAAgEyyAgxx nnn                          (2.26) 

Отсюда 

    ).()()(, yyAAgExAAgEAyAx nnn             (2.27) 

В силу лемм 2.1 и 2.2 имеем 

  ,,0)(  nxAAgE n                                (2.28) 

   nxAAgEAn nn ,0)( .                         (2.29) 
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Кроме того, из (2.21) и (2.22) следует, что 

,))((  nkyyAgn                                     (2.30) 

.1)(  AAgE n                                            (2.31) 

Применим правило останова (2.20). Тогда 1,,   bbyAxm  и из 

(2.27) и (2.31)  получим 

    .)1()()()( ,   byyAAgEyAxxAAgEA mmm   (2.32)  

Для любых mn   справедливы неравенства   yAxn, , поэтому  

    yAxxAAgEA nn ,)(   .)1()()(   byyAAgE n  

Итак, для любых mn   

  .)1()(  bxAAgEA n                             (2.33) 

Из (2.29) и (2.33) при 1mn  получаем    





 xAAgEA
m

m
m )(
1

1
1  

( 1)b    или, что то же самое, ,0,0
1

)1( 1 



 

b
m m  (т. к. из (2.29) 

 mm ,0 ). Если при этом m  при 0 , то  используя (2.26),  

получим  

    ))(()(, yyAgxAAgExx mmm  

 ( ) 0, , 0,mE Ag A x k m m        

т. к. как из (2.28)    .,0)(  mxAAgE m  

 Если же для некоторых n  последовательность )( nm   окажется огра-

ниченной, то и в этом случае .0,),(  nnnm xx  Действительно, из 

(2.32) выполняется .0,0)1())(( )(   nnnm bxAAgEA  Следова-

тельно, имеем   0,0)()(   nnm xAAgEA и по лемме 2.3 получаем, 

что при 0n    .0)()(   xAAgE
nm Отсюда  

 xAAgExx
nmnnm )()(),(   0,0)(  nnnmk . 

Теорема 2.9 доказана.  

Имеет место 

 Теорема 2.10. Пусть выполнены условия теоремы 2.9 и пусть 

0,  szAx s
, тогда справедливы оценки ,

)1(

1
1)(

)1(1 















s

b

z

ek

s
m  
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  )1(1)1(
),( )1(


 

sss
m zbxx .

)1(

1
1

)1(1






























s

b

z

ek

s
k  (2.34) 

Доказательство. Имеем  

     


 zAAgEAxAAgEA m
s

m )()( 1
1

1  

  zemkszdE
ss

M
mks )1(1

0

)1(1 )1()1()1(



   . 

Воспользовавшись (2.33), получим   ,)1()1()1(
)1(1 zemksb

ss    

откуда 
ek

s
m






1
1 .

)1(

)1(1 












s

b

z
 При помощи неравенства моментов оценим  

     zAAgEAxAAgE m
s

m )()(   



)1(

1 )(
ss

m
s zAAgEA  

    
 )1(1)1()1(1

)()(
sss

m
s

m zxAAgEAzAAgE

  )1(1)1(
)1(




sss
zb  

Поскольку соотношение (2.26) справедливо для любых n, то  
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Теорема 2.10 доказана. 

Замечание 2.3.  Порядок оценки (2.34) есть  ,)1(  ssO и, как следует 

из [21], он оптимален в классе задач с истокопредставимыми решениями 

.0,  szAx s
 

Замечание 2.4.  Хотя формулировка теоремы 2.10 дается с указани-

ями степени истокопредставимости s и истокопредставляющего эле-

мента z, на практике их значение не потребуется, т. к. они не содержат-

ся в правиле останова (2.20). Тем не менее, в теореме 2.10 утверждается, 

что будет автоматически выбрано количество итераций m, обеспечива-

ющее оптимальный порядок погрешности. Но даже если истокопредста-

вимость точного решения отсутствует, останов по невязке (2.20), как 

показывает теорема 2.9, обеспечивает сходимость метода, т. е. его ре-

гуляризующие свойства. 

2.1.5.  Правило останова по соседним приближениям для уравнений  

с несамосопряженным оператором 

 Как известно из работы [59], уравнение (2.1) с действующим в гиль- 
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бертовом пространстве H оператором, не обладающим свойством самосо-

пряженности или положительной определенности, может быть сведено  

к решению уравнения yAAxA **   уже с положительно определенным  

и самосопряженным оператором AA* . Применение вышеописанных ре-

зультатов для уравнения (2.1) приводит к аналогичным результатам  

для уравнений (2.1) уже с произвольным действующим в гильбертовом 

пространстве оператором А. 

 Решаем уравнение (2.1) с несамосопряженным оператором А. Исполь-

зуем явную схему метода итераций 

      ,**1**
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.
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5
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*0
AA

HxNk                            (2.35) 

Здесь оператор   1* 
AA , фигурирующий в (2.35), не означает, что для рас-

сматриваемой схемы (2.35) необходимо его знать – нужно заметить, что 

после раскрытия скобок во втором слагаемом он сокращается и весь опе-

ратор в квадратных скобках является полиномом от оператора A
*
А: 

    1*2*33*221 )1(



kkk

kkk AAAACAACEC  .  

В случае, когда правая часть y уравнения (2.1) известна приближенно, 

 yy , метод (2.35) примет вид 
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HzNk                        (2.36) 

Здесь nu ошибки вычисления итераций, nu . Использовано равен-

ство .yAAxA **   Обозначим     **1* AAAEEAAB
k







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
,   ,* k

AAEC   

тогда метод (2.36) запишется в виде nnn CuByCzz  1 . Для простоты 

будем считать, что 1A . 

Определим момент m останова итерационного процесса условием, 

описанным в работах [18; 36; 92] 
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где  заданное до начала вычислений положительное число (уровень 

останова). Аналогично работе [36] докажем, что метод (2.36) с правилом 

останова (2.37) сходится, и получим оценку для момента останова. Спра-

ведливы леммы 

 Лемма 2.4.  Пусть приближение nw  определяется равенствами 

                         ,0,1,00   nCuByCwwzw nnn                        (2.38) 

тогда справедливо неравенство 

.
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kkk CuxwCuww                  (2.39) 

Доказательство. Из (2.38) имеем .1 ByCwwCu kkk    Отсюда, ис-

пользуя равенство yAAxA **  , получим 
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Обозначим xwkk  , тогда ,1
1

kkk Cu  
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 откуда получим 

.1 kkk CCu     Имеем 
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Оценивая абсолютную величину последнего слагаемого правой части 

(2.40) по неравенству Коши – Буняковского, приходим к неравенству: 
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Покажем, что .0,)( 1   kCuwwCE kkkk  Имеем  1kkCu  

kC , ,1 kkkkk CCu    тогда ,)( 1 kkkk CECu  

 kkk CECuxw )( ,1 xwk   отсюда справедливо, что    

.0,)( 1   kCuwwCE kkkk                             (2.42) 
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Запишем неравенство (2.41) в виде   
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Докажем, что  0n  при любых  
1 2, , ..., .n    Для этого сначала дока-
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Покажем, что 
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В самом деле, неравенство (2.43) равносильно неравенству  
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Пришли к очевидному неравенству 
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поэтому неравенство (2.43) справедливо ввиду равносильности нера-

венств.  (Здесь возведенное в квадрат неравенство на самом деле содержа-

ло лишь положительные члены.) Следовательно, 0n . Отсюда 
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Лемма 2.4 доказана.  

Имеет место 

Лемма 2.5. При любом Hw 0  и произвольной последовательности 

ошибок  ,un  удовлетворяющих условию nu , выполнено неравенство    
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Отсюда следует (2.44). Лемма 2.5 доказана. 

 Обе леммы будут использованы при доказательстве следующей теоремы. 

Теорема 2.11. Пусть уровень останова ),(   выбирается как 

функция от уровней   и   норм погрешностей  yy  и nu . Тогда спра-

ведливы следующие утверждения: 

а) если ,2),(  C  то момент останова m  определен при любом 

начальном приближении Hz 0  и любых y  и nu , удовлетворяющих усло-

виям , ny y u    ; 

б) если  ,2),(  CB  то справедлива оценка 
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Доказательство. а) По индукции покажем, что 
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0

n

k
kn

kn
n uByCCCzCz .                   (2.45) 

При 1n  из 11   nnn CuByCzz  имеем 001 CuByCzz   , из (2.45) 

получим то же самое, т. е. при n = 1 формула (2.45) верна. Предположим, 

что (2.45) верна при n = p, т. е.  





 
1

0
1

1
0 ,

p

k
kp

kp
p uByCCCzCz   

и докажем ее справедливость при n = p + 1. Имеем  

  







 







  p

p

k
kp

kp
ppp CuByuByCCCzCCCuByCzz

1

0
1

1
01  

  









0

111
2

1
1

12
0

1 ... uCByCCCuByCCuByCCzC pp
pp

p

+  pCuBy   



 ByCuCCByCuByCzC p

pp
p 1

2
2

10
1 ...  

 0uC p 


puByC 1 
0

1zC p   





p

k
kp

k uByCCC
0

1 . 

Таким образом, справедливость (2.45) доказана. Отсюда  
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     















1

0
1

1

0

1

0
01

1
0

n

k
kn

k
n

k

k
n

k

n
kn

kn
n uCCByCwCuByCCCwCw  

    











1

0
1

1

0
01

12
0 ...

n

k
kn

k
n

k

n
kn

knn uCCwCuCCByCCCEwC  

        yCEAwCyACEAACECE nnn 1
0

*1*1 )()( 





1

0
1

n

k
kn

kuCC .  

Учитывая, что  00 wz  , получим 

01 zCzz n
nn       










1

0

11
0

1
1

1
n

k

nn
kn

kn yCEAzCuCCyCEA  

 




n

k
kn

kuCC
0

       
 yCEAyCEAyCEAwC nnnn 111

0  

        





 yCEAyCEAyCEAwCuCC nnnn

n

k
kn

k 111111
0

1
1

0
1

     








 )()( 111
1

0

yyCEAyyCEAwwuCC nn
nn

n

k
kn

k
 

  





 )()()()( 11
1 yyCyyyyCyyAww nn

nn  

   


 1
11

1 )( nn
nn

nn wwyyCCAww  

)()()( 1
1


  yyBCwwyyCCEA n

nn
n

. 

Следовательно, 

)(11   yyBCwwzz n
nnnn .                     (2.46) 

Обозначим )(  yyB , тогда при условии 450  ,  1,0             

получим   nCyyBC nn ,0)( . Поэтому (лемма 2.5)  


1lim nn
n

zz  

1lim 2 .n n
n

w w C


     Следовательно, условием  C2),(  момент 

останова m  определен при любом начальном приближении Hz 0  и лю-

бых y ,   yy   и  ,nu  nu . 

б)  Рассмотрим последовательность (2.38) и определим момент оста-

нова m  условием 















.

),(,

1

1

Bww

mnBww

mm

nn
                        (2.47) 

Из (2.46) следует, что mm  . Из леммы 2.4  при mn   получим 

,
21

0

2
0

2

0
1 








 

m

k
k

m

k
kkk CuxwCuww  поэтому справедливо запи-
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сать: .
21

0

2
0

21

0
1 








 

m

k
k

m

k
kkk CuxwCuww  Отсюда получим не-

равенство  
21

0

2
0

1

0

2
1 








 

m

k
k

m

k
kk CuxwCww . Т. к. по (2.47)  

при mn   имеем ,1   Bww nn  то    .222
0

2
 CmxwCBm  

 

Учитывая, что 00 zw   и mm  , из последнего неравенства получим   

m
    

.
2

2
0

222

2
0











BCB

xz

CCB

xz
m  

в) Докажем, что  






1

0

.
n

k

kn yBCxCx                                       (2.48) 

Предположим, что (2.48) верна, тогда имеем  






1

0

n

k

kn yBCxCx ,    xCE n  
1

0

,
n

k

k

BC y




   

   2 1... ,n nE C x B E C C C y       

  EAxCE n 1    ,
1
yCECEC n 

    

    ,1yACExCE nn        .xCExCE nn   

Следовательно, предположение верно и формула (2.48) доказана. Из (2.45) 

вычтем (2.48), получим 

   





 
1

0
1

1
0 )()(

n

k
kn

kn
n uyyBCCCxzCxz .         (2.49) 

Отсюда  





 
1

0
1

1
0 )(

n

k
kn

kn
n uyyBCCCC , где xznn    

и xz  00 . Следовательно, 

 nCBCn
n  0 .                           (2.50) 

В частности, (2.50) справедлива и при mn  . Если m  при 0,,  , 

тогда, как показано ранее, 
0 0, .mC m    Поэтому для доказатель-

ства 0,0,0  xzm  достаточно показать, что   ,0 CBm  

.0,0, m  Из (2.49)  

  )()( 11 xzxzzz nnnn   





1

0
1

1
0 )()(

n

k
kn

kn uyyBCCCxzC   
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   



 ))(()()( 0

0

1
0

1 xzCECuyyBCCCxzC nn

k
kn

kn    

   

















n

k
kn

k
n

k

k
n

k
kn

k
n

k

k uCCyyBCuCCyyBC
00

1

0
1

1

0

)()(  

  
 0

1
3

2
210 ...)())(( uCuCCuuCyyBCxzCEC n

nnn
nn  

    n
nn

nnn CuxzCECuCuCCuuC ))((... 002
2

1  

  )( yyBCn        .... 00
1

2
2

211 uCuCuCCuCuuC nn
nnnn  
  

Отсюда получим 

  n
nn

nn CuyyBCxzCECzz )())(( 01  





1

0
1)(

n

k
kn

k uCECC . (2.51) 

Нетрудно показать, что при 450    

1

1
)(



n

CECn .                                         (2.52) 

Из (2.51) при  1mn  получим   

 


 1
1

0
2)1(2)1(

1 )())(( m
mmm

mm CuyyBCxzCECCzz

 


 CBxzCCECuCECC mmm

k
km

k )()()( 0
2)1(2)1(2

0
2




 


 BxzC

mk
C mm

k
)(

2

1

1
0

2)1(2

0
),ln2( mC   

т. к. m
k

m

k

ln1
11

1






 [28, с. 16]. Поскольку по условию теоремы  

 ,),( pCBd   ),1,0(,1  pd  то при всех достаточно малых ,   

выполняется неравенство ,2),(  CB  поэтому из б) получим 

    .2
12

0


 BCBxzm  Т. к.  mm zz 1 , то имеем 

m

2
 .)ln2()( 0

2)1(  mCBxzC m  Отсюда получим, что 

     
.

2ln2

)(2

12
0

0
2)1(










BCBxzCB

xzC
m

m

 

Умножив обе части последнего неравенства на  CB , получим  

  CBm  
 

     
.

2ln2

)(2

12
0

0
2)1(









BCBxzCB

CBxzC m

 

При m  множитель ,0)( 0
2)1(  xzC m

и при 0,   дробь 
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 

  




















BCB

xz
CB

CB

2
ln2

2

2
0

 

ограничена. Поэтому при 0,, m    0 CBm . Отсюда  

и из неравенства (2.50) при m выполняется 

   0limlimlim 0

0
0

0
0

0
0












CBmCxz m
mm . 

Теорема 2.11 доказана. 
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2.2.  Оценка погрешностей в двухшаговой итерационной процедуре 

решения операторных уравнений первого рода 

2.2.1.  Сходимость метода в случае априорного выбора числа итераций  

2.2.1.1. Сходимость при точной правой части уравнения 

Решается задача из раздела 2.1. Предлагается новый явный двухшаго-

вый итерационный метод 

.0,)()(2 10
2

2
2

1   xxAyxAExAEx nnn          (2.53) 

Пусть правая часть уравнения известна с некоторой точностью  , т. е. 

известен y , для которого .y y    Поэтому вместо схемы (2.53) при-

ходится рассматривать приближения 

.0,)()(2 ,1,0
2

,2
2

,1,   xxAyxAExAEx nnn     (2.54) 

Ниже, как обычно, под сходимостью метода (2.54) понимается утвержде-

ние о том, что приближения (2.54) сколь угодно близко подходят к точно-

му решению уравнения при подходящем выборе n и достаточно малых  . 

Иными словами, метод (2.54) является сходящимся, если 

0inf ,
0

lim 







 


n

n
xx . 

 Воспользовавшись интегральным представлением ограниченного по-

ложительного самосопряженного оператора A и формулой (2.53), по ин-

дукции при AM   получим 

  
 

M
nn

n ydEnxx

0

11 )1()1( ,
 

где E  – спектральная функция оператора A. Т. к. при M20   имеем 

11  , то отсюда легко выводится сходимость итерационного процес-

са (2.53) при n . 

2.2.1.2.  Сходимость при приближенной правой части уравнения  

 Итерационный процесс (2.54) является сходящимся, если нужным  

образом выбирать число итераций n в зависимости от уровня погрешности 

 . Справедлива  

 Теорема 2.16. Итерационный процесс (2.54) сходится при 
5

0 ,
4M

    

если выбирать число итераций n в зависимости от   так, чтобы 

,0n при .0, n  
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Доказательство теоремы аналогично доказательству подобной  

теоремы из раздела 2.1. При этом легко показывается оценка 

  .1
4

5
,   nxx nn

 

2.2.1.3.  Оценка погрешности двухшаговой итерационной  

процедуры 

Скорость сходимости приближений (2.54) будем оценивать при до-

полнительном предположении о возможности истокообразного представ-

ления точного решения x уравнения (2.1), т. е. .0,  szAx s  Тогда 

zAy s 1 , и, следовательно, получим  

zdExx n
M

s
n 

 
1

0

)1(  
 

M
ns zdEn

0

11 .)1()1(

 

Для оценки nxx   найдем максимумы модулей подынтегральных 

функций 1
1 )1()(  nsf  и    1)1()( 11

2 nf ns . В подраз-

деле 2.1.1 показано, что sskns eknsf  )()1()(  при условии  

5
0 .

4M
    Поэтому 

    ssss nsfensf


 )1()1()(,)1()( 1
21 .)1(  se  

Отсюда 
     zenssxx ss

n
 12 . Таким образом, общая оценка по-

грешности итерационной процедуры (2.54) запишется в виде  

  ,, nnnn xxxxxx         .1
4

5
12 


nzenss

ss  

Для минимизации оценки погрешности вычислим правую часть  

в точке, в которой производная от нее равна нулю; в результате  получим  

оценку  ,nxx опт    )1(1)1()1()1(1
)1(

21
4

5 










 ssssss

ss

zess
  
 и априорный 

момент останова nопт 
.)2(

4

5
1

)1(1)1(1 1)1(
)1(1  













ss
zsse ss

s

 

Существенно, что порядок оптимальной оценки есть  )1(  ssO  и, как сле-

дует из работы [21], он оптимален в классе задач с истокопредставимыми 

решениями. Очевидно, что оптимальная оценка погрешности не зависит  

от параметра  , но от него зависит nопт. Поэтому для уменьшения nопт  

и, значит, числа итераций для получения приближенного решения, следует 
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брать   по возможности большим, удовлетворяющим условию 
5

0 ,
4M

    

и так, чтобы nопт было целым. 

Сравнение метода (2.54) с хорошо известным методом итераций 

Ландвебера показывает, что порядки их оптимальных оценок совпадают. 

Приведем погрешность схемы (2.54) при счете с округлениями. Пусть  

,nx   значение, полученное по формуле (2.54), а nz  – значение, получен-

ное по той же формуле с учетом погрешностей вычисления n , т. е. 

.0,)()(2 10
2

2
2

1   zzAyzAEzAEz nnnn  Оценка 

погрешности итерационного метода (2.54) в этом случае имеет вид  

      
 




 

2

1
1

4

5
12

nn
nzensszx ss

n ,  где i
i

 sup . 

2.2.2.  Сходимость метода в энергетической норме 

Изучим сходимость метода (2.54) в энергетической норме гильберто-

ва пространства  xAxx
A

, , где ,x H в случае единственного реше-

ния уравнения (2.1). При этом, как обычно, число итераций n нужно выби-

рать в зависимости от уровня погрешности  .  Полагаем 0,0 x  и рас-

смотрим разность      ,, nnnn xxxxxx . С помощью интеграль-

ного представления самосопряженного оператора A получим 


2

Anxx   ),(])1(1[1

0

222
xxEdn

M
n




  , 

 

2

, Ann xx         
  yyyyEdn

M
nn

,111

0

211 , 

где AM  . Оценив подынтегральные функции, получим при условии 

M4

5
0   оценку погрешности для итерационного метода (2.54) в энер-

гетической норме 

      1,)1(3)1(41 21212121232121
,  
 nnxneeexx

An . 

Следовательно, если в процессе (2.54) выбирать число итераций ( ),n n   

зависящим от   так, чтобы 0,,01  nn , то получим метод, 

обеспечивающий сходимость к точному решению в энергетической норме.  

Итак, справедлива 



 

 

 

 

 

 

 

82 

 

Теорема 2.17. При условии 
5

0
4M

    метод (2.54) сходится в энер-

гетической норме гильбертова пространства, если число итераций n вы-

бирать из условия 0,,01  nn . Для метода (2.54) справедли-

ва оценка погрешности  

      1,)1(3)1(41 21212121232121
,  
 nnxneeexx

An . 

Для минимизации оценки погрешности метода (2.54) вычислим ее  

правую часть в точке, в которой производная от нее равна нулю;  

в результате получим 

    2143414141опт
, 4132  
 eeexx

An
21x , 

      xeeen 23212121
опт 4131

1  


. 

Отметим тот факт, что для сходимости метода (2.54) в энергетической 

норме достаточно выбирать число итераций )( nn  так, чтобы 

0,,01  nn . Однако nопт =  1O , т. е. nопт относительно  

  имеет порядок 
1 , и такой порядок обеспечивает сходимость метода 

итераций  (2.54).  

 Ответ на вопрос: когда из сходимости в энергетической норме следу-

ет сходимость в обычной норме гильбертова пространства H, дает 

 Теорема 2.18.      Если выполнены условия: 1) 0,  nxE ,  2) 0 xE , 

где  


 ,

0

dEE  – фиксированное положительное число  ,0 A  то 

из сходимости ,nx  к  x  в энергетической норме следует сходимость  

в обычной норме гильбертова пространства. 

 Замечание 2.5.  Т. к.    
11

,
n n

nx A E E A n A E A y


 
       
  

, то 

для того, чтобы ,nx  удовлетворяло условию 0,  nxE , достаточно по-

требовать, чтобы 0 yE . Таким образом, если решение x и приближен-

ная правая часть y  таковы, что 0 xE  и 0 yE , то из сходимости 

,nx  к x в энергетической норме вытекает сходимость в исходной норме 

гильбертова пространства, и, следовательно, для сходимости приближе-

ний (2.54) в норме пространства H не требуется предположения истоко-

представимости точного решения. 

Таким образом, использование энергетической нормы позволило по-

лучить априорную оценку погрешности и априорный момент останова 
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nопт для метода (2.54) без дополнительного требования истокообразной 

представимости точного решения.  

Приведем погрешность схемы (2.54) при счете с округлениями. Пусть 

,nx   – точное значение, полученное по формуле (4), а nz  – значение, полу-

ченное по той же формуле с учетом погрешностей вычисления n , т. е. 

.0,)()(2 10
2

2
2

1   zzAyzAEzAEz nnnn  Если 

обозначим  ,nnn xz , то вычитая из последнего равенства (2.54), полу-

чим .0,0,)()(2 10102
2

1   nnnn AEAE  Нетрудно 

доказать, что 




 
n

i
i

in
n AEin

2

.))(1(  

Получим оценку погрешности метода (2.54) при счете с округлениями 

в энергетической норме гильбертова пространства. Имеем 

  













 








n

i
i

in
n

i
i

in
nnAn AEinAEinAA

22

2
))(1(,))(1(,
































 




ii

n

i

inAEinA ,))(1( 2

2

2

 

=  

2

20

( 1)(1 ) ,

M n
n i

i i
i

n i d E




 
       

  
 . 

Т. к.  0,5 4 ,  то 

2
2 2 5 ( 1)

,
4 2

n A

n n 
    

 
 где i

i

 sup . Отсюда, 

имеем 
1 2

,
( 1)

(5 )
4

n n nA A

n n
z x 


      . 

Таким образом, с учетом вычислительных погрешностей получим 

оценку погрешности трехслойной итерационной процедуры (2.54) в энер-

гетической норме гильбертова пространства 

  AnnAnAn zxxxzx ,,  

      1 21 2 1 2 3 2

1 2 1 2 1 2 1 2

1 4 ( 1)

( 1)
3 ( 1) (5 ) , 1.

4

e e e n x

n n
n n

     


      
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2.2.3.  Правило останова по невязке 

Априорный выбор числа итераций n в исходной норме гильбертова 

пространства (подраздел 2.2.1) получен в предположении, что имеется до-

полнительная информация на гладкость точного решения x уравнения  

(2.1) – его истокообразная представимость. Однако обычно сведения  

об истокообразности искомого решения неизвестны, и тем самым приве-

денные в подразделе 2.2.1 оценки погрешности оказываются непримени-

мыми. Тем не менее, метод (2.54) можно сделать вполне эффективным, ес-

ли воспользоваться следующим правилом останова по невязке, аналогич-

ным [20– 21; 37; 90]. Зададим 0  и определим момент m останова ите-

рационного процесса (2.54) условием (2.20). 

  Предполагаем, что при начальных приближениях ,0x  и 1,x   невязка 

достаточно велика, больше уровня останова  . Покажем возможность 

применения правила (2.20) к методу (2.54). Рассмотрим семейство функ-

ций 1( ) 1 (1 )n
ng       


1(1 ) .nn   


 Нетрудно показать, что для 

)(ng  выполняются условия 

  ,
4

5
0,,1,1

4

5
)(sup

0 M
AMnngn

M




                 (2.55) 

     ,
4

5
0,2)(1sup

0 M
gn

M




                                   (2.56) 

 ,20,,0(,,0)(1 MMngn                       (2.57) 

    .
4

5
0,0,1,12)(1sup

0 M
snn

e

s
sg s

s

n
s

M











 


  (2.58) 

Аналогично подобным леммам из подраздела 2.1.4 доказываются сле-

дующие леммы. 

Лемма 2.6. Пусть * 0, .A A A M    Тогда для любого Hw  

.,0))((  nwAAgE n  

Лемма 2.7. Пусть * 0, .A A A M    Тогда для любого v )(AR   име-

ет место соотношение  ( 1) ( ) 0s s
nn A Е Аg А v    при  n  ,  .0  s                            

 Лемма 2.8. Пусть * 0, .A A A M    Если для некоторых  

 nnk const и )(0 ARv   при k  имеем   ,0)( 0  vAAgEAw
knk  

то   .0)( 0  vAAgEv
knk  

Леммы 2.6–2.8 использовались при доказательстве следующих теорем.  
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Теорема 2.19. Пусть MAAA  ,0*  и пусть момент останова 

)(mm  в методе (2.54) выбирается по правилу (2.20). Тогда xxm ,   

при 0 .  

Теорема 2.20. Пусть выполнены условия теоремы 2.19 и пусть 

0,  szAx s . Тогда справедливы оценки  ,
)2(

)3(1
2)(

)1(1 



















s

b

zs

e

s
m  

  




 )1(1)1(
),( )2(2

)1(1 sss
m zbxx

s

 

.
)2(

)3(1
1

4

5
)1(1


































s

b

zs

e

s
                          (2.59) 

Доказательство теорем 2.19–2.20 аналогично доказательству подобных 

теорем из подраздела 2.1.4. 

 Замечание 2.6. Порядок оценки (2.59) есть  )1(  ssO  и он оптимален 

в классе задач с истокопредставимыми решениями 0,  szAx s  [21]. 

 Замечание 2.7. Хотя формулировка теоремы 2.20 дается с указани-

ями степени истокопредставимости s и истокопредставляющего эле-

мента z, на практике их значение не потребуется, т. к. они не содержат-

ся в правиле останова (2.20). Тем не менее в теореме 2.20 утверждается, 

что будет автоматически выбрано количество итераций m, обеспечива-

ющее оптимальный порядок погрешности. Но даже если истокопредста-

вимость точного решения отсутствует, останов по невязке (2.20), как 

показывает теорема 2.19, обеспечивает сходимость метода, т. е. его ре-

гуляризующие свойства. 
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2.3. Итерационный метод явного типа решения операторных  

уравнений в гильбертовом пространстве 

2.3.1.  Сходимость метода в случае априорного выбора числа итераций 

 2.3.1.1.  Сходимость при точной правой части 

Решается задача из раздела 2.1. Предлагается явная итерационная 

схема 

  .,0, 0
1

1 NkxyAxAEx k
n

k
n  
                   (2.60) 

В случае приближенной правой части уравнения (2.1) метод (2.60) примет вид 

   .,0, ,0
1

,,1 NkxyAxAEx k
n

k
n  


             (2.61) 

 Этот метод для решения некорректных задач впервые предложен  

в работе [87], а частные случаи этого метода изучались в работе [159] при 

ограниченном операторе 1A , т. е. для корректной задачи. Как нетрудно 

увидеть, метод (2.61) обобщает явный метод простой итерации Ландвебе-

ра [158]. Последний получается из (2.61) при 1k .  

 Воспользовавшись интегральным представлением положительно 

определенного самосопряженного оператора A и формулой (2.60), по ин-

дукции получим  
 

M
nk

n ydExx

0

1 )1( , где AM  , E – спек-

тральная функция оператора A. Отсюда легко выводится сходимость про-

цесса (2.60) при n  для 0 2 .kM    

2.3.1.2. Сходимость при приближенной правой части  

 Итерационный процесс (2.61) является сходящимся, если нужным  

образом выбирать число итераций n в зависимости от уровня погрешности 

 . Справедлива  

 Теорема 2.21. Итерационный процесс (2.61) сходится при 0 2 ,kM    

если выбирать число итераций n в зависимости от   так, чтобы 

01 kn при .0, n  

 Доказательство теоремы 2.21 аналогично доказательству подобной 

теоремы из раздела 2.1. При этом, при условии  kM450   легко  

показываются оценки:  

1,
4

5 11
)1(

, 











 nknxx kk
kk

nn  , 

2,11
,   nknxx kk

nn . 
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2.3.1.3.  Оценка погрешности 

  Скорость сходимости метода (2.61) будем оценивать при дополни-

тельном предположении о возможности истокообразного представления 

точного решения  x уравнения (2.1), т. е. .0,  szAx s  Тогда zAy s 1  

и, следовательно, получим   zdExx
M nks

n  

0

1 . Для оценки 

nxx   найдем максимум модуля подынтегральной функции 

nksf )1()(  . Нетрудно показать, что при условии  kM450   

справедливо неравенство 1,)(   nzeknsxx ksks
n . Таким образом, 

общая оценка погрешности метода итераций (2.61) запишется в виде  

 ,nxx  ,1,)(
4

5
)( 1

)1(












 nnkzekns k

kk
ksks             (2.62)   

 ,nxx  .2,)()( 1   nnkzekns kksks                    (2.63) 

Для минимизации оценки погрешности (2.63) вычислим ее правую 

часть в точке, в которой производная от нее равна нулю; в результате по-

лучим априорный момент останова 
)1()1()1(1)1()()1()(

опт
  skskssskssks zeksn  

и оптимальную оценку погрешности явного метода итераций (2.61) 

, оптnx x    .2,)1( )1()1(1))1(())1(()1(   nzekss ssssksskks  

 Приведем погрешность метода (2.61) при счете с округлениями. 

Пусть ,nx   точное значение, полученное по формуле (2.61), а nz  – значе-

ние, полученное по той же формуле с учетом погрешностей вычисления 

n , т. е.   0, 0
1

1  


 zyAzAEz n
k

n
k

n . Оценка погрешности 

метода (2.61) в этом случае имеет вид 

  2,)1(
1

,, 









  nnnkz

ekn

s
zxxxzx

k
ks

nnnn ,  

 где i
i

 sup . 

 Очевидно, что оптимальная оценка погрешности не зависит от пара-

метра  , но от него зависит nопт. Поэтому для уменьшения nопт и, значит, 

числа итераций для получения приближенного решения, следует брать   

по возможности большим, удовлетворяющим условию  kM450  ,  

и так, чтобы nопт было целым.  
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 Оценку 
опт, nxx  можно оптимизировать по k . Для этого произ-

водную по k от )1()1(

)1(

)()( 







 sk

s

sk

ks

eksk  приравняем к нулю. Получим 

)1(
)(

2

)1()1(

)1(











sk

s
eks sk

s

sk

ks

0ln 









k

s
k . Отсюда видно, что оптимальное  

k должно удовлетворять равенству 
k

s
k ln . Но k должно быть целым чис-

лом, поэтому, как показывают расчеты, для 5s   kопт = 1, для 6 27s   

kопт = 2. Следовательно, при 6 27s   предпочтительно использовать ме-

тод (2.61) при k = 2, а при 5s метод простой итерации Ландвебера.  

2.3.2. Сходимость метода в случае неединственного решения 

 Пусть теперь 0  собственное значение оператора А (т. е. уравнение 

(2.1) имеет неединственное решение). Положим  ( ) 0 ,N A x H Ax     

и пусть )(AM   ортогональное дополнение ядра )(AN  до H. Пусть далее 

xAP )(   проекция Hx  на )(AN , а xAП )(   проекция Hx  на )(AM . 

Справедлива 

 Теорема 2.22.   Пусть 0, , 0 2 .kA y H M      Тогда для итераци-

онного процесса (2.60) верны следующие утверждения: 

 а) ;inf),(,)( yAxyAIyAxyAПAx
Hx

nn 


 

 б) метод (2.60) cходится тогда и только тогда, когда уравнение 

yAПAx )(  разрешимо. В последнем случае *
0)( xxAPxn  , где 

*x – 

минимальное решение уравнения. 

 Доказательство теоремы аналогично доказательству подобной теоре-

мы из раздела 2.1. Т. к. 00 x , то 
*xxn  , т. е. процесс (2.60) сходится  

к нормальному решению, т. е. к решению с минимальной нормой. 

2.3.3. Сходимость метода в энергетической норме 

  Здесь и ниже предполагается, что решение уравнения (2.1) един-

ственно. Изучим сходимость метода (2.61) в энергетической норме гиль-

бертова пространства  xAxx
A

, , где .x H  При этом, как обычно, 

число итераций  n  нужно выбирать в зависимости от уровня погрешности 

 . Полагаем 0,0 x  и рассмотрим разность      ,, nnnn xxxxxx . 

С помощью интегрального представления самосопряженного операто- 

ра A получим 
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
2

Anxx    xxEd
nk

M

,1
2

0

 , 

 

2

, Ann xx      
 







 yyyyEd

nk
M

,11
2

0

1 , 

 где AM  . Оценив подынтегральные функции, получим при условии 

 kM450   оценки погрешности для итерационного метода (2.69)  

в энергетической норме:  

  1,)(
4

5
2 )2(1

)2()12(
)2/(1

, 












 nnkxeknxx k
kk

k

An ,  

    2,2
)2/(1)2/(1

, 


 nnkxeknxx
kk

An . 

 Следовательно, если в процессе (2.61) выбирать число итераций  

)( nn , зависящим от   так, чтобы 0,,0)2(1  nn k
, то полу-

чим метод, обеспечивающий сходимость к точному решению в энергети-

ческой норме.  Итак, справедлива 

 Теорема 2.23. При условии  kM450   итерационный метод 

(2.61) сходится в энергетической норме гильбертова пространства, если 

число итераций n выбирать из условия 0,,0)2(1  nn k
. Для 

метода (2.61) справедливы оценки погрешности 

   1,)(
4

5
2 )2(1

)2()12(
)2/(1

, 












 nnkxeknxx k
kk

k

An ,    (2.64)         

    2,2
)2/(1)2/(1

, 


 nnkxeknxx
kk

An .                 (2.65) 

 Для минимизации оценки погрешности (2.65) вычислим ее правую 

часть в точке, в которой производная от нее равна нулю;  

в результате получим 
опт

, Anxx    2/12/1)4(1)4/(12)4/(122 xek kkkk     

и  nопт
  2/12  kk

kk xe 211 )2()(  . 

 Отметим тот факт, что для сходимости метода (2.61) в энергетической 

норме достаточно выбирать число итераций )( nn  так, чтобы 

0,,0)2(1  nn k
. Однако nопт =  kO  , т. е. nопт относительно   

имеет порядок 
k , и такой порядок обеспечивает сходимость метода ите-

раций (2.61).  

Таким образом, использование энергетической нормы позволило по-

лучить априорную оценку погрешности для метода (2.61) и априорный 

момент останова nопт без дополнительного требования истокообразной 
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представимости точного решения, что делает метод (2.61) эффективным  

и тогда, когда нет сведений об истокопредставимости точного решения x 

уравнения (2.1). 

Исследован вопрос о том, когда из сходимости метода (2.61) в энерге-

тической норме следует его сходимость в обычной норме гильбертова 

пространства H. Эти условия дает  

Теорема 2.24. Если выполнены условия 1) ,0,  nxΕ  2) ,0xΕ  где  




 

0

,dΕΕ    фиксированное положительное число ),0( A  то  

из сходимости ,nx   к  x в энергетической норме следует сходимость  

в обычной норме гильбертова пространства. 

Доказательство теоремы аналогично доказательству подобной теоремы из 

раздела 2.1. 

2.3.4.  Правило останова по невязке 

  Для получения априорного выбора числа итераций n потребовалось 

знание истокопредставимости точного решения x уравнения (2.1). По-

скольку обычно сведения об истокопредставимости искомого решения не-

известны, то приведенные в подразделе 2.3.1 оценки погрешности оказы-

ваются неприменимыми. Тем не менее, метод (2.61) можно сделать вполне 

эффективным, если воспользоваться правилом останова по невязке (2.20).  

Предполагаем, что при начальном приближении ,0x  невязка достаточно 

велика, больше уровня останова  , т. е. .,0   yAx  Покажем, что пра-

вило останова по невязке применимо к методу (2.61). Рассмотрим семей-

ство функций  






  nk

ng 11)( 1  из подраздела 2.3.1. Нетрудно 

показать, что для )(ng  выполняются условия 

  ,
4

5
0,,0,45)(sup 11)1(

0
k

kkkk
n

M M
AMnnkg 





   (2.66) 

,20,1)(1sup
0

k
n

M

Mg 


                        (2.67) 

1 ( ) 0, , (0, , 0 2 ,k
ng n M M                   (2.68) 

k

ks
ks

n
s

M M
snn

ek

s
g

4

5
0,0,0,)(1sup

0











 



.  (2.69) 

Аналогично леммам 2.1, 2.2 и 2.3 доказываются следующие леммы: 

Лемма 2.9. Пусть  * 0 , .A A A M    Тогда для любого Hw  

  .,0)(  nwAAgE n  
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 Лемма 2.10.  Пусть  * 0, .A A A M     Тогда для любого  )(ARv  

имеет место соотношение   .0,,0)(  snvAAgEAn n
sks

              

Лемма 2.11. Пусть * 0, .A A A M    Если для некоторых 

 nnp соnst и )(0 ARv   при p  имеем   ,0)( 0  vAAgEAw
pnp      

то   .0)( 0  vAAgEv
pnp  

Леммы 2.9–2.11 использовались при доказательстве теорем: 

Теорема 2.25.  Пусть MAAA  ,0*  и пусть момент останова 

)( mm  в методе (2.69) выбирается по правилу (2.20). Тогда  xxm ,   

при 0 . 

 Теорема 2.26.  Пусть выполнены условия теоремы 2.25  и пусть 

0,  szAx s
, тогда справедливы оценки  ,

)1(

1
1)(

)1( 















sk

b

z

ek

s
m  

  



)1(1)1(

),( )1(
sss

m zbxx   

     .
)1(

1
1)45(

1
)1(

1)1( 
































k
sk

kkk

b

z

ek

s
k           (2.70) 

Доказательство теорем 2.25–2.26 аналогично доказательству подобных    

теорем из подраздела 2.1.4. 

Замечание 2.8. Порядок оценки (2.70) есть  )1(  ssO  и, как следует 

из [21], он оптимален в классе задач с истокопредставимыми решениями 

.0,  szAx s
 

Замечание 2.9.  Знания степени истокопредставимости s и истоко-

представляющего элемента z на практике не потребуются, т. к. они  

не содержатся в правиле останова по малости невязки (2.20).  

2.3.5. Правило останова по соседним приближениям в итерационном 

методе для уравнений с несамосопряженным  оператором  

 Решается задача из подраздела 2.1.5. Используем  явную схему метода 

итераций  

     

.

4

5
0,,

,

*
0

**1**
1

k

n

kk

n

k

n

AA

HzNk

uAAEyAAAzAAEz




















 





       (2.71) 
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Здесь nu  – ошибки вычисления итераций, nu . Обозначим   

  ,* k
AAEC     .*1* AAAB

k 
  Для простоты считаем, что  1A .  

Метод (2.71) примет вид .1 nnn CuByCzz    В работе [2–А] показано, 

что метод (2.71) с правилом останова (2.37) сходится, и получена оценка 

для момента останова. Справедливы леммы. 

 Лемма 2.12. Пусть приближение nw  определяется равенствами 

,00 zw   ,0,1  nCuByCww nnn  тогда справедливо неравенство 

.
21

0

2
0

2

0
1 




 

n

k
k

n

k
kkk CuxwCuww  

Лемма 2.13. При любом Hw 0  и произвольной последовательности 

ошибок  ,nu  удовлетворяющих условию nu , выполнено неравенство  

.2lim 1  


Cww nn
n

 

Леммы доказываются аналогично подобным леммам из подраздела 2.1.5.  

Теорема 2.27.  Пусть уровень останова ),(   выбирается как 

функция от уровней   и   норм погрешностей  yy  и  nu . Тогда спра-

ведливы следующие утверждения: 

а) если ,2),(  C  то момент останова m  определён при любом 

начальном приближении Hz 0  и любых y  и nu , удовлетворяющих усло-

виям ;,   nuyy  

б) если  ,2),(  CB  то справедлива оценка  

  
;

2

2
0






BCB

xz
m  

в) если, кроме того, 0,,0),(   и  ,),( pCBd   где 

),1,0(,1  pd  то  .0lim
0,




xzm  

Доказательство теоремы 2.27 аналогично доказательству подобной теоре-

мы из подраздела 2.1.5. 
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2.4. Сходимость в гильбертовом пространстве метода простой  

итерации с попеременно чередующимся шагом решения линейных 

уравнений 

 Как известно, погрешность метода итерации с постоянным [158]  

  0, ,0,,,1   xAxyxx nnn  или переменным [56] шагом зависит 

от суммы итерационных шагов, и притом так, что для сокращения числа 

итераций желательно, чтобы итерационные шаги были как можно 

большими. Однако на эти шаги накладываются ограничения сверху  

[55–56]. Возникла идея попытаться ослабить эти ограничения. Это удалось 

сделать, выбирая для шага два значения   и   попеременно, где  

  уже не обязано удовлетворять прежним требованиям. 

2.4.1.  Сходимость метода в случае априорного выбора числа итераций 

Для решения уравнения  Ax = y  из раздела 2.1 предлагается явная 

итерационная процедура с попеременно чередующимся шагом 

,0),( 011   xyAxxx nnnn  

....,2,1,0,, 2212   nnn                                   (2.72) 

 В случае приближенной правой части уравнения y    yy  со-

ответствующие методу (2.72) итерации примут вид 

,0),( ,0,1,,1   xyAxxx nnnn  

....,2,1,0,, 2212   nnn                                 (2.73)                                    

Далее будем считать, что 1A . 

 Методы (2.72)–(2.73) впервые были предложены в работе [71], в ко-

торой показана сходимость обоих методов в исходной норме гильбертова 

пространства. Для их сходимости в работе [71] требуется, чтобы при 

0,20   было 

1)1()1(                                         (2.74) 

для любого  1,0 . Условие (2.74) равносильно совокупности двух  

условий  

   8
2 ,                                             (2.75) 

 .                                                 (2.76) 

Доказано, что итерационный процесс (2.73) сходится при условиях (2.75), 

(2.76) и  20  , если выбирать число итераций n в зависимости от  

  так, чтобы ,0n при .0, n  В предположении, что точное ре-

шение x является истокообразно представимым с некоторым показателем 

0s , получена [71] при условиях 20  , (2.75), 
16

1
, 
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
2

3
 следующая оценка погрешности метода итераций (2.73): 

     .
2

, 



n

znsxx
ss

n   Оптимальная оценка погрешности 

для явного итерационного метода (2.73) имеет вид , оптnx x    

)1(1)1()1(2)1(
 

sssss zs  и достигается при 

 nопт  =

1
)1(1)1(1)1(

2
2











 


ssss zs .                (2.77) 

Сравним  метод  (2.73)  с  методом  Ландвебера [158]. Оптимальная 

оценка погрешности метода (2.73) за счет неточности в правой части 

уравнения оказывается несколько хуже, чем аналогичная оценка для мето-

да [158], и совпадает с ней лишь в пределе при .n  

Таким образом, метод (2.73) не дает преимущества в мажорантных 

оценках по сравнению с методом [158]. Но он дает выигрыш в следующем. 

В методе Ландвебера [158] на шаг   накладывается ограничение – нера-

венство 25,10  , а в этом же методе с переменным шагом [56] допуска-

ется более широкий диапазон 20  n . В методе (2.73) из условий (2.75) 

и (2.76) следует, что 4
2

0 


 . Следовательно, выбирая   и   соответ-

ствующим образом, можно сделать  nопт в методе (2.73) примерно втрое 

меньшим, чем для метода простой итерации Ландвебера, и вдвое мень-

шим, чем для того же метода с переменным шагом.  

 Поэтому, используя метод (2.73) для достижения оптимальной точно-

сти, достаточно сделать итераций соответственно в три или два раза 

меньше, чем методами простых итераций с постоянным [158] или пере-

менным [56] шагом.  

2.4.2. Правило останова по невязке 

 Априорный выбор числа итераций n получен в предположении, что 

точное решение x уравнения Ax = y истокообразно представимо. Однако 

обычно сведения об истокообразности искомого решения неизвестны,  

и тем самым приведенные в подразделе 2.4.1 оценки погрешности оказы-

ваются неприменимыми. Тем не менее, метод (2.73) можно сделать вполне 

эффективным, если воспользоваться следующим правилом останова по 

невязке (2.20).  

 Предположим, что при начальном приближении невязка достаточно 

велика, а именно больше уровня останова, т. е.   yAx ,0 . Покажем 

возможность применения правила останова по невязке (2.20) к явному ме-
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тоду итераций (2.73). Рассмотрим для четных n семейство функций 

 .)1()1(1)( 221 nn
ng   Нетрудно показать, что при условиях 

(2.75), 
16

1
, 

2

3
  и  20   для )(ng  выполняются 

утверждения: 

,0,
2

)(
)(sup

10







n
n

gn  

,0,1)(1sup
10




ngn  

 ,1,0,,0)(1  ngn  

  .0,0,)()(1sup
10






snnsg
ss

n
s  

Аналогично подобным леммам из подраздела 2.1.4 доказываются сле-

дующие леммы. 

Лемма  2.13. Пусть 1,0*  AAA . Тогда для Hw  

.,0))((  nwAAgE n  

 Лемма 2.14.  Пусть 1,0*  AAA . Тогда для )(ARv  имеет ме-

сто соотношение .0,,0))((  snvAAgEAn n
ss  

  Лемма 2.15. Пусть 1,0*  AAA . Если для некоторых 

constnnk   и )(0 ARv   при k  имеем ,0))(( 0  vAAgEAw
knk   

то .0))(( 0  vAAgEv
knk  

Леммы 2.13–2.15 использовались при доказательстве теорем: 

Теорема 2.28. Пусть 1,0*  AAA  и пусть момент останова 

)(mm  (m – четное) в методе (2.73) выбирается по правилу (2.20), то-

гда xxm ,  при 0 . 

 Теорема 2.29. Пусть выполнены условия теоремы 2.28 и пусть 

0,  szAx s . Тогда справедливы оценки ,
)1(

1
2)(

)1(1 















s

b

zs
m  

  



)1(1)1(

),( )1(
sss

m zbxx 































 )1(1

)1(

1
2

2

s

b

zs
. (2.78) 

Доказательство теорем 2.28–2.29 аналогично доказательству подобных 

теорем из подраздела 2.1.4.  
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 Замечание 2.10.  Порядок оценки (2.78) есть 














 1s

s

O  и, как следует 

из работы [21], он оптимален в классе задач с истокопредставимыми 

решениями 0,  szAx s . 

 Замечание 2.11.  Хотя формулировка теоремы 2.29 дается с указа-

ниями степени истокопредставимости s и истокопредставляющего эле-

мента z, на практике их значение не потребуется, так как они не содер-

жатся в правиле останова по невязке (2.20).  

2.4.3. Сходимость метода в случае неединственного решения  

 Пусть теперь 0  собственное значение оператора А (т. е. уравнение 

(2.1) имеет неединственное решение). Положим  ( ) 0 ,N A x H Ax     

и пусть )(AM   ортогональное дополнение ядра )(AN  до Н. Пусть далее 

xAP )(   проекция Hx  на ( ),N A  а xAП )(   проекция Hx  на ( ).M A  

Справедлива 

Теорема 2.30.  Пусть ,20,,1,0*  HyAAA    , 

   8
2 , тогда для  процесса (2.72) верны следующие утверждения: 

    а) ;inf),(,)( yAxyAIyAxyAПAx
Hx

nn 


  

    б) метод (2.72) cходится тогда и только тогда, когда уравнение 

yAПAx )(  разрешимо; в последнем случае  0)( xAPxn
*x , где 

*x    

минимальное решение операторного уравнения (2.1). 

Доказательство. Применив оператор A к (2.72), получим 

  ,1 AyxAEAAx nnnn    где     .yAПyAPy   Т. к.   ,0yAAP   

то   1 nnn xAEAAx +   .yAAПn  Отсюда   

        yAAПxAEAyAПAx nnnn 1  yAП =  

            yAПAxAEyAПAExAEA nnnnn 11  

       yAПAxAEAEAE nn   011 ... . 

Обозначим   ,yAПAxnn   тогда n =      011 ...   AEAEAE nn . 

Имеем 0A  и A  положительно определен в  ,AM  т. е.   0, xAx  для 

любого  .AMx  Т. к. ,20      8
2  и  , то 11   

и    111  . Воспользовавшись интегральным представлением са-

мосопряженного оператора A, получим 

      

1

0

021 1...11 dEnn =     011
1

0

  dE
ml

. 
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Здесь lm,  натуральные показатели, где .nml   Считаем, что 











2

n
ml  или .1ml  Справедлива цепочка неравенств 

     


0

0

0

11 dE
ml

n      


0

0

1

11 dE
ml

 

     00
2

0 000
EqE n

, 

при 0 .,0  n  Здесь 
 

   .111max
1,0




q  Следовательно, 

,0n  откуда  yAПAxn   и    HAyAП  . Таким образом, 

     yAIyAPyyAПyAxn ,  (по теореме 2.1 из работы [130]). 

Итак, утверждение  а)  доказано.  

   Докажем  б). Пусть процесс (2.72) сходится. Покажем, что уравнение 

 yAПAx   разрешимо. Из сходимости   Hxn    к  Hz   и из  а) следует, 

что   ,yAПAzAxn   следовательно,    ,HAyAП   и уравнение 

  AxyAП   разрешимо. 

   Пусть теперь    HAyAП   (уравнение  yAПAx   разрешимо), сле-

довательно,   , AxyAП  где x  минимальное решение  уравнения 

yAx   (оно единственно в M   .)A   Тогда метод (2.72) примет вид 

          111 nnnnnnnnn xAEyAПxAEyxAEx  

+  Axn   11 


  nnn xxAx . 

Разобьем последнее равенство на два, ибо     nnn xAПxAPx  . Тогда  

            ,0111 xAPxAPxxAAPxAPxAP nnnnn  


  

так как    .01  


nxxAAP  

 Кроме этого,            


 111 nnnnn xAПxxAAПxAПxAП  

      


1nn xAПxAПA     ,11


  xxAПAxAП nnn  т. к.  AMx   

и, следовательно,   .  xxAП  Обозначим    ,1


  xxAП nn  тогда 

   xxAП n     


  xxAПAxxAП nnn 11 . 

Отсюда имеем  

11   nnnn A        ,... 0111   AEAEAEAE nnnn  

и, аналогично n ,  можно показать, что .,0  nn  Таким образом, 

  . xxAП n  Следовательно,       .0
 xxAPxAПxAPx nnn  Теоре- 

ма 2.30 доказана. 
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 Замечание 2.12.  Так как у нас ,00 x  то , xxn  т .е. итерацион-

ный процесс (2.72) сходится к нормальному решению, т. е. к решению  

с минимальной нормой. 

 Замечание 2.13. Уравнение yAx   с действующим в гильбертовом 

пространстве H оператором, не обладающим свойством самосопряжен-

ности или положительности, может быть сведено к решению уравнения 

yAAxA **   уже с положительным и самосопряженным оператором 

AA* . Вышеописанные во второй главе результаты для операторного 

уравнения (2.1) аналогичны результатам для уравнений yAx   уже с про-

извольным действующим в гильбертовом пространстве оператором A . 
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ГЛАВА 3 

НЕЯВНЫЕ ИТЕРАЦИОННЫЕ МЕТОДЫ  

РЕШЕНИЯ ОПЕРАТОРНЫХ УРАВНЕНИЙ  

С ПРИБЛИЖЕННОЙ ПРАВОЙ ЧАСТЬЮ 
 

 В данной главе изучаются неявные итерационные методы решения 

операторных уравнений первого рода в гильбертовом пространстве. Дока-

заны соответствующие теоремы о сходимости этих методов, получены 

оценки погрешности в случае априорного выбора числа итераций. Изучен 

случай неединственного решения. Доказана сходимость методов в энерге-

тической норме гильбертова пространства. Обоснована возможность ис-

пользования правила останова по невязке и правила останова по соседним 

приближениям, что делает предложенные методы эффективными и тогда, 

когда нет сведений об истокопредставимости точного решения. Дается 

сравнительная характеристика этих методов, показано их преимущество по 

сравнению с явными методами.  

3.1. Регуляризация операторных уравнений при помощи неявного 

итерационного метода 

3.1.1. Cходимость метода в случае априорного выбора числа итераций 

В разделе предлагается регуляризатор некорректных задач, описывае-

мых  операторными уравнениями первого рода, в виде неявного итераци-

онного процесса, который дает возможность сократить число итераций для 

достижения оптимальной точности по сравнению с ранее известными яв-

ными методами итераций решения уравнения Ax = y.  

Рассматривается задача из раздела 2.1. Для ее решения используется 

метод, представляющий собой семейство итерационных схем, зависящих 

от параметра k: 

     0
1

1 2 , 0,k k k
n nE A x E A x A y x k N
        .        (3.1) 

Предполагая существование единственного точного решения x урав-

нения Ax = y при точной правой части y, ищем его приближение ,nx  при 

приближенной правой части   yyy , . В этом случае метод итера-

ций (3.1) примет вид  

    NkxyAxAExAE k
n

k
n

k  


 ,0,2 ,0
1

,,1 .   (3.2) 

Ниже под сходимостью метода (3.2) понимается утверждение о том, 

что приближения (3.2) сколь угодно близко подходят к точному решению х 

операторного уравнения (2.1) при подходящем выборе n и достаточно ма-

лых  , т. е. если   0inflim ,
0








  


n
n

xx . 
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3.1.1.1.  Сходимость метода при точной правой части уравнения 

Теорема 3.1. Итерационный метод (3.1) при условии 0  сходится 

в исходной норме гильбертова пространства. 

Доказательство. По индукции нетрудно показать, что  

    .1 yAEAEEAx
nknk

n 








 

Используя интегральное представление самосопряженного оператора 

 
M

dEA

0

(  EAM , спектральная функция), имеем  

    

















 


 ydEyAEAEAxx

n
M

k

knknk
n

0

11

1

1
 

.
1

1

1

1 1

0

1 ydEydE

n
M

k

k
n

k

k











 



































  

Потребуем, чтобы при  M,0  выполнялось  

0 .                                                    (3.3) 

Тогда 1
1

1





q

k

k

 и, следовательно, 

















 




 ydE

n
M

k

k

1

11 1
M

nq dE y




   

0,

M
n nq dE x q x n



    . 

,0
1

1

00

1 

















 








 xExdEydE

n

k

k

 т. к. при 0  E  сильно стре-

мится к нулю в силу свойств спектральной функции. Таким образом, дока-

зано, что при условии (3.3) метод (3.1) сходится. Теорема 3.1 доказана. 

3.1.1.2. Оценка скорости сходимости 

Скорость убывания к нулю nxx   неизвестна и может быть сколь 

угодно малой. Для ее оценки предположим, что точное решение уравнения 

Ax = y истокообразно представимо, т. е. 0,  szAx s
. Тогда имеем 

zdExx

n
M

k

k
s

n  


















0 1

1
.  
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Используя результаты из пункта 2.3.1.3, получим оценку для подын-

тегральной функции:  

      ksnks

n

k

k
s eknsf

ks 



















 1

1

1
. 

Отсюда   zeknsxx
ksks

n


 . 

Но может оказаться, что локальный максимум внутри [0, М] не будет 

являться глобальным, поэтому будем учитывать значение функции  f  

на правом конце отрезка, т. е. в точке M  (на левом конце отрезка 

  00 f ). Тогда справедливо 

  z
M

M
Meknsxx

n

k

k
sksks

n





































1

1
,max . 

3.1.1.3.  Сходимость при приближенной правой части уравнения 

Покажем, что при условии (3.3) метод (3.2) можно сделать сходящим-

ся, если нужным образом выбрать число итераций n в зависимости  

от уровня погрешности   приближенной правой части уравнения Ax = y. 

Рассмотрим разность    , , .n n n nx x x x x x       По доказанному 0,nx x   

.n  Убедимся, что  ,nn xx  можно сделать сходящимся к нулю. Вос-

пользовавшись интегральным представлением самосопряженного операто-

ра, имеем  

     

 

1
,

1

0

1
1 .

1

n n
k k

n n

nM k

k

x x A E E A E A y y

dE y y




 


 

 
        

 

             



 

Оценим при условии (3.3) сверху подынтегральную функцию 

 ng 0
1

1
11 
































 

n

k

k

. 

При п = 1  
k

k

g







1

2 1

1 . Нетрудно показать, что   .2max
1

1
][ ,0

k

g
M

  

Покажем по индукции, что при Nn  

   
kk

kngg nn

11

2  .                                        (3.4) 
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При п = 1 неравенство (3.4) проверено выше. В дальнейшем будем 

считать 2n . Предположим, что (3.4) верно при п = т, т. е. 

  kk
m kmg 112   и рассмотрим  

 
 
 

 
 

 
 






































































 1

1

11

1

1

1
1

1

1
1

1

1
1

1

1
1

mk

mk

mk

mk

mk

mk

mg    

 
 

.
1

2

1

1
2

1

1
1

1
1 11

k

k
m

k

k

mk

mk kk

km














































 

Поэтому  

 
 

 
 mkk

mk

kmk

m

kkkk

kmkmg 




 





 122

1

21
2 1

1

1

1

1111

. 

Покажем, что   

    kmkk
kkk

mkkm 11
111

11   ,                   (3.5) 

что равносильно неравенству 
     kmm kkkmkkk

 

11 11

. Имеем 























































32 !3

2
1

1
11

!2

1
11

1
1

1
11

m

kkk

m

kk

km
m

m
mm kkk

 

 

 






















































124 12...321

22
1

...1
11

...
!4

3
1

2
1

1
11

pmp

p
kkk

m

kkkk
 

   

 
....

212...321

12
1

22
1

...1
11

2












































pmpp

p
k

p
kkk

 

Покажем, что каждый положительный член ряда больше модуля следую-

щего за ним отрицательного члена, т. е. 

 

 

   

  pp mpp

p
k

p
kkk

mp

p
kkk

212 212...321

12
1

22
1

...1
11

12...321

22
1

...1
11






















































,  
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что равносильно 

 

pm

p
k

2

12
1

1



  или 1
2

1
12





pm

k
p

, а это уже очевидно 

при 1m . Следовательно,  






 


222

11
11

mk

k

km
mm kk

. 

Вернемся к доказательству неравенства (3.5). Поскольку (3.1.1.2) 

   
 

 
 1 1

11 1 ,
k k k km

k k k km e
  

      то вместо (3.5) докажем более 

сильное неравенство 

        1 1 1 1

2 2

1 1
1

2

k k k k k k k k
k km e km

km k m

     
     

 
.         (3.6) 

Преобразуем его: 
 

   
1

1 1 11 1 1
1

2

k k
k k k k kk k

m e km
k km km


       

    
   

. 

Поскольку 

 
        kkkkkkkk

kk

emem
k

k 1111
1

1 









 
, то до-

кажем более сильное неравенство 
     1 1 1 1

1
2

k k k k k k k
m e m

km

       
  

 
, 

что то же самое  
  2,

2

1
11 1 







 
  m

km

k
e kk

. 

При k = 1 имеем 1   1, следовательно, последнее неравенство спра-

ведливо при k = 1. При 2k  
4

3

2

1
1 




km

k
, отсюда 

  1
4

3

2

1
1 211 







 
 e

km

k
e kk

.  

Значит, неравенство (3.6) выполняется, и тем более справедливо нера-

венство (3.5). Таким образом, для 1n  справедлива оценка (3.4), т. е. 

  1,2 11  nkng kk
n . Отсюда 1,2 11

,   nknxx kk
nn . 

Поскольку  
k

nnnnn

k

knxxxxxxxx 1
,,

1

2   

и ,0 nxx  n , то для сходимости метода (3.2) достаточно выбрать 

n =  n  так, чтобы 
1 0, , 0.kn n    Итак, доказана 

Теорема 3.2. При условии (3.3) метод (3.2) сходится, если число ите-

раций п выбирать из требования 
1/ 0, , 0.kn n    

3.1.1.4.  Оценка погрешности метода и ее оптимизация 

Запишем теперь общую оценку погрешности метода (3.2) 
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  ,, nnnn xxxxxx  

  .1,2
1

1
,max 11







































nknz
M

M
Mekns k

n

k

k
sks kks

 

Т. к. для достаточно больших п    ,
1

1 ks

ekns
M

M
M ks

n

k

k
s





















то для 

этих п справедлива оценка 

  1,2 11
, 



 nknzeknsxx kk
n

ksks

.                 (3.7) 

Следовательно, справедлива 

Теорема 3.3.  Если решение х уравнения Ax = y истокообразно пред-

ставимо, то при условии (3.3) для метода (3.2) справедлива оценка по-

грешности (3.7). 

Для минимизации оценки погрешности вычислим правую часть оцен-

ки (3.7) в точке, в которой производная от нее равна нулю: в результате 

получим априорный момент останова 

)1()1()1(1
)1()(

)1(
опт 2 


 








 skskss

sks
sk ze

k

s
n .             (3.8) 

Подставив оптn  в оценку (3.7), имеем 

)1(1)1())1((
))1(()1(

)1(

опт, 2)1(





 









ssssks
skks

ss
n ze

k

s
sxx . (3.9)    

Замечание 3.1. Оценка погрешности (3.9) имеет порядок  )1(  ssO  

и, как следует из [21], он является оптимальным в классе задач с истоко-

представимыми решениями 0,  szAx s
. 

Замечание 3.2. Оптимальная оценка (3.9) не зависит от  , но от па-

раметра   зависит оптn , поэтому для уменьшения числа итераций для 

получения приближенного решения следует брать 0  и таким, чтобы 

1оптn . Для этого достаточно выбрать  

)1()1()1(
)1()(

)1(2 


 







 skskss

sks
sk

опт ze
k

s
.     (3.10) 

Сравнение метода (3.2) с широко известным методом итераций Ланд-

вебера   0, ,0,,,1   xAxyxx nnn  [158] показывает, что порядки 

их оптимальных оценок одинаковы. Достоинство явных методов в том, что 

они не требуют обращения оператора, им необходимы только вычисления 

значений оператора на последовательных приближениях. В этом смысле 



  

 

105 

явный метод [158] предпочтительнее неявного метода (3.2). Однако неяв-

ный метод (3.2) обладает следующим важным достоинством. В явном ме-

тоде [158] на шаг   накладывается ограничение сверху – неравенство 

A4

5
0  , что может привести на практике к необходимости большого 

числа вычислений. В неявном методе (3.2) ограничений сверху на 0  

нет. Это позволяет считать 0  произвольно большим (независимо  

от A ). В связи с чем оптимальную оценку для неявного метода (3.2) мож-

но получить уже на первом шаге итераций. 

 Оценку 
опт, nxx  можно оптимизировать по k . Для этого произ-

водную по k от )1()1(

)1(

)()( 







 sk

s

sk

ks

eksk  приравняем к нулю. Получим 












)1(
)(

2

)1()1(

)1(

sk

s
eks sk

s

sk

ks

0ln 









k

s
k . Отсюда видно, что оптимальное k 

должно удовлетворять равенству 
k

s
k ln . Но ,k N  поэтому, как показы-

вают расчеты, для 5s  kопт = 1, для  6 27s   kопт = 2. 

3.1.1.5.  Погрешность в счете  

Рассмотрим погрешность метода при счете с округлениями. Пусть 

,nx  – точное значение, получаемое по формуле (3.3), а nz  – значение  

с учетом вычислительной погрешности, т. е. 

     0,2 0
11

1  


 zyAzAEAEz n
k

n
kk

n .      (3.11) 

Здесь n  – погрешность вычислений. Обозначим  ,nnn xz  и вычтем 

из формулы (3.11) равенство (3.2). Имеем 

    0, 0

1

1 


 nn
kk

n AEAE . 

Т. к. нулевые приближения равны нулю, то 00  . По индукции нетрудно 

получить, что  
 

 
1

1 1

0

n
n i n i

k k
n i

i

E A E A


    



      . 

В силу условия (3.3) и того, что ASp0 , справедливо 

   
1

1k kE A E A


   , поэтому , supn i
i

n      . 

Таким образом, с учетом вычислительной погрешности оценка по-

грешности неявного метода (3.2) запишется в виде  
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  1,2 11
,, 


 nnknzeknszxxxzx kkksks

nnnn . 

3.1.2.  Сходимость метода в случае неединственного решения 

Пусть теперь 0  собственное значение оператора А (т. е. уравнение 

(2.1) имеет неединственное решение). Обозначим через 

 0)(  AxHxAN , M(A) – ортогональное дополнение ядра N(A) до H. 

Пусть P(A)x – проекция Hx  на  N(A), а П(A)x – проекция Hx  на M(A). 

Справедлива 

       Теорема 3.4. Пусть 0,,0  HyA , тогда  для итерационного ме-

тода (3.1) верны следующие утверждения: 

а) ( ) , ( , ) infn n
x H

Ax П A y Ax y I A y Ax y


     ; 

б) итерационный метод (3.1) сходится тогда и только тогда, когда 

уравнение yAПAx )(  разрешимо. В последнем случае *
0)( xxAPxn  , 

где *x – минимальное решение. 

Доказательство. Применим оператор A к методу (3.1), получим 

  n
k xAEA    yAxAEA k

n
k   21 , где ( ) ( ) .y P A y П A y   Т. к. ( ) 0,AP A y   

то     1( ( ) ) ( ( ) ).k k
n nE A Ax П A y E A Ax П A y      Обозначим ( ) ,n nAx П A y v   

( ),nv M A  тогда     1.k k
n nE A v E A v      Отсюда    

1

1
k k

n nv E A E A v


    

и, значит,     0vAEAEv
nknk

n 


.  

Имеем 0A  и А положительно определен в M(A), т. е. 0),( xAx  

)(AMx . Т. к. 0 , то     1
1


 kk AEAE . Поэтому справедлива 

цепочка неравенств 
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при  n,0 . Здесь 1)(
1

1





q

k

k

 при  А, . Следовательно,  
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0,nv n  , откуда yAПAxn )(  и ( ) ( ).П A y A H  Отсюда  yAxn  

),()()( yAIyAPyyAП  [130]. Итак, утверждение а) доказано.  

Докажем б). Пусть процесс (3.1) сходится. Покажем, что уравнение 

yAПAx )(  разрешимо. Из сходимости   Hxn   к Hz  и из а) следует, 

что yAПAzAxn )( , следовательно, )()( HAyAП   и уравнение 

AxyAП )(  разрешимо. 

Пусть теперь )()( HAyAП   (уравнение AxyAП )(  разрешимо), сле-

довательно, ( ) ,П A y Ax  где 
x – минимальное решение уравнения yAx   

(оно единственно в M(A)). Тогда (3.1) примет вид 

     
     .222

2)(2

1111

1
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xAxAEyAПAxAExAE
 

Отсюда   )(2 1

1

1 


  n
kk

nn xxAEAxx . Последнее равенство 

разобьем на два: 

011
1

1 )()())(()(2)()( xAPxAPxxAPAAExAPxAP nn
kk

nn  


 ; 

   

   ,)(2)(

)()(2)(

)(2)()(

1

1

1

1

1
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
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n
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n
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n
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nn
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т. к. )(AMx  . Обозначим 
 xxAП nn )( , тогда из равенства  

   
1

1 1( ) ( ) 2 ( )k k
n n nП A x x П A x x E A A x П A x


  

         

получим  

      1

1

1

1

1 2 







  n
kk

n
kk

nn AEAEAAE  

и, аналогично nv , можно показать, что 0, .n n    Таким образом, 

( ) .nП A x x  Отсюда 
 xxAPxAПxAPx nnn 0)()()( . Теорема 3.4  

доказана. 

        Замечание 3.3. Так как у нас 00 x , то 
 xxn , т. е. итерационный 

метод (3.1) сходится к нормальному решению, т. е. к решению с мини-

мальной нормой. 

3.1.3.  Сходимость метода в энергетической норме 

Ниже предполагается, что нуль не является собственным значением 

оператора A, следовательно, предположим, что уравнение Aх = у имеет 



  

 

108 

единственное решение. Однако нуль принадлежит спектру оператора A, 

поэтому задача отыскания решения уравнения Aх = у неустойчива и, зна-

чит, некорректна. Сходимость процессов (3.1) и (3.2) в исходной норме 

пространства H была рассмотрена в подразделе 3.1.1. Там показано, что 

предложенный неявный метод (3.2) сходится при условии 0 , если чис-

ло итераций n выбирать в зависимости от уровня погрешности   так, что-

бы 01 kn  при 0, n . В предположении, что точное решение 

уравнения (2.1) истокообразно представимо, получены априорные оценки 

погрешности и априорный момент останова. В случае, когда нет сведений 

об истокообразной представимости точного решения, затруднительно по-

лучить априорные оценки погрешности и априорный момент останова. 

Тем не менее, метод итераций (3.2) можно сделать вполне эффективным, 

если воспользоваться энергетической нормой гильбертова пространства 

( , ),
A

x Ax x  где .x H  Покажем сходимость метода (3.2) в энергетиче-

ской норме и получим для него априорные оценки погрешности в энерге-

тической норме. Рассмотрим разность 

                                              )()( ,,   nnnn xxxxxx .                              (3.12) 

Запишем первое слагаемое в виде   

        xAEAEyAEAEAxx
nknknknk

n 
1

. 

Как было показано в подразделе 3.1.1 nxx   бесконечно мало в ис-

ходной норме гильбертова пространства H при ,n  но скорость сходи-

мости при этом может быть сколь угодно малой, и для ее оценки делалось 

предположение об истокообразной представимости точного решения. При 

использовании энергетической нормы нам это дополнительное предполо-

жение не понадобится. Действительно, с помощью интегрального пред-

ставления самосопряженного оператора 

0

,

M

A dE   где AM   и E  – со-

ответствующая спектральная функция, имеем 

        










xAEAExAEAEAxx

nknknknk
An ,
2

 

=  

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













M
n

k

k

xxEd

0

2

),(
1

1
. 

  Для оценки интересующей нас нормы найдем максимум подынте-

гральной функции 

n

k

k

f

2

1

1
)(


















  при  M,0 . Функция )(f  –

частный случай при s = 1 функций, оцененных в подразделе 3.1.1. Там  
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показано, что при условии (3.3) 
 

k

M
eknf 1

,0
)2()(max 


 . Следовательно, 

справедлива оценка 1 (2 )(2 ) .k
n A

x x kn e x    

Таким образом, переход к энергетической норме как бы заменяет 

предположение об истокообразной представимости порядка 
2

1
s  для 

точного решения. 

Оценим второе слагаемое в (3.12). Как показано в подразделе 3.1.1 

справедливо равенство     )(1
, 


 







 yyAEAEEAxx

nknk
nn . 

Воспользовавшись интегральным представлением самосопряженного опе-

ратора, получим  


 

































M
n

k

k

Ann yyyyEdxx

0

2

12

, )),((
1

1
1 . 

Обозначим через 

2

1

1

1
1)(
































 

n

k

k

g подынтегральную функ-

цию, а через 































 

n

k

k

g
1

1
1)( 1

1 , тогда 

































n

k

k

gg
1

1
1)()( 1 . 

Функция )(1 g  была оценена в подразделе 3.1.1. Там показано, что при 

условии (3.3) kkkng

11

1 2)(  . 

При этом же условии имеем  M
k

k

,0,1
1

1





, поэтому  

1
1 2,

1

n
k

k

  
     

 откуда kkkng

11

4)(  . Таким образом, 
2

,n n A
x x    

1 1

24 ,k kkn    отсюда 

11

22
, 2 ( ) , 1k

n n A
x x k n n     . Поскольку ,n A

x x    

11

22
, 2 ( ) k

n n n nA AA
x x x x x x k n          и ,0

Anxx ,n  

то для сходимости   nxx
An ,0, , достаточно, чтобы 

1

2 0,kn   

, 0n  . Итак, доказана 
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       Теорема 3.5. При условии (3.3) итерационный метод (3.2) сходится  

в энергетической норме гильбертова пространства, если число итераций 

n выбирать из условия 02

1

kn  при 0, n . 

      Запишем теперь общую оценку погрешности для метода (3.2) в энер-

гетической норме 

                        1,)(2)2( 2

1

2

1

2

1

, 


 nnkxeknxx kk
An .              (3.12) 

Оптимизируем оценку (3.12) по n. Для этого при заданном   найдем такое 

значение числа итераций n, при котором оценка погрешности становится 

минимальной. Приравняв к нулю производную по n от правой части нера-

венства (3.12), получим 

                         
kk

kk

xekn 










 2

1

12

1

2

12

опт 2 .                         (3.13) 

Подставив оптn  в оценку (3.12), найдем ее оптимальное значение 

                    
2

1

2

1

4

1

4

1

4

16

2
опт

, xekxx
kk

k

k

k

An 




 .                      (3.14) 

Таким образом, справедлива 

       Теорема 3.6. Оптимальная оценка погрешности для метода (3.2) при 

условии (3.3) в энергетической норме имеет вид (3.14) и получается при  

оптn  из (3.13). 

       Замечание 3.4. Из неравенства (3.14) вытекает, что оптимальная 

оценка погрешности не зависит от параметра  . Но оптn  зависит от  ,  

поскольку на   нет ограничений сверху ( 0 ), то за счет выбора  

  можно получить 1оптn , т. е. оптимальная оценка погрешности бу-

дет достигаться уже на первом шаге итераций. Для этого достаточно 

взять 

2 1 1 1

2 2 22 .

k k
k k

k e xопт

 
  


    

 

     Рассмотрим вопрос о том, когда из сходимости в энергетической нор-

ме следует сходимость в обычной норме гильбертова пространства H. 

Очевидно, для этого достаточно, чтобы при фиксированном   ( A0 ), 

было ,0, 0nP x P x    , где 

0

.P dE



    Для выполнения последнего из ука-

занных условий должно выполняться условие 0,P y    поскольку 

    


 





 yAEAEEAx

nknk
n

1
, .  
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 Таким образом, если решение x и приближенная правая часть y  та-

ковы, что 0xP  и 0 yP , то из сходимости ,nx  к решению x в энерге-

тической норме вытекает сходимость в исходной норме гильбертова про-

странства H, и, следовательно, для сходимости в исходной норме про-

странства H не требуется истокопредставимости точного решения. 

3.1.4. Апостериорный выбор числа итераций в неявном методе  

решения некорректных задач 

3.1.4.1. Правило останова по невязке 

Априорный выбор числа итераций n в исходной норме гильбертова 

пространства (3.1.1) получен в предположении, что имеется дополнитель-

ная информация об истокопредставимости точного решения x уравнения 

(2.1). Однако обычно сведения об истокообразности искомого решения не-

известны, и тем самым приведенные в подразделе 3.1.1 оценки погрешно-

сти оказываются неприменимыми. Тем не менее метод (3.2) можно сделать 

вполне эффективным, если воспользоваться следующим правилом остано-

ва по невязке: зададим 0  и определим момент m останова итерационно-

го процесса (3.2) условием (2.20). 

Предполагается, что при начальном приближении ,0x  невязка доста-

точно велика, больше уровня останова  , т. е. .,0   yAx  Покажем, 

что правило останова по невязке (2.20) применимо к методу (3.2). Рассмот-

рим семейство функций 
 
 

0

1

1
1)( 1 


















 

nk

nk

ng . Нетрудно показать, 

что для )(ng  при 0  выполняются следующие условия:  

                                              ,0,)(2)(sup 1

0




nnkg k
n

M

                     

,0,1)(1sup
0




ngn
M

 

,0)(1  ng  ,n   ,,0 M  

,0,)(1sup

/

0















n
ekn

s
g

ks

n
s

M

  s0 . 

Аналогично подобным леммам из раздела 2.1 доказываются следую-

щие леммы. 

Лемма 3.1. Пусть ,0 AA  .MA   Тогда для любого H  

.,0))((  nAAgE n  
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Лемма 3.2. Пусть ,0 AA  .MA   Тогда для )(ARv  имеет 

место соотношение ,0))((  vAAgEAn n
sk

s

  при .0,  sn  

Лемма 3.3. Пусть ,0*  AA  .MA   Если для некоторой последо-

вательности constnnp   и )(0 ARv   при p  имеем 

  ,0)( 0  AAgEA
pnp  то   .0)( 0  AAgE

pnp  

Леммы 3.1–3.3 использовались при доказательстве теорем: 

Теорема 3.7. Пусть ,0*  AA  MA   и пусть момент останова 

)( mm  в методе (3.2) выбирается по правилу (2.20). Тогда xxm ,   

при 0 . 

Теорема 3.8. Пусть выполнены условия теоремы 3.7 и пусть zAx s , 

s > 0. Тогда справедливы оценки ,
)1(

1
1

1















s
k

b

z

ek

s
m  

            .
)1(

1
12])1[(

1

11

1
1

1
, 




































k
s
k

kss
s

b

z

ek

s
kzbxxm       (3.15) 

Доказательство теорем 3.7–3.8 аналогично доказательству подобных тео-

рем из раздела 2.1. 

Замечание 3.4. Порядок оценки (3.15) есть 







 1s

s

О  и, как следует  

из [21], он оптимален в классе задач с истокопредставимыми решениями. 

Замечание 3.5.  В формулировке теоремы 3.8 предполагается, что 

точное решение истокопредставимо, но знание истокопредставимости 

не потребуется на практике, т. к. при останове по малости невязки 

автоматически делается число итераций нужное для получения 

оптимального по порядку решения. 

3.1.4.2. Правило останова по соседним приближениям  

в итерационном методе для уравнений с несамосопряженным  

оператором  

Для решения уравнения Ax = y с несамосопряженным оператором  
A  используем метод 

       ,2 *1**
1

*
1 































 yAAAxAAEAAEx
k

n

kk

n  0 , .x H k N   (3.16) 
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В случае, когда правая часть уравнения задана приближенно 

, yy  метод итераций (3.16) примет вид  

           2 *1**
1

*
1 


























 




 yAAAzAAEAAEz
k

n

kk

n  

       ,,  , 0
*

1
* NkHzuAAEAAE n

kk






















          (3.17) 

где nu  – ошибки в вычислении итераций, причем .nu  Обозначим че-

рез     ,*
1

*




















kk

AAEAAEC     .2 *1*
1

* AAAAAEB
kk 











  

Тогда метод (3.17) примет вид nnn CuByCzz  1 . Определим  

момент m останова итерационной процедуры с помощью правила останова 

по разности соседних приближений (2.37). Покажем, что метод (3.17)  

с правилом останова (2.37) сходится.  

Аналогично леммам подраздела 2.1.5 доказываются леммы. 

Лемма 3.4. Пусть приближение n  определяется условиями  ,00 z  

,1 nnn CuByC    .0n   Тогда справедливо неравенство  

.
2

1

0

2
0

2
1

0
k

n

k
kkk

n

k
CuxCu







  

Лемма 3.5. При H 0 и произвольной последовательности ошибок 

 ,nu  удовлетворяющих условию nu , выполнено .2lim 1  


Cnn
n

 

Справедлива 

Теорема 3.9. Пусть уровень останова ),(   выбирается как 

функция от уровней   и   норм погрешностей  yy  и nu . Тогда спра-

ведливы следующие утверждения: 

а) если ,2),(  C  то момент останова m определен при  любом 

начальном приближении Hz 0 и любых y  и ,nu  удовлетворяющих усло-

виям , yy  nu  ; 

б) если ,2),(  CВ  то справедлива оценка  

2
0

( )( 2 )

z x
m

B B C




       
; 

в) если, кроме того, ,0),(   0,   и  ,),( pCBd   где 

,1d  ),1,0(p  то .0lim
0,




xzm    

Доказательство теоремы 3.9 аналогично доказательству подобной теоремы 

из раздела 2.1. 
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3.2. Итерационная процедура неявного типа решения операторных 

уравнений в гильбертовом пространстве 

3.2.1. Оценки погрешности метода в случае априорного выбора числа 

итераций 

Решается уравнение Ax = y из раздела 2.1. Предлагается новая неявная 

итерационная процедура, представляющая собой семейство итерационных 

схем, зависящих от параметра k: 

  1
1 0, 0, .k k

n nE A x x A y x k N
                       (3.18) 

В случае приближенной правой части y    yy  соответствующие 

методу (3.18) итерации примут вид 

   1
1, , 0,, 0, .k k

n nE A x x A y x k N
                      (3.19) 

Воспользовавшись интегральным представлением положительно опреде-

ленного самосопряженного оператора A и формулой (3.18), по индукции 

получим 1

0

(1 ) ,

M
k n

nx x dE y 
      где AM  , E – спектральная 

функция оператора A. Отсюда легко выводится сходимость метода (3.18) 

при n  для 0.  

  Итерационный процесс (3.19) является сходящимся, если нужным об-

разом выбирать число итераций n в зависимости от уровня погрешности  .  

Справедлива  

  Теорема 3.10.  Итерационный процесс (3.19) сходится при 0 , если 

выбирать число итераций n в зависимости от   так, чтобы 01 kn  

при .0, n  

Доказательство теоремы аналогично доказательству подобной теоремы  

из раздела 3.1. При этом легко показывается оценка 

1,11
,   nknxx kk

nn . 

 Скорость сходимости процедуры (3.19) будем оценивать при допол-

нительном предположении о возможности истокообразного представления 

точного решения x уравнения (2.1), т. е. .0,  szAx s
 Тогда zAy s 1   

и, следовательно, получим   zdExx
M nks

n 



 

0

1 . Для оценки nxx   

найдем максимум модуля подынтегральной функции 
nksf  )1()( . 

Нетрудно показать, что при условии 0  справедливо неравенство 

  zknsxx
ksks

n


 2 . Таким образом, общая оценка погрешности 

итерационной процедуры (3.19) запишется в виде 
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  ,, nnnn xxxxxx     .1,2
1




nnkzkns
kks

ks

 

Для минимизации оценки погрешности вычислим ее правую часть  

в точке, в которой производная от нее равна нулю; в результате для проце-

дуры (3.19) получим априорный момент останова  

)1()1(1
)1()(

)1(
опт 2 


 








 sksk

sks
ss z

k

s
n  

и оптимальную оценку погрешности  

)1(1)1(
))1(()1(

))1((

опт, 2)1(





 









sss
skks

sks
n z

k

s
sxx . 

 Приведем погрешность метода (3.19) при счете с округлениями. Пусть  

,nx   точное значение, полученное по формуле (3.19), а nz  – значение, 

полученное по той же формуле с учетом погрешностей вычисления n , 

т. е.     0, 0
11

1  


 zyAzAEz n
k

n
k

n . Оценка погрешности 

метода (3.19) в этом случае имеет вид 

  1,
2

1
,, 










  nnnkz

kn

s
zxxxzx

k
ks

nnnn ,  

 где sup i

i

   . 

Сравнение метода (3.19) с хорошо известным явным методом итера-

ций [158] показывает, что порядки их оптимальных оценок совпадают. До-

стоинство явных методов в том, что они не требуют обращения оператора, 

им необходимы только вычисления значений оператора на последователь-

ных приближениях. В этом смысле явный метод [158] предпочтительнее 

неявного метода (3.19). Однако неявный метод (3.19) обладает следующим 

важным достоинством. В явном методе (3.10) на шаг   накладывается 

ограничение сверху – неравенство 
A4

5
0  , что может на практике 

привести к необходимости большого числа итераций. В неявных методах 

никаких ограничений сверху на 0  нет. Это позволяет считать 0  

произвольно большим (независимо от A ). В связи с чем оптимальную 

оценку для метода (3.19) можно получить уже на первых шагах итераций. 

Для этого достаточно взять )1()1(
)1()(

)1(
опт 2 


 








 sksk

sks
ss z

k

s
. 

3.2.2.  Сходимость метода в случае неединственного решения 

Пусть теперь 0  собственное значение оператора А (т. е. уравнение 
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(2.1) имеет неединственное решение). Положим  ( ) 0 ,N A x H Ax     

и пусть )(AM   ортогональное дополнение ядра )(AN  до H. Пусть далее 

xAP )(   проекция Hx  на )(AN , а xAП )(   проекция Hx  на )(AM . 

Справедлива 

Теорема 3.11.  Пусть .0,,0  HyA  Тогда для итерационного 

процесса (3.18) верны следующие утверждения: 

а) ( ) ( , ) infn n
x H

Ax П A y, Ax y I A y Ax y ;


      

б) метод (3.18) cходится тогда и только тогда, когда уравнение 

yAПAx )(  разрешимо. В последнем случае *
0)( xxAPxn  , где 

*x – 

минимальное решение уравнения. 

Доказательство теоремы аналогично доказательству подобной теоремы  

из раздела 3.1. Т. к. 00 x , то 
*xxn  , т. е. процесс (3.18) сходится к нор-

мальному решению, т. е. к решению с минимальной нормой. 

3.2.3.  Сходимость метода в энергетической норме 

Здесь и ниже предполагается, что решение уравнения (2.1) единствен-

но. Изучим сходимость метода (3.19) в энергетической норме гильбертова 

пространства  xAxx
A

, , где .x H  При этом,  как обычно, число ите-

раций n нужно выбирать в зависимости от уровня погрешности  . Полага-

ем 0,0 x  и рассмотрим разность      ,, nnnn xxxxxx .  

С помощью интегрального представления самосопряженного  

оператора A получим 
2

Anxx

 
 xxEd

nk

M

,

1

1
2

0





  и  

2

, Ann xx  

=

 
  

 
















 yyyyEd
nk

M

,

1

1
1

2

0

1 , где AM  . Оценив подынте-

гральные функции, получим при условии 0  оценку погрешности  

для неявного итерационного метода (3.19) в энергетической норме 

   
1/(2 ) 1/(2 )1/2

, 4 , 1.
k k

n A
x x kn x k n n


        Следовательно, если  

в процессе (3.19) выбирать число итераций )( nn , зависящим от   так, 

чтобы 0,,0)2(1  nn k
, то получим метод, обеспечивающий 

сходимость к точному решению в энергетической норме. Справедлива 

Теорема 3.12. При условии 0  метод (3.19) сходится в энергетиче-

ской норме гильбертова пространства, если число итераций n выбирать 
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из условия 
1 (2 ) 0, , 0.kn n    Для метода (3.19) справедлива оценка 

погрешности     
1/(2 ) 1/(2 )1/2

, 4 , 1.
k k

n A
x x kn x k n n


        

Для минимизации оценки погрешности вычислим ее правую часть  

в точке, в которой производная от нее равна нулю; в результате  

получим 
опт

, Anxx 
    2/12/1)4/(1)2/(122 xk kkkk    и nопт  

    2/1kk  

kk x  1)2( . 

Отметим тот факт, что для сходимости метода (3.19) в энергетической 

норме достаточно выбирать число итераций )( nn  так, чтобы 

1 (2 ) 0, , 0.kn n    Однако nопт =  kO  , т. е. nопт относительно  

  имеет порядок ,k  и такой порядок обеспечивает сходимость  

метода (3.19).  

Таким образом, использование энергетической нормы позволило по-

лучить априорную оценку погрешности для метода (3.19) и априорный 

момент останова nопт без дополнительного требования истокообразной 

представимости точного решения, что делает метод (3.19) эффективным  

и тогда, когда нет сведений об истокопредставимости точного решения  

x уравнения Ax = y. 

3.2.4. Правило останова по невязке 

Решается уравнение Ax = y из раздела 2.1. Зададим уровень остано- 

ва   и определим момент m останова условием (2.20). Предполагаем, что 

при начальном приближении ,0x  невязка достаточно велика, больше 

уровня останова ,  т. е. .,0   yAx  Покажем, что правило останова  

по невязке  применимо к методу (3.19). Рассмотрим семейство функций 

 
0

1

1
1)( 1 

















 

nk
ng . Нетрудно показать, что при 0  для )(ng   

выполняются следующие условия:  
1

0

sup ( ) ( ) , 0,k
n

M

g k n n


     

0

sup 1 ( ) 1, 0,n
M

g n


     

,0)(1  ng  ,n   ,,0 M  

,0,
2

)(1sup

/

0















n
kn

s
g

ks

n
s

M

  s0 . 
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Аналогично подобным леммам из раздела 2.1 доказываются следую-

щие леммы. 

Лемма 3.6. Пусть ,0 AA  .MA   Тогда для любого H  

.,0))((  nAAgE n  

 Лемма 3.7. Пусть ,0 AA  .MA   Тогда для )(ARv  имеет 

место соотношение ,0))((  vAAgEAn n
sk

s

  при .0,  sn   

   Лемма 3.8. Пусть ,0*  AA  .MA   Если для некоторой после-

довательности constnnp   и )(0 ARv   при p  имеем 

  0( ) 0
p

p nA E Ag A     , то   .0)( 0  AAgE
pnp   

Леммы 3.6–3.8 использовались при доказательстве теорем:  

 Теорема 3.13. Пусть ,0 AA  MA   и пусть момент останова 

)(mm  в методе (3.19) выбирается по правилу (2.20), тогда xxm ,   

при 0 . 

 Теорема 3.14. Пусть выполнены условия теоремы 3.13 и пусть 

, 0.sx A z s    Тогда справедливы оценки  ,
)1(2

1
1)(

)1( 















sk

b

z

k

s
m  

  



)1(1)1(

),( )1(
sss

m zbxx  

+ .
)1(2

1
1

1

1

)1(
































 k

k

sk

b

z

k

s
k                        (3.20) 

Доказательство теорем 3.13–3.14 аналогично доказательству подобных 

теорем из раздела 2.1.  

 Замечание 3.6.   Порядок оценки (3.20) есть 














 1s

s

O   и, как следует 

из [21], он оптимален в классе задач с истокопредставимыми решениями 

0,  szAx s . 

 Замечание 3.7. Сведения о степени истокопредставимости s и исто-

копредставляющем элементе z на практике не потребуются. Их знание 

необходимо только для получения оценок из теоремы 3.14.  
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3.2.5. Правило останова по соседним приближениям для уравнений  

с несамосопряженным оператором  

 Решаем уравнение Ax = y с несамосопряженным оператором А. Ис-

пользуем неявную схему метода итераций 

    















 





 yAAAzAAEz

k

n

k

n

1
1

1  

  
1

0, ,
k

nE A A u z H


 

    
 

.k N                         (3.21) 

Здесь nu  –  ошибки вычисления итераций, .nu   Обозначим 

 
1












k
AAEC ,    

1
1

.
k k

B E A A A A A




   
    
 

 Тогда метод (3.21) 

примет вид nnn CuByCzz  1 , Hz 0  при приближенной правой ча-

сти y    yy  и nnn CuByCww 1 , Hw 0  при точной правой 

части у. Определим момент m останова итерационного процесса условием 

(2.37). Аналогично подобным леммам из подраздела 2.1.5 доказываются  

леммы. 

 Лемма 3.9. Пусть приближение nw  определяется равенствами 

,00 zw   ,0,1  nCuByCww nnn  тогда справедливо неравенство 

.
1

0

22
0

0

2
1 




 

n

k
k

n

k
kkk CuxwCuww  

 Лемма 3.10. При любом Hw 0  и произвольной последовательности 

ошибок  ,nu  удовлетворяющих условию nu , выполнено неравенство 

.2lim 1  


Cww nn
n

                             

 При использовании лемм 3.9–3.10 аналогично, как в подразделе 2.1.5, 

доказано, что метод итераций (3.21) с правилом останова по соседним 

приближениям (2.37) сходится, и получена оценка для момента останова. 

Справедлива 

 Теорема 3.15.  Пусть уровень останова ),(   выбирается как 

функция от уровней   и   норм погрешностей  yy  и nu . Тогда справед-

ливы следующие утверждения: 

 а) если ,2),(  C  то момент останова m определен при любом 

начальном приближении Hz 0  и любых y  и nu ,  удовлетворяющих 

условиям y y ,   nu ;  

 б) если ,2),(  CB  то справедлива оценка 



 

 

 

 

120 
 

  

2
0

2

z x
m ;

B C B




       
 

 в) если, кроме того, 0,,0),(   и  ,),( pCBd   где 

,1d ),1,0(p  то .0lim
0,




xzm   
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3.3. Итерационный метод неявного типа решения операторных  

уравнений первого рода в гильбертовом пространстве 

3.3.1. Сходимость метода в случае априорного выбора числа итераций  

  Решается уравнение Ax = y из раздела 2.1. Предлагается семейство не-

явных итерационных схем, зависящих от параметра k: 

   
2

2 2 1
1 02 , 0, .k k k

n nE A x E A x A y x k N
             (3.22) 

 В случае приближенной правой части y    yy  соответствую-

щие методу (3.22) итерации примут вид 

   
2

2 2 1
1, , 0,2 , 0, .k k k

n nE A x E A x A y x k N
            (3.23) 

  Ниже, как обычно, под сходимостью метода (3.23) понимается утвер-

ждение о том, что приближения (3.23) сколь угодно близко подходят  

к точному решению уравнения при подходящем выборе n и достаточно 

малых  . Иными словами, метод итераций (3.23) является сходящимся, ес-

ли 0inf ,
0

lim 







 


n

n
xx . 

3.3.1.1. Сходимость при точной правой части  

  Воспользовавшись интегральным представлением положительно 

определенного самосопряженного оператора A и формулой (3.22), по ин-

дукции получим 
 
 

,

1

1

22

2

0

1 ydExx
nk

nkM

n 





   где AM  , E – спек-

тральная функция оператора A. Отсюда легко выводится сходимость про-

цесса (3.22) при n  для 0.  

3.3.1.2. Сходимость при приближенной правой части 

  Итерационный процесс (3.23) является сходящимся, если нужным об-

разом выбирать число итераций n в зависимости от уровня погрешности  . 

Справедлива  

  Теорема 3.16.   Итерационный процесс (3.23) сходится при 0 , ес-

ли выбирать число итераций n в зависимости от   так, чтобы 

01 kn при .0, n  

Доказательство теоремы аналогично доказательству подобной теоремы  

из раздела 3.1. При этом легко показать, что   .1,2
1

,   nnkxx
k

nn  

3.3.1.3. Оценка погрешности метода 

 Скорость сходимости метода (3.23) будем оценивать при дополни-

тельном предположении о возможности истокообразного представления 
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точного решения x уравнения (2.1), т. е. .0,  szAx s  Тогда zAy s 1   

и, следовательно, получим 
 
 

.

1

1

22

2

0

zdExx
nk

nkM
s

n 




   Для оценки nxx   

найдем максимум модуля подынтегральной функции 
 
 

.

1

1
)(

22

2

nk

nk
sf




  

Нетрудно показать, что при условии 0  справедливо неравенство 

  .2
// zeknsxx
ksks

n


  Таким образом, общая оценка погрешности 

неявного итерационного метода (3.23) запишется в виде ,nx x    

,n n nx x x x         .1,22 1  


nkekns knz
ksks  Для минимиза-

ции оценки погрешности вычислим ее правую часть в точке, в которой 

производная от нее равна нулю; в результате получим априорный момент 

останова  
1111 11

опт 2











 


s

k

s

k

s

s

s

ks

zeksn s

ks

 и оптимальную оценку по-

грешности  

.)1(
1

1

1)1()1(

)1(

опт,











 








ss

s

ze
k

s
sxx sk

s

sk

ks

n             (3.24) 

 Замечание 3.8. Оценка погрешности (3.24) имеет порядок  )1/(  ssO , 

и, как следует из [21], он является оптимальным в классе задач с истоко-

образно представимыми решениями .0,  szAx s
 

 Замечание 3.9. Оптимальная оценка (3.24) не зависит от  , но от 

параметра   зависит оптn , поэтому для уменьшения числа итераций для 

получения приближенного решения следует брать  , удовлетворяющим 

условию 0  и так, чтобы .1оптn  Для этого достаточно выбрать 

  .2
111

11








 





s

k

s

k

s

ks

zeks s

s

s

ks

опт  

 Оценку 
опт, nxx  можно оптимизировать по k . Для этого произ-

водную по k от )1()1(

)1(

)()( 







 sk

s

sk

ks

eksk  приравняем к нулю. Получим, 












)1(
)(

2

)1()1(

)1(

sk

s
eks sk

s

sk

ks

0ln 









k

s
k . Отсюда видно, что оптимальное 
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k должно удовлетворять равенству 
k

s
k ln . Но ,k N  поэтому, как пока-

зывают расчеты, для 5s  kопт = 1, для 6 27s   kопт = 2. 

Приведем погрешность метода (3.23) при счете с округлениями. Пусть 

,nx   точное значение, полученное по формуле (3.23), а nz  – значение, 

полученное по той же формуле с учетом погрешностей вычисления n , 

т. е.    
1 2

2 2 1
1 02 , 0.k k k

n n nz E A E A z A y z



 

 
        

 
 

Оценка погрешности метода (3.23) в этом случае имеет вид 

1,)(2)2( /1//
,,  
 nnnkzeknszxxxzx kksks

nnnn ,  

 где i
i

 sup . 

3.3.2.  Сходимость метода в случае неединственного решения 

Пусть теперь 0  собственное значение оператора А (т.е. уравнение  

Ax = y имеет неединственное решение). Положим  ( ) 0 ,N A x H Ax     

и пусть )(AM   ортогональное дополнение ядра )(AN  до H. Пусть далее  

xAP )(   проекция Hx  на )(AN , а xAП )(   проекция Hx  на ( ).M A  

Справедлива 

Теорема 3.17. Пусть .0,,0  HyA  Тогда для итерационного 

процесса (3.22) верны следующие утверждения: 

а) ( ) , ( , ) infn n
x H

Ax П A y Ax y I A y Ax y ;


      

б) метод (3.22) cходится тогда и только тогда, когда уравнение 

yAПAx )(  разрешимо. В последнем случае *
0)( xxAPxn  , где 

*x – 

минимальное решение уравнения. 

Доказательство теоремы аналогично доказательству подобной теоремы  

из раздела 3.1. Т. к. 00 x , то 
*xxn  , т. е. процесс (3.22) сходится к нор-

мальному решению, т. е. к решению с минимальной нормой. 

3.3.3. Сходимость метода в энергетической норме 

  Здесь и ниже предполагается, что решение уравнения (2.1) единствен-

но. Изучим сходимость метода (3.23) в энергетической норме гильбертова 

пространства  xAxx
A

, , где .x H  При этом, как обычно, число ите-

раций  n  нужно выбирать в зависимости от уровня погрешности  . Пола-

гаем 0,0 x  и рассмотрим разность      ,, nnnn xxxxxx . С по-

мощью интегрального представления самосопряженного оператора A по-
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лучим 
2

Anxx      xxEd
nknk

M

,11
2224

0




  и  

2

, Ann xx  

=
 
 

  
 


















 yyyyEd

M

nk

nk

,

1

1
1

2

0
22

2

1 , где AM  . Оценив подын-

тегральные функции, получим при условии 0  оценку погрешности для 

метода (3.23) в энергетической норме  

    1,24
)2(12121)2(1

, 


 nnkxeknxx
kk

An . 

 Следовательно, если в процессе (3.23) выбирать число итераций  

)( nn , зависящим от   так, чтобы 0,,0)2(1  nn k
, то полу-

чим метод, обеспечивающий сходимость к точному решению в энергети-

ческой норме.  Итак, справедлива 

 Теорема 3.18.  При условии 0  итерационный метод (3.23) схо-

дится в энергетической норме гильбертова пространства, если число 

итераций n выбирать из условия 0,,0)2(1  nn k
. Для итера-

ционного метода (3.23) справедлива оценка погрешности 

    1,24
)2(12121)2(1

, 


 nnkxeknxx
kk

An . 

 Для минимизации оценки погрешности вычислим ее правую часть  

в точке, в которой производная от нее равна нулю; в результате  

получим 
    2121)4(1)4(1)4(25опт

, 2 xekxx kkkkk

An  
   

и      kkkk xekn   2112122
опт 2 . 

 Отметим тот факт, что для сходимости метода (3.23) в энергетической 

норме достаточно выбирать число итераций )( nn  так, чтобы 

1 (2 ) 0, , 0.kn n    Однако nопт =  kO   т. е. nопт относительно  

  имеет порядок ,k  и такой порядок обеспечивает сходимость метода 

итераций (3.23).  

 Таким образом, использование энергетической нормы позволило по-

лучить априорную оценку погрешности для метода (3.23) и априорный 

момент останова nопт без дополнительного требования истокообразной 

представимости точного решения, что делает метод (3.23) эффективным  

и тогда, когда нет сведений об истокопредставимости точного решения  

x уравнения Ax = y. 

Рассмотрим вопрос о том, когда из сходимости в энергетической нор-

ме следует сходимость в обычной норме гильбертова пространства Н. 
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Очевидно, для этого достаточно, чтобы при некотором фиксированном  

 A 0,  было: 0,0 ,   nxPxP , где 

0

.P dE



    Т. к.  

    


 





 yAEAEEAx

nknk
n

2221
, , 

то для выполнения последнего из указанных условий должно выполняться 

условие 0 уP . Таким образом, если решение х и приближенная правая 

часть у  таковы, что 0xP  и 0 уP , то из сходимости ,nx  к х в энер-

гетической норме вытекает сходимость в исходной норме гильбертова 

пространства Н, и, следовательно, для сходимости в исходной норме про-

странства Н не требуется истокопредставимость точного решения. 

3.3.4.  Правило останова по невязке 

  Априорный выбор числа итераций n получен в предположении, что 

точное решение x уравнения Ax = y истокообразно представимо. Однако 

обычно сведения об истокообразности искомого решения неизвестны,  

и тем самым приведенные в подразделе 3.3.1 оценки погрешности оказы-

ваются неприменимыми. Тем не менее метод (3.23) можно сделать вполне 

эффективным, если воспользоваться правилом останова по невязке (2.20).  

 Предположим, что при начальном приближении невязка достаточно 

велика, а именно больше уровня останова, т. е.   yAx ,0 . Покажем 

возможность применения правила (2.20) к методу (3.23). Рассмотрим се-

мейство функций  
 
 

.0

1

1
1)(

22

2

1 

















 

nk

nk

ng  Нетрудно показать, что 

при 0  для )(ng  выполняются следующие условия  

,0,)(2)(sup /1

0




nnkg k
n

M

 

0

sup 1 ( ) 1, 0,n
M

g n


     

,0)(1  ng  ,n  ,,0 M  

/ /

0

sup 1 ( ) (2 ) , 0,s s k s k
n

M

g s kn e n



      0 .s   

Аналогично подобным леммам из раздела 2.1 доказываются следую-

щие леммы. 

Лемма 3.11. Пусть ,0 AA  .MA   Тогда для любого H  

.,0))((  nAAgE n  
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 Лемма 3.12. Пусть ,0 AA  .MA   Тогда для )(ARv  имеет 

место соотношение ,0))((  vAAgEAn n
sk

s

 при .0,  sn   

   Лемма 3.13. Пусть ,0*  AA  .MA   Если для некоторой последо-

вательности constnnp   и )(0 ARv   при p  имеем 

  ,0)( 0  AAgEA
pnp  то   .0)( 0  AAgE

pnp   

Леммы 3.11–3.13 использовались при доказательстве теорем:  

 Теорема 3.19. Пусть ,0 AA  MA   и пусть момент останова 

)(mm  в методе (3.23) выбирается по правилу (2.20), тогда xxm ,   

при 0 . 

 Теорема 3.20. Пусть выполнены условия теоремы 3.19 и пусть 

0,  szAx s . Тогда справедливы оценки  ,
)1(2

1
1

)1/( 















sk

b

z

ek

s
m  

  .
)1(2

1
12)1(

/1
)1/(

/1)1/(1)1/(
, 



























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




k
sk

ksss
m

b

z

ek

s
kzbxx  (3.25) 

Доказательство теорем 3.19–3.20 аналогично доказательству подобных 

теорем из раздела 2.1.  

 Замечание 3.10. Порядок оценки (3.25) есть 














 1s

s

O , и как следует 

из [21], он оптимален в классе задач с истокообразно представимыми ре-

шениями 0,  szAx s . 

 Замечание 3.11. Хотя формулировка теоремы 3.20 дается с указани-

ями степени истокопредставимости s и истокопредставляющего эле-

мента z, на практике их значение не потребуется, т. к. они не содержат-

ся в правиле останова (2.20). И тем не менее в теореме 3.20 утверждает-

ся, что будет автоматически выбрано количество итераций m, обеспечи-

вающее оптимальный порядок погрешности. Но даже если истоко-

представимость точного решения отсутствует, останов по невязке 

(2.20), как показывает теорема 3.19, обеспечивает сходимость метода. 

3.3.5. Правило останова по соседним приближениям для уравнений  

с несамосопряженным оператором  

 Решаем уравнение Ax = y с несамосопряженным оператором А. Ис-

пользуем неявную схему метода итераций 
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               2 *1*
2

*
1

2*2
1 












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
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
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n     

          .,  , 0

1
2*2

2
* NkНzuAAEAAE n
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         (3.26) 

Здесь nu  – ошибки вычисления итераций, nu . Обозначим 

    ,
2

*
1

2*2




















kk

AAEAAEC      .2 *1*
1

2*2 AAAAAEB
kk 











  

Тогда метод (3.26) примет вид nnn CuByCzz  1 , Hz 0  при при-

ближенной правой части y    yy  и nnn CuByCww 1 , 

Hw 0  при точной правой части у. Определим момент m останова метода 

(3.26) условием (2.37).  

 Аналогично подобным леммам из раздела 2.1 доказываются леммы. 

 Лемма 3.14. Пусть приближение nw  определяется равенствами 

,00 zw   ,0,1  nCuByCww nnn  тогда справедливо неравенство 

.
1

0

22
0

0

2
1 




 

n

k
k

n

k
kkk CuxwCuww  

 Лемма 3.15. При любом Hw 0 и произвольной последовательности 

ошибок  ,nu  удовлетворяющих условию nu , выполнено неравенство 

.2lim 1  


Cww nn
n

                             

 При использовании лемм 3.14–3.15 аналогично, как в разделе 2.1, до-

казано, что метод (3.26) с правилом останова (2.37) сходится, и получена 

оценка для момента останова. Справедлива 

 Теорема 3.21. Пусть уровень останова ),(   выбирается как 

функция от уровней   и   норм погрешностей  yy  и nu . Тогда справед-

ливы следующие утверждения: 

 а) если ,2),(  C  то момент останова m определен при любом 

начальном приближении Hz 0 и любых y  и nu ,  удовлетворяющих усло-

виям ny y , u ;     

 б) если ,2),(  CB  то  
  

2
0

2

z x
m ;

B C B




       
 

 в) если, кроме того, 0,,0),(   и  ,),( pCBd   где 

,1d ),1,0(p  то .0lim
0,




xzm   
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3.4. Регуляризация некорректных задач с неограниченным оператором 

при помощи итерационного метода неявного типа в гильбертовом 

пространстве 

 В разделе предлагается неявный итерационный метод решения некор-

ректных задач, представляющий собой семейство итерационных схем, за-

висящих от параметра k. Для этого метода исследована сходимость в ис-

ходной и энергетической нормах гильбертова пространства, получены 

оценки погрешности и априорный момент останова, изучен случай не-

единственного решения, обоснована возможность применения правил 

останова в процессе вычислений.  

 В действительном гильбертовом пространстве H исследуется опера-

торное уравнение первого рода Ax = y, где A – неограниченный линейный 

самосопряженный оператор, для которого нуль не является собственным 

значением, однако принадлежит спектру оператора А, и, следовательно, 

задача некорректна. Пусть )(ARy , т. е. предполагаем, что при точной 

правой части y уравнение Ax = y имеет единственное решение x. Для 

нахождения этого решения предлагается итерационная процедура неявно-

го типа 

 2 2 1
1 0, 0, .k k

n nА B x Bx A y x k N
                      (3.27) 

Здесь B – ограниченный вспомогательный самосопряженный оператор, ко-

торый выбирается для улучшения обусловленности. В качестве B возьмем 

оператор  EbbEB ,0, тождественный оператор. 

 В случае приближенной правой части y    yy  соответствую-

щие методу (3.27) приближения примут вид 

 2 2 1
1, , 0,, 0, .k k

n nA B x Bx A y x k N
                        (3.28) 

  Ниже, как обычно, под сходимостью метода (3.28) понимается утвер-

ждение о том, что приближения (3.28) сколь угодно близко подходят  

к точному решению уравнения при подходящем выборе n и достаточно 

малых  . 

3.4.1. Сходимость и оценки погрешности метода в случае априорного 

выбора числа итераций  

  Воспользовавшись интегральным представлением неограниченного 

самосопряженного оператора A и формулой (3.27), по индукции получим 

 
,

2

1 ydE

b

b
xx

nk

n

n 









   где E – спектральная функция оператора A.  

Отсюда легко выводится сходимость процесса (3.27) при n  для 0b . 
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  Итерационный процесс (3.28) является сходящимся, если нужным об-

разом выбирать число итераций n в зависимости от уровня погрешности  .  

Справедлива  

  Теорема 3.21. Итерационный процесс (3.28) сходится при 0b , если 

выбирать число итераций n в зависимости от   так, чтобы 0)2(1 kn  

при .0, n  

Доказательство теоремы аналогично доказательству подобной теоремы из 

раздела 3.1. При этом показывается оценка:  .1,2
)2(1

,  







 n

b

n
kxx

k

nn  

 Скорость сходимости метода (3.28) будем оценивать при дополни-

тельном предположении о возможности истокообразного представления 

точного решения x уравнения Ax = y, т. е. .0,2  szAx s  Тогда zAy s 12   

и, следовательно, получим 

 
.

2

2

zdE

b

b
xx

nk

ns

n 









  Для оценки nxx   

найдем максимум модуля подынтегральной функции 

 
.)(

2

2

nk

ns

b

b
f




  

Нетрудно показать, что при условии 0b  справедливо неравенство 

.
2

/

z
kn

bs
xx

ks

n 







  Таким образом, общая оценка погрешности метода 

итераций (3.28) запишется в виде 

  ,, nnnn xxxxxx .1,2
2

)2(1/









 








n

b

n
kz

kn

bs kks

 

Для минимизации оценки погрешности вычислим ее правую часть  

в точке, в которой производная от нее равна нулю; в результате получим 

априорный момент останова 
12

2

12

212

)(2

12

2

2опт



















s

k

s

ks

ks

s

s

zb
k

s
n  и опти-

мальную оценку погрешности  

.2)21(
12

1

12

2

)12()12(

)21(

опт,




















ss

s

sk

s

z
k

s
sxx

sk

ks

n           (3.29) 

 Замечание 3.12. Оценка погрешности (3.29) имеет порядок 

 )12/(2  ssO  и, как следует из [21], он является оптимальным в классе за-

дач с истокообразно представимыми решениями .0,2  szAx s
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 Замечание 3.13.  Оптимальная оценка (3.29) не зависит от итераци-

онного параметра b, но от параметра b зависит оптn , поэтому для 

уменьшения числа итераций для получения приближенного решения следу-

ет брать b, удовлетворяющим условию 0b , и так, чтобы .1оптn  Для 

этого достаточно выбрать 
12

2

12

212

)(2

12

2

2






















s

k

s

ks

ks

s

s

z
k

s
bопт . 

 Оценку 
опт, nxx  можно оптимизировать по k . Для этого произ-

водную по k от )12()12(

)21(

2)()( 







 sk

s

sk

ks

ksk  приравняем к нулю. Получим 












)12(
2)(

2

)12()12(

)21(

sk

s
ks sk

s

sk

ks

ln 1 2 ln 2 0.
s

k
k

 
     
 

 Отсюда видно, 

что оптимальное k должно удовлетворять равенству 
s

k
k

2
ln21   или 

2 12 .ks ke   Но ,k N  поэтому, как показывают расчеты, для 21s  kопт = 1,  

для  21422  s kопт = 2. 

Приведем погрешность метода (3.28) при счете с округлениями. Пусть 

,nx   точное значение, полученное по формуле (3.28), а nz  – значение, 

полученное по той же формуле с учетом погрешностей вычисления n , 

т. е.     .0,
1

0
1212

1  


 z
b

yABzBAz n
k

n
k

n  

Оценка погрешности метода (3.28) в этом случае имеет вид 

1,2
2

)2(1/

,, 







 








 n

b

n

b

n
kz

kn

bs
zxxxzx

kks

nnnn ,  

 где  
i

i

 sup . 

  Сравнение предлагаемого метода с хорошо известным явным методом 

итераций Ландвебера показывает, что порядки их оптимальных оценок 

совпадают. Достоинство явных методов в том, что они не требуют обра-

щения оператора, им необходимы только вычисления значений оператора 

на последовательных приближениях. В этом смысле явный метод Ландве-

бера предпочтительнее предлагаемого неявного метода. Однако предло-

женный неявный метод обладает следующим важным достоинством.  

В явном методе (3.10) на шаг   накладывается ограничение сверху – нера-
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венство 
5

0 ,
4 A

    что может на практике привести к необходимости 

большого числа итераций. В рассматриваемом неявном методе никаких 

ограничений сверху на 0b  нет. В связи с чем оптимальную оценку  

для рассматриваемого неявного метода можно получить уже на первых 

шагах итераций. Более того, предложенный неявный метод, в отличии от 

метода Ландвебера и других явных и неявных методов, позволяет решать 

уравнения с неограниченным оператором и притом необязательно положи-

тельным. 

3.4.2. Сходимость метода в случае неединственного решения 

   Пусть теперь 0  собственное значение оператора А (т. е. уравнение  

Ax = y имеет неединственное решение). Положим  ( ) 0 ,N A x H Ax     

и пусть ( )M A   ортогональное дополнение ядра )(AN  до H. Пусть далее  

xAP )(   проекция Hx  на )(AN , а xAП )(   проекция Hx  на )(AM .  

Справедлива 

 Теорема 3.22. Пусть 0*  AA , A M,  0.y H,b   Тогда для ите-

рационного процесса (3.27) верны следующие утверждения: 

 а) ( ) ( , ) infn n
x H

Ax П A y, Ax y I A y Ax y ;


      

 б) метод (3.27) cходится тогда и только тогда, когда уравнение 

yAПAx )(  разрешимо. В последнем случае *
0)( xxAPxn  , где 

*x – 

минимальное решение уравнения. 

Доказательство теоремы аналогично доказательству подобной теоремы  

из раздела 3.1. Т. к. 00 x , то 
*xxn  , т. е. процесс (3.27) сходится  

к нормальному решению, т. е. к решению с минимальной нормой. 

3.4.3. Сходимость метода в энергетической норме 

 Здесь и ниже предполагается, что решение уравнения Ax = y един-

ственно. Изучим сходимость метода (3.28) в энергетической норме гиль-

бертова пространства  xAxx
A

, , где .Hx  При этом, как обычно, 

число итераций n нужно выбирать в зависимости от уровня погрешности 

 . Полагаем 0,0 x  и рассмотрим разность      ,, nnnn xxxxxx .  

С помощью интегрального представления самосопряженного оператора A 

получим 
2

Anxx  xxEd
b

b
n

k
,

2

2 















  и  

2

, Ann xx  
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=

 
  





 
















 yyyyEd

b

b
nk

n

,1

2

2

1 . Оценив подынтегральные 

функции, получим при условии 0b  оценку погрешности для неявного  

метода итераций (3.28) в энергетической норме 

  1,2
8

)4(1
21

)4(1

, 
















  n

b

n
kx

kn

b
xx

kk

An . 

Следовательно, если в процессе (3.28) выбирать число итераций  )( nn , 

зависящим от   так, чтобы 0,,0)4(1  nn k , то получим метод, 

обеспечивающий сходимость к точному решению в энергетической норме.  

Справедлива 

 Теорема 3.23.  При условии 0b  итерационный метод (3.28) сходит-

ся в энергетической норме гильбертова пространства, если число  

итераций n выбирать из условия 0,,0)4(1  nn k . Для  

метода итераций (3.28) справедлива оценка погрешности 

  1,2
8

)4(1
21

)4(1

, 
















  n

b

n
kx

kn

b
xx

kk

An . 

 Для минимизации оценки погрешности вычислим ее правую часть  

в точке, в которой производная от нее равна нулю; в результате получим 

    2121)8(12)8(310опт

, 2 xkxx kkkk

An  
  и априорный момент остано-

ва      kkkk xbkn
22212232

опт 2   . 

 Отметим тот факт, что для сходимости метода (3.28) в энергетической 

норме достаточно выбирать число итераций )( nn  так, чтобы 

0,,0)4(1  nn k
. Однако nопт =  kO 2 , т. е. nопт относительно 

  имеет порядок 2 ,k  и такой порядок обеспечивает сходимость  

метода (3.28).  

 Таким образом, использование энергетической нормы позволило по-

лучить априорную оценку погрешности для метода (3.28) и априорный 

момент останова nопт без дополнительного требования истокообразной 

представимости точного решения, что делает метод (3.28) эффективным  

и тогда, когда нет сведений об истокопредставимости точного решения 

x уравнения (2.1). 

Рассмотрим вопрос о том, когда из сходимости в энергетической нор-

ме следует сходимость в обычной норме гильбертова пространства Н. 



 

 

 

 

133 
 

Очевидно, для этого достаточно, чтобы при некотором фиксированном  

 A 0,  было: ,0, 0,nP x P x     где 

0

.P dE



    Т. к.  

  


 





 yBABEAx

nkn
n

21
, , 

то для выполнения последнего из указанных условий должно выполняться 

условие 0.P у    Таким образом, если решение х и приближенная правая 

часть у  таковы, что 0xP  и 0,P у    то из сходимости ,nx  к х в энер-

гетической норме вытекает сходимость в исходной норме гильбертова 

пространства Н. 

3.4.4. Правило останова по невязке 

  Здесь A – ограниченный линейный самосопряженный оператор, для 

которого нуль не является собственным значением, однако принадлежит 

спектру оператора А. Априорный выбор числа итераций n получен в пред-

положении, что точное решение x уравнения Ax = y истокообразно пред-

ставимо. Однако обычно сведения об истокообразности искомого решения 

неизвестны, и тем самым приведенные в разделе 3.4.1 оценки погрешности 

оказываются неприменимыми. Тем не менее, метод (3.28) можно сделать 

вполне эффективным, если воспользоваться следующим правилом остано-

ва по невязке: зададим уровень останова 0  и определим момент  

m останова итерационного процесса (3.28) условием 

.1,
,

),(,

11

,

,
















bb

yAx

mnyAx

m

n
                  (3.30)    

Предположим, что при начальном приближении невязка достаточно 

велика, а именно больше уровня останова, т. е.   yAx ,0 . Покажем 

возможность применения правила (3.30) к методу (3.28). Рассмотрим се-

мейство функций 

 
.01)(

2

1 
















 

nk

n

n

b

b
g  Нетрудно показать, что 

при 0b  для )(ng  выполняются следующие условия  

 

,0,2)(sup

2/1













n
b

n
kg

к

n
MM

 

,0,1)(1sup 


ngn
MM

 

,0)(1  ng  ,n   MM , , 
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  ,,
2

)(1sup

/
2 skn

kn

bs
g

ks

n
s

MM













 0 .s   

  Аналогично подобным леммам из раздела 2.1 доказываются следую-

щие леммы. 

 Лемма 3.16. Пусть A – ограниченный оператор, . AA  Тогда для 

Hw .,0))((  nwAAgE n  

 Лемма 3.17. Пусть A – ограниченный оператор, . AA  Тогда для 

( )R A   имеет место соотношение  

.0,,0))((2  snvAAgEAn n
sks  

   Лемма 3.18. Пусть A – ограниченный оператор, . AA  Если для не-

которых constnnp   и )(0 ARv   при p  имеем 

,0))(( 0  vAAgEAw
pnp  то .0))(( 0  vAAgEv

pnp  

 Если A – ограниченный несамосопряженный оператор, то справедлива 

аналогичная лемме 3.18 

 Лемма 3.19. Пусть A – ограниченный несамосопряженный оператор.  

Если для некоторых constnnp   и )(0 ARv   при p  имеем 

,0))(( 0
***  vAAAgAEAAw

pnp  то .0))(( 0
**  vAAAgAEv

pnp  

Для доказательства леммы 3.19 следует перейти к оператору *A A  и ис-

пользовать лемму 3.18. 

  Леммы 3.16–3.18 использовались при доказательстве теорем:  

 Теорема 3.24. Пусть A – ограниченный оператор,  AA и пусть мо-

мент останова )(mm  в методе (3.28) выбирается по правилу (3.30), 

тогда xxm ),(  при 0 . 

  Теорема 3.25. Пусть выполнены условия теоремы 3.24, оператор A – 

положителен, и пусть 0,2  szAx s . Тогда справедливы оценки  

,
)1(4

)12(
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
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m zbxx  
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)12/(2

1
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



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
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
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


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


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
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
k

sk

k b

z

k

bs

b

k
                     (3.31) 

Доказательство теорем 3.24–3.25 аналогично доказательству подобных 

теорем из раздела 2.1.  
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 Замечание 3.14. Порядок оценки (3.31) есть 













 12

2

s

s

O  и, как следует 

из [21], он оптимален в классе задач с истокообразно представимыми ре-

шениями 0,2  szAx s . 

 Замечание 3.15. Хотя формулировка теоремы 3.25 дается с указани-

ями степени истокопредставимости s и истокопредставляющего эле-

мента z, на практике их значение не потребуется, т. к. они не содержат-

ся в правиле останова (3.30).  

3.4.5. Правило останова по соседним приближениям  

 Решаем уравнение Ax = y  с несамосопряженным оператором А. Ис-

пользуем неявную схему метода итераций 

    















 




 yAAABzBAAz
k

n

k

n
*12*

1
2*

1  

   .,  , 0

1
2* NkHzBuBAA n

k













                       (3.32) 

Здесь nu  –   ошибки вычисления итераций, nu . Обозначим 

  ,
1

2* BBAAC
k











      .*12*

1
2* AAABAAD

kk 










   Тогда метод ите-

раций (3.32) примет вид nnn CuDyCzz  1 , Hz 0  при приближен-

ной правой части y    yy  и nnn CuDyCww 1 , Hw 0  при 

точной правой части у. Определим момент m останова итерационного про-

цесса условием (2.37).  

 Аналогично подобным леммам из раздела 2.1 доказываются леммы 

 Лемма 3.20. Пусть приближение nw  определяется равенствами 

,00 zw   ,0,1  nCuDyCww nnn  тогда справедливо неравенство 

.
1

0

22
0

0

2
1 




 

n

k
k

n

k
kkk CuxwCuww  

 Лемма 3.21. При любом Hw 0  и произвольной последовательности 

ошибок  ,nu  удовлетворяющих условию nu , выполнено неравенство 

.2lim 1  


Cww nn
n

                             

 При использовании лемм 3.20–3.21 аналогично, как в разделе 2.1, до-

казано, что метод (3.32) с правилом останова (2.37) сходится, и получена 

оценка для момента останова. Справедлива 
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 Теорема 3.26. Пусть уровень останова ),(   выбирается как 

функция от уровней   и   норм погрешностей  yy  и nu . Тогда справед-

ливы следующие утверждения: 

 а) если ,2),(  C  то момент останова m  определен при любом 

начальном приближении Hz 0 и любых y  и nu ,  удовлетворяющих усло-

виям ;,   nuyy  

б) если ,2),(  CD  то справедлива оценка 

 
  

2
0

2

z x
m ;

D C D




       
 

 в) если, кроме того, 0,,0),(   и  ,),( pCDd   где 

,1d (0,1),p  то .0lim
0,




xzm   
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ГЛАВА 4 

ЯВНЫЙ МЕТОД ИТЕРАЦИЙ РЕШЕНИЯ НЕКОРРЕКТНЫХ ЗАДАЧ 

С ПРИБЛИЖЕННЫМ ОПЕРАТОРОМ 
 

 В данной главе доказывается сходимость явного метода решения опе-

раторных уравнений первого рода с априорным и апостериорным выбором 

числа итераций в исходной норме гильбертова пространства в случае са-

мосопряженного и несамосопряженного оператора, в предположении, что 

погрешности имеются не только в правой части уравнения, но и в операто-

ре. Получены оценки погрешности явного метода, априорный момент 

останова и оценка для апостериорного момента останова. 

4.1. Априорный выбор параметра регуляризации в явном методе  

решения  некорректных задач с приближенным оператором 

4.1.1. Постановка задачи  

 Пусть H и F – гильбертовы пространства и A L ),( FH , т. е. A – ли-

нейный непрерывный оператор,  действующий из H в F. Предполагается, 

что нуль принадлежит спектру оператора A, но не является его собствен-

ным значением. Решается уравнение 

         .yAx                                                         (4.1) 

 Задача отыскания элемента Hx  по элементу Fy  является некор-

ректной, так как сколь угодно малые возмущения в правой части y могут 

вызывать сколь угодно большие возмущения решения. 

 Предположим, что точное решение 
*x H  уравнения (4.1) существует 

и является единственным. Будем искать его с помощью явного итерацион-

ного процесса 

             .,0,)()( 0
1

1 NkxyAEEAxAEx k
n

k
n  
         (4.2) 

 Считаем, что оператор A и правая часть y уравнения (4.1) заданы при-

ближенно, т. е. вместо y известно приближение y , , yy  а вместо 

оператора A известен оператор A , . AA  Предполагаем, что 

),(0  ASp   .,0)( MASp   Тогда метод (4.2) примет вид 

 
1

1 0( ) ( ) , 0, .k k
n nx E A x A E E A y x k N
    

       
 

       (4.3) 

 Случай приближенной правой части уравнения и точного оператора 

для рассматриваемого метода изучен в разделе 2.1. Там исследованы апри-

орный и апостериорный выборы параметра регуляризации, изучен случай 

неединственного решения задачи, доказана сходимость метода в энергети-

ческой норме.  
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 Докажем сходимость метода (4.3) в случае априорного выбора пара-

метра регуляризации при решении уравнения   yxA  с приближенным 

оператором A  и приближенной правой частью y , получим априорные 

оценки погрешности. Подобные вопросы изучались в [21], но только для 

других методов. 

4.1.2. Случай самосопряженных неотрицательных операторов 

 Пусть ,FH   ,0*  AA  ,0*   AA   ,,0)( MASp   .0 0  

Итерационный метод (4.3) запишем в виде: 

                                                     ,)(  yAgx nn                                     (4.3
1
) 

где 
1( ) 1 (1 ) .kn

ng       
 

 В разделе 2.1 получены условия для ( ) :ng   

                            

0

2
sup ( ) , , 0 , 0;n

M

g n k n
M

                               (4.4)     
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0,

,0),0(,)(1sup
0

Mek

s

snng

s

s

s
sn

s

M













 


                 (4.5) 

(Здесь s – степень истокообразной представимости точного решения 

,* zAx s  ,0s   z ); 

0 0
0

2
sup 1 ( ) , 1, 0 , 0.n

M

g n
M

                         (4.6) 

 Справедлива  

 Лемма 4.1. Пусть ,0*  AA  ,0*   AA  , AA   ,,0)( MASp   

),0( 0  
M

2
0   и выполнено условие (4.6). Тогда 0nG  при 

, 0n    ,H  где )(   AgAEG nn . 

Доказательство. Имеем     
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,,0)()1(  






 nvdEqvdE
M

kn
M

kn

 

т. к. для  M,  .1)(1  q
 

0,0)1(

00

 







  vEvdEvdEkn
 в силу свойств спектральной 

функции. Следовательно, 0nG  при , 0.n   Лемма 4.1 доказана. 

 Условие сходимости для метода (4.3) дает 

  Теорема 4.1. Пусть ,0*  AA  ,0*   AA  , AA   ,,0)( MASp   

),0( 0  
M

2
0  , ),(ARy   yy  и выполнены условия (4.4), 

(4.6). Выберем параметр ),(  nn  в приближении (4.3) так, чтобы 

0),()(  n  при ,),( n .0,0   Тогда *
),( xxn   при 

.0,0    

Доказательство. Из (4.3
1
) имеем .)(  yAgx nn  Тогда 
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nnnnn
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



Следовательно, ).)(( *** xAyAgxGxx nnn    

Т. к. по условию (4.4) ,)(sup)(
0

ngAg n
M

n 


  то  

.**

****

xxAA

xAAxyyxAyyyxAy








 

Следовательно,  

   *****
),( )( xnxGxAyAgxGxx nnnn   . 

 Из леммы 4.1 следует, что 0* xGn  при , 0,n   а по условию 

теоремы 4.1 0)( n  при 0, 0.   Таким образом, ,0*
),(  xxn  

.0,0   Теорема 4.1 доказана. 

 Теорема 4.2. Пусть 0*  AA , 0 
 AA ,  AA , ( ) [0, ]Sp A M   

)0( 0 , 
M4

5
0  , )(ARy ,  yy  и выполнены условия (4.4), 

(4.5). Если точное решение истокопредставимо, т. е. zAx s*
, 0s , 

,z   то справедлива оценка погрешности 
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 *),1min(
0

*
),( xnnсxx s

s
s

sn  
 ,  s0 . 

Доказательство. Имеем, используя истокообразную представи-

мость точного решения, 

  ,),1min(
0

*  


s
s

s
s

s
n

ss
n

s
nn nczAGzAAGzAGxG  

т. к. по лемме 1.1 [21, с. 91] 
min(1, ) , consts s s

s sA A c c     ( 2sс   для 

0 1s  ). Тогда 

  .0,*),1min(
0

*
),(  

 sxnncxx s
s

s
sn      (4.7) 

Теорема 4.2 доказана. 

 Если минимизировать правую часть оценки (4.7) по n, то получим 

значение априорного момента останова: 

 
  ,

)1/(1
*)1/(1

*

)1/(1

опт


 
























s
s

s
s xd

x

s
n

s

 

 где .

)1/(1 















s
s

s

s
d  

Отсюда   .)( )1(1*)1/(1)1/(1
опт

  ssss xeksn  Подставим оптn   

в оценку (4.7), получим 

   

    









)1/(1
*)1/(1*

)1/(
*)1/(1),1min(

0
опт

*
),(

s
s

s

ssss
ss

s
sn

xdx

xdcxx

 

   

  ,
)1/(

*)1/(1),1min(
0

)1/(1)1/(1
)1/(

*),1min(
0











ss

s
ss

s

s
s

s
s

s
s

ss
s

s

xcc

ddxc
 

где     .1 )1/()1/(1)1/()1/()1/(1   sss
s

sssss
ss

s
ss esssddc   

Отсюда     .1
)1/(

*)1/(1)1/(),1min(

опт

*
),(




 
ss

ssss
sn xescxx  

 Замечание 4.1. Оптимальная оценка погрешности не зависит от 

,  но оптn  зависит от  . Следовательно, для уменьшения числа итера-

ций при получении приближенного решения следует брать   возможно 

большим из условия 
M4

5
0   и таким, чтобы оптn  было целым. 

4.1.3. Случай несамосопряженных операторов 

  В случае несамосопряженной задачи итерационный метод (4.3) при-

мет вид 
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 
1

* * * *
1 0( ) ( ) , 0, .k k

n nx E A A x A A E E A A A y x k N


        
       
 

 (4.8) 

Его можно записать так  

.)( **
 yAAAgx nn                                        (4.9) 

 Из леммы 4.1 следует 

 Лемма 4.2. Пусть A, A L (H, F), , AA  ,
2

MA   
M

2
0   

и выполнено условие (4.6). Тогда  

0vKn   при  0, n ,  ,)()( *ARANv  
           (4.10) 

0
~

zKn   при  0, n ,   ,)(* ARANz 


           (4.11) 

где  ,**
  AAgAAEK nn   **~

  AAgAAEK nn . 

Используем лемму 4.2 для доказательства следующей теоремы. 

 Теорема 4.3. Пусть A, A L (H, F), ,A A    
2

,A M   0(0 ),    

5
0 ,

4M
    )(ARy ,  yy  и выполнены условия (4.5), (4.6). Выбе-

рем параметр ),(  nn  так, чтобы 

0),()( 2  n  при   ),(n , 0 , 0 . (4.12) 

Тогда *
),( xxn  при 0 , 0 . 

Доказательство. Для погрешности приближения ),( nx  имеем 

 .)( *****
),( xAyAAAgxKxx nnn                  (4.13) 

Здесь     
1 2

* * * * 1 2
* ,n ng A A A g A A A A n        

 
где (подраздел 2.1.3) 

1 2 1 2
*

0 0

( )sup sup n

n M

n g

 

 
    

 
 

1 2
5

.
4

k
 

  
 

 Поскольку  

 
**** xAAxyyxAyyyxAy *x , 

то      







 

*21
21

***

4

5
xnkxAyAAAgn . Поэтому 

   

 .
4

5 *21
21

*

*****
),(

xnkxK

xAyAAAgxKxx

n

nnn
















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 Покажем, что 0* xKn  при , 0.n   Действительно,    

 





AA

nnn xdEgxAAgAAExK

*

0

***** ))(1())((  

.)1()1()1(

**

*

0

*

0

*










 

AA

knkn

AA

kn xdExdExdE  

Тогда ,,0)()1(

**

**  









 nxdEqxdE

AA

kn

AA

kn  т. к. для 

*, A A 
  
 

 .1)(1  q
 

 








0

*

0

*)1( xdExdEkn * 0,E x   

0  в силу свойств спектральной функции.  

Из условия (4.12) 0)( 2 n  при , 0, 0.n    Отсюда 

  ,0
4

5 *2/1
21









 xnk  , 0, 0.n    Таким образом, ,0*

),(  xxn   

, 0, 0.n    Теорема 4.3 доказана. 

 Справедлива 

 Теорема 4.4. Пусть A, A L (H, F), ,A A    
2

,A M   0(0 ),    

M4

5
0  , )(ARy ,  yy . Если точное решение представимо  

в виде * ,
s

x A z  0,s   ,z     21*AAA   и выполнены условия (4.5), 

(4.6), то справедлива оценка погрешности 

 * min(1, ) 2
( , ) 0 21 ln s s

n s sx x с n             

 
1 2

1 2 *5
, 0 .

4
k n x s

 
       
 

 

Доказательство. В случае истокопредставимого точного решения 

  zAAzAx
ss 2**   из (4.5) получим 

2 2
2

0

1 ( ) ,sup
s s

n s

M

g n



    
 

где 

2

2 .
2

s

s
s

k e

 
   

 
 Тогда 
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  

     .2
2

**2*

**










s
sn

s

n

ss

n

nzAAgAAEAA

zAAgAAEAzAK

 

 Отсюда имеем 






   zAKzAAKzAKxK
s

n
ss

n
s

nn
*  

    2
2

),1min(
0 ln1 s

s
s

s nс , т. к. из [21, с. 92] получим 

  ),1min(ln1 s
s

ss
сAA  , constsc  ( 102 для  sсs ). 

Из (4.13) 

    

**21**
),( xKxnxKxx nnn  

    







 ),1min(

0
*21

21

ln1
4

5 s
sсxnk  

 
1 2

2 1 2 *
2

5
, 0 .

4

s
s n k n x s  

       
 

               (4.14) 

Теорема 4.4 доказана. 

 Минимизируя правую часть (4.14) по n, получим значение  

априорного момента останова:   

  























)1(2

*)1(2

)1(2

2
опт

*

s
s

s

s
x

s
n  

    .)2(
4

5 )1(2*)1(21)1()1()2(
)1(1












 ssssss

s

xkes  

 Подставив оптn  в оценку (4.14), получим оптимальную оценку по-

грешности для метода итераций (4.8)  

    ,0,ln1

)1(
*)1(1),1min(

0
опт

*
),( 




 sxссxx

ss
s

s
s

sn

где 
1 ( 1) ( 1) ( 1) 1 ( 1)

(2( 1))
(2( 1))

* 2
5

( 1)(2 ) .
4

s s s s s s
s s

s s
s sc s s s e

s

    


            
   

 

Таким образом, 

 

  .0,)2)(1(
4

5

ln1

)1(
*)1(1))1(2(

))1(2(

),1min(

опт

*
),(




















sxes
s

сxx

ss
sss

ss

s
sn
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4.2. Апостериорный выбор параметра регуляризации в явном  методе  

решения некорректных задач с приближенным  оператором 

4.2.1.  Случай самосопряженной задачи   

 Рассматривается уравнение Ax = y из подраздела 4.1.1. Для его реше-

ния используется итерационный метод (4.3). 

 Докажем сходимость метода (4.3) в случае апостериорного выбора 

параметра регуляризации для решения уравнения   yxA , где оператор 

A  и правая часть уравнения заданы приближенно: ,A A     

 yy . Подобные вопросы изучались в работе [21], но только для 

других методов. Считаем, что нуль не является собственным значением 

оператора A , но принадлежит его спектру. Предположим, что уравнение 

  yxA  имеет единственное решение. 

 Зададим уровень останова 0  и определим момент m останова ите-

рационного процесса (4.3) условием 

  .1,
,

),(,
*

),(

),(
















bxb

yxA

mnyxA

m

n
          (4.15) 

 Предположим, что при начальном приближении ),(0 x  невязка доста-

точно велика, больше уровня останова  , т. е.   yxA ),(0 . Покажем 

возможность применения правила (4.15) к методу (4.3). 

Пусть ,H F  
* 0,A A   0,A A    ( ) [0, ].A M 

 
Справедлива 

 Лемма 4.3. Пусть 0*  AA , 0 
 AA ,  AA , MA    

и выполнено условие (4.5). Тогда для )(   AgAEG nn  справедливо со-

отношение для  )(AR : 

 0 nGAn  при n , .0                            (4.16) 

Доказательство. Воспользуемся теоремой Банаха – Штейнгауза. 

Здесь  nn GAnB  и по условию (4.5) нормы nB  ограничены в сово-

купности   

 ( )n nn A G n A E A g A      ).0,0(,)(1sup 1
1

1
0

 



nnngn n
M

 

Для элементов вида ,A    образующих в )(AR  плотное подмножество,  

в силу (4.5) имеем  
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
















)(1sup

)(

2

0
1 n

M
n

nnn

gnAGAn

AAGAnAGAnGAn

 

    .0,,01
21

2
21   nnnn  

По теореме Банаха – Штейнгауза 0 nGAn  при .0, n  Лем- 

ма 4.3 доказана. 

 Лемма 4.4. Пусть * 0,A A   0,A A    ,A A     ,A M    

и выполнены условия (4.4), (4.6). Если для некоторых 

constnnAR p 
_

0 ,)(  и 0p  имеем 00  ppp nGA  при p , 

то .00 ppnG  

Доказательство. В силу неравенства (4.6) последовательность 

0 
p

np p
G  ограничена, т. е.  ....,2,1,000   NpG

p
np p

 

Поэтому в гильбертовом пространстве из этой последовательности можно 

извлечь слабо сходящуюся подпоследовательность  ., NNpp   

Тогда ,  pp
AA p   .Np   По условию ,0  pp p

A  значит, 

.0p
A  Но т. к. нуль не является собственным значением оператора 

p
A , то 0.  Теперь  

     







  000

2
,,, pnp

p
npp pppp

AgAEG  

             ,',0,0,,,, 00000 NpAgAgA
ppppp nppnp  

т. к. ,0p  и по условию (4.4)   .nnAg pn pp
  Итак, любая слабо 

сходящаяся подпоследовательность ограниченной последовательности p  

стремится к нулю по норме. Отсюда следует, что и вся последовательность 

 pp ,0  по норме. Лемма 4.4 доказана. 

 Используем доказанные леммы при доказательстве теорем: 

 Теорема  4.5. Пусть ,H F  
* 0,A A   0,A A    ,A A     

,A M   00 ,  ( ),y R A   yy  и выполнены условия (4.4), 

(4.5), (4.6). Пусть параметр ),( m  выбран по правилу (4.15). Тогда 

*
),(,0),()( xxm m    при 0, 0.   

Доказательство. Имеем   yAgx nn )(),( , тогда  
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   







***

****
),(

)(

)(

xAgAExGyAgx

xGxGyAgxxx

nnn

nnnn

 

    .
)(

***

****

xAyAgxGyAgx

xAgAxxGyAgx

nnn

nnn








 

Следовательно,  

 ***
),( )( xAyAgxGxx nnn   .                      (4.17) 

 Отсюда  

;)()( ***
),( xAAgAyAgAxGAxAxA nnnn    

;)()( ***
),( xAAgAyAgAxGAxAxA nnnn    

 

 

 .
)()(

)(

****

**

**
),(

xAyGxGAyGxAGxGA

yAgAExAGxGAyAgA

xAAgAEyxGAyxA

nnnnn

nnnn

nnn













 

Итак, 

 **
),( xAyGxGAyxA nnn   .                  (4.18) 

 Из леммы 4.1 следует, что  

.0,,0*  nxGn                                  (4.19) 

 Покажем, что 

   .)( **   xnxAyAgn                           (4.20) 

 По условию (4.4)   ,)(sup
0

ngAg n
M

n 


  а 
*y A x y y       

*y A x     ,****   xxAAxAAxyy  поэтому имеем 

   .)( **   xnxAyAgn  

 В силу леммы 4.3 

.0,,0*   nxGAn nn                       (4.21) 

 Применим правило (4.15), тогда   1,*
),(   bxbyxA m   

и из (4.6) и (4.18) получим 

    .)1( **  xbxGA m                                (4.22) 

Действительно, из (4.18) 
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 

     .)1( ***

*
),(

*



 

xbxxb

xAyGyxAxGA mmm
 

 Для mn   ,),(   yxA n  потому  

   .)1( **
),(

*   xbxAyGyxAxGA nnn  

Следовательно, для mn   

 .)1( **  xbxGA n                              (4.23) 

 Из (4.23) и (4.21) при 1 mn  имеем 
1,

1

m

m

 




*
1,mA G x     

 *( 1)b x     или   *)1( xm  
1,

0, 0, 0
1

m

b

 
  


 (т. к. из 

(4.21) 0,,0   mm ). Если при этом ( , )m    при 0,  

0,  то, используя (4.17), (4.19) и (4.20), получим 

 

  ,0,0,,0),(

)(

**

***
),(









mxmxG

xAyAgxGxx

m

mmm
 

т. е.  что .*
),( xxm   

 Если же для некоторых n  и n  последовательность  nnm  ,  ока-

жется ограниченной, то и в этом случае   .0,0,*
,  nnm xx

nn
 

Действительно, из (4.22) выполняется: 

  .0,0,0)1( **  nnnnm xbxGA
nn

 

 Следовательно, имеем 0,0,0*  nnm xGA
nn

 и по лемме 4.4 

получаем, что при 0,0  nn  выполняется .0*  xG
nm  Отсюда 

),(**
),( nnmm mxGxx

nnn
    ,0*  nn x  0,0  nn .  

Теорема 4.5 доказана. 

 Теорема 4.6. Пусть выполнены условия теоремы  4.5. Если * ,sx A z  

0, ,s z   то справедливы оценки  

  
;

)1(

1
1

)1/(1

1
*

)1/(1














s

s

s

сxb
ek

s
m  
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    



)1/(1

)1/(
*

1
),1min(*

),( )1( s
ss

s
s

sm xbсcxx  

  
 .

)1(

1
1 *

)1/(1

1
*

)1/(1































x

сxb
ek

s
k

s

s

s

           (4.24) 

Доказательство.   Оценим заново .*
,1 xGA m   В силу (4.5)  

и леммы 1.1 [21, с. 91] 

    zAAGAzAGAxGA ss
m

s
mm ,1,1

*
,1

  ,)1( )1(
1,1,1

1  





s
ssmm

s mzGA  

где     ,)1()1()(1sup 1
1

1
1

0
,1





  mccemkgc ssm

M
ssm ,0,1   sm   

m . Здесь constsc  ( 2sc  при 10  s ). Сопоставляя это с (4.23), 

получим     .)1()1( )1(
1,1

*  


s
ssm mxb  Отсюда имеем 

 


)1(
1 )1( s

s m   ,)1( ,1
*   smxb  тогда справедливо 

)1()1(  sm

  
,

)1( ,1
*

1










sm

s

xb

 и, следовательно,   

 
.

)1(

1
1

)1/(1

,1
*



 
























s

smxbek

s
m  

 Поскольку 11,1
1

1



  sssm c

m
c  (т. к. при 1

1

1
1 




m
m ),  

то       1
*

,1
* )1()1( ssm cxbxb , и, значит, получим 

следующую оценку для m:   

   )1/(1

1
*

)1/(1

)1(

1
1














s

s

s

cxb
ek

s
m .  

 Имеем    .* zAGzAAGzAGxG s
m

ss
m

s
mm    По лемме 1.1 

[21, с. 91]   ,),1min(  
s

s
ss

m czAAG  что дает в оценку 
*

),( xxm   

вклад  )1/()(  ssO  [21, с. 111]. Норму zAG s
m   оценим с помощью 

неравенства моментов, леммы 1.1 [21, с. 91] и (4.22): 
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  



















zAAGAzzAGA

zGzGAzGAzAG

ss
m

sss
s

m

s

m

ss

m
s

m
ss

m

)1/(1)1/(

)1/(1)1/(
1

    .)1( )1/(1
)1/(

*)1/(1
)1/(







  s
ss

ms
s

ss
s

m xbzAGA  

Тогда   

     )1()( ),1min(***
),( bcxAyAgxGxx ms

s
smmm  

   

   









)1/(1
)1/(

*
1

),1min(*)1/(1
)1/(

*

)1( s
ss

s

s
s

s
ss

xbc

cxmx
 

  
 .

))1(

1
1 *

)1/(1

1
*

)1/(1































x

cxb
ek

s
k

s

s

s

 

Теорема 4.6 доказана. 

 Замечание 4.2 . Порядок оценки (4.24) есть   1

s

sO 
 
    

 

 и, как следует 

из [21], он оптимален в классе задач с истокопредставимыми решениями. 

 Замечание 4.3 . Хотя формулировка теоремы 4.6 дается с указани-

ем степени истокопредставимости s и истокопредставляющего элемен-

та z, на практике их значения не потребуются, т. к. они не содержатся  

в правиле останова по малости невязки (4.15). 

4.2.2. Случай несамосопряженной задачи 

 В случае несамосопряженной задачи итерационный метод (4.3) при-

мет вид (4.8). Нетрудно показать, что метод (4.8) с правилом останова 

(4.15) сходится, и получить оценку для момента останова и оценку по-

грешности метода (4.8). Справедливы 

 Лемма 4.5. Пусть AA, L (H, F), MAAA  

2
,  и выпол-

нено условие (4.5). Тогда 02/1  vKAn n  при ,0, n  ),( *ARv  

где    AAgAAEK nn
** .  

Доказательство. Воспользуемся теоремой Банаха – Штейнгауза.   

По условию (4.5) нормы операторов ограничены в совокупности [21, 

с. 109]     
1/2

1/2 1/2 *
1/2, 0, 0 .n nn A K n A A K n          
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Для элементов вида ,*zAv   образующих в )()( *ARAN 
 плотное 

подмножество, в силу (4.5) имеем 

    zAKAnzAAKAnzAKAnvKAn nnnn
*2/1**2/1*2/12/1

 

    ,0

)(1sup

2/1
12/1

1
1

2/1
2/1

0

2/1
2/1

















znznn

zgn n
M   

при , 0.n   Мы учли, что   ****
  AAgAAEAAAKA nn   

(лемма 3.1 [21, с. 34]). По теореме Банаха – Штейнгауза 
1/2 0,nn A K v    

.0, n  Лемма 4.5 доказана. 

 Лемма 4.6. Пусть AA, L (H, F), MAAA  

2
,  и выпол-

нены условия (4.4), (4.6). Если для некоторого constnnARv p  ,)( *
0   

и 0p  имеем 00  vKA
ppp n  или 00

*  vKAA
pppp n  при ,p  то 

00  vK
ppn . 

Доказательство. Ограничимся доказательством случая, когда 

00
*  vKAA

pppp n . В силу (4.6) последовательность 0vKv
ppnp   

ограничена, т. е.   0vKv
ppnp  ...,2,1,00  Npv . Поэтому из этой 

последовательности можно извлечь слабо сходящуюся подпоследователь-

ность ', ( ).pv v p N N    Тогда имеем * * ,
p p p p

pA A v A A v   
 

'( ).p N  

По условию * 0,
p p

p pw A A v    значит, * 0.
p p

A A v    Т. к. нуль не является 

собственным значением оператора 
p

A , то 0.v   Теперь  

       0
**

0

2
,, vAAgAAEvvKvv

ppppppp npnpp

      0
**

0 ,, vAAgAAvvv
ppppp npp  

      0
**

0 ,, vAAgvAAvv
ppppp npp

     0,, 0
*

0
*

0   vAAgvKAAvv
ppppppp nnp , 

т. к.   * *
0 0, .

p p p p p p p
p n n pw A A K v g A A n n           

Итак, любая слабо сходящаяся подпоследовательность ограниченной  

последовательности pv  стремится к нулю по норме. Отсюда следует, что  
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и вся последовательность  pv p ,0  по норме. Лемма 4.6 доказана. 

Справедлива 

 Теорема 4.7. Пусть AA, L (H, F), 
2

, ,A A A M      ,0 0   

),(ARy  y y    и выполнены  условия  (4.5), (4.6). Пусть параметр 

),( m  выбран по правилу (4.15). Тогда ,0),()( 2  m  *
),( xxm   

при 0 , 0 . 

Доказательство. Из (4.8) имеем     yAAAgx nn
**

),( . Тогда  

     
*********

),( xyAAAgxKxKxyAAAgxx nnnnn  

    
    







yAAAgxxAAgAAxxK

yAAAgxxAAgAAExK

nnn

nnn

********

*******

 

   **** xAyAAAgxK nn   . 

Следовательно, 

   *****
),( xAyAAAgxKxx nnn   .              (4.25) 

Отсюда  

    xAAAAgAyAAAgAxKAxAxA nnnn   ******
),( ; 

    *******
),( xAAAAgAyAAAgAxKAxAxA nnnn   . 

Следовательно, 

 
    

   











yKxAKxKAyAAgAAE

xAAAgAAExKAxAAAAgA

yAAAgAxKAyxAyxA

nnnn

nnn

nnn

~
*

~
***

*******

****
),(

 

 *
~

* xAyKxKA nn   ,  

где    AAgAAEK nn
** ,  **

~

  AAgAAEK nn  (лемма 3.1 [21, 

с. 34]). Итак, 

 *
~

*
),( xAyKxKAyxA nnn   .             (4.26) 

Аналогично доказательству теоремы 4.3 можно показать, что  

0,,0*  nxKn .                               (4.27) 

Докажем, что  

     ,*2/1****   xnxAyAAAgn                       (4.28) 
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где     .supsup 2/1

0

2/1

0

* 














n

Mn

gn   Действительно,     
** AAAgn   

  ,sup 2/12/1

0

* ngn
M




 где (подраздел 2.1.3) 

21
*

4

5








 k . Отсюда 

     ,*2/1****   xnxAyAAAgn  т. к.  

 
**** xAAxyyxAyyyxAy  

  .**   xxAA  

В силу леммы 4.5 

.0,,0*2/1   nxKAn nn                       (4.29) 

Из (4.15) и (4.26) получим при ),( mn  

   
*

~

),(
* xAyKyxAxKA mmm  

        *** 1 xbxxb .                      (4.30) 

При ),( mn  из (4.15)  ,*
),(   xbyxA n  поэтому  

    .1 **
~

),(
*   xbxAyKyxAxKA nnn       (4.31) 

Из формул (4.29) и (4.31) получим при 1mn     *1 xb  

.
)1( 2/1

,1*
,1









m
xKA

m
m  Отсюда     ,0

1
1

,1*2/1









b
xm

m
 ,0  

0.  Если при этом  ),(m  при ,0,0   то в силу (4.25),  

(4.27), (4.28)      
******

),( xKxAyAAAgxKxx mmmm  

  ,0*2/1*  xm  т. е. .*
),( xxm   

Если же для некоторых n  и n  последовательность  nnm  ,  ока-

жется ограниченной, то и в этом случае ,*
),( xx

nnm  .0,0  nn  

Действительно, из (4.30)   * *1 0,m n nA K x b x         0,n   

.0n  Тогда по лемме 4.6 будет ,0* xKm .0,0  nn  Отсюда 
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  ,0),( *2/1***
),(   nnnnmm xmxKxx

nn
.0,0  nn  

Теорема 4.7 доказана. 

 Теорема 4.8. Пусть выполнены условия теоремы  4.7. Если * ,
s

x A z  

0,s   ,z   
1/2

* ,A A A  то справедливы оценки  

  
;

12

1
1

)1/(2

2/1
*




























s

scxbek

s
m  

      



)1/(1

)1/(
*

2/1
),1min(*

),( )1(ln1 s
ss

s
s

sm xbccxx  

  
 





















































*

2/1
)1/(2

2/1
*

2/1

12

1
1

4

5
x

cxbek

s
k

s

s

.   (4.32) 

Доказательство. Пусть 
* , 0, .

s
x A z s z     В силу (4.5) и лем- 

мы 1.2 [21, с. 93] 








   zAAKAzAKAxKA
ss

m
s

mm ,1,1
*

,1  

  ,)1( 2/)1(
2/)1(,1,1  


s

ssm

s

m mzAKA            (4.33) 

где      ,)1()1(21sup 2/1
2/1

2/1
1

2/1

0
,1





  mcemkcgc ssm

M
ssm  

.,0,1   msm  Сопоставляя это с (4.31), получим  *( 1)b x      

 ( 1)/2
1, ( 1)/2( 1) ,s

m s s m  
        отсюда имеем ( 1)/2

( 1)/2( 1) s
s m  
     

 *
1,( 1) .m sb x         Тогда  ( 1)/2

1
s

m




   








sm

s

xb ,1
*

2/)1(

1
 

и, следовательно, 
  

2/( 1)

*
1,

1
1 .

2 1

s

m s

s
m

k e b x





 
   

          

 

Поскольку 2/1
2/1

2/1,1 )1(  
 sssm cmc  (т. к. 1

1

1
2/1










m  

при  

1m ), то    * *
1, 1/2( 1) ( 1)m s sb x b x c            и, следо-
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вательно, 
  

2/( 1)

*
1/2

1
1 .

2 1

s

s

s
m

k e b x c


 

   
          

 Имеем *
mK x   

.
s ss s

m m mK A z K A A z K A z    
 

    
 

 По лемме 1.2 [21, с. 93] 








   zAAK
ss

m   ,ln1 ),1min(  s
sc  где constsc  ( 2sc  при 10  s ), 

что дает вклад  )1/()(  ssO  в оценку 
*

),( xxm   [21, с. 111]. Член 

zAK
s

m   оценим при помощи неравенства моментов, леммы 1.2 [21, 

с. 93] и неравенства (4.30):  

   .)1( )1/(1
)1/(

*)1/(1

)1/(
*)1/(1

)1/(

)1/(1
)1/(

1













































 



s
ss

ms
s

ss

m
ss

m
s

ss
s

m

s

m

ss

m

s

m

ss

m

xb

xKAzAAKAzzAKA

zKzKAzKAzAK

В итоге получим оценку 

       
),1min(****

),( ln1 s
smmm cxAyAAgxKxx  

        


),1min(*2/1*)1/(1
)1/(

* ln1)1( s
s

s
ss

ms cxmxb

   







 

 21
)1/(1

)1/(
*

2/1
4

5
)1( kxbc s

ss

s  

 
 .

)1(2

1
1 *

2/1
)1/(2

2/1
*













































x
cxbek

s

s

s

 

Теорема 4.8 доказана. 

 Замечание 4.4. Порядок оценки (4.32) есть   )1/( 


ss
O  и, как 

следует из [21], он оптимален в классе задач с истокообразно представи-

мыми решениями. 

 Замечание 4.5. Знание порядка 0s  и истокопредставляющего 

элемента z, используемое в теореме 4.8, на практике не потребуется. При 

останове по невязке автоматически делается нужное число итераций для 

получения оптимального по порядку решения. 
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ГЛАВА 5 

ИТЕРАЦИОННЫЙ ПРОЦЕСС НЕЯВНОГО ТИПА  

РЕШЕНИЯ НЕКОРРЕКТНЫХ ЗАДАЧ С ПРИБЛИЖЕННО  

ЗАДАННЫМ ОПЕРАТОРОМ 

 В данной главе для неявного итерационного метода решения опера-

торных уравнений первого рода исследуются априорный и апостериорный 

выборы параметра регуляризации в исходной норме гильбертова про-

странства в случае самосопряженного и несамосопряженного операторов,  

в предположении, что погрешности имеются не только в правой части 

уравнения, но и в операторе. Cформулированы и доказаны теоремы о до-

статочных условиях сходимости метода, получены оценки погрешности, 

даются рекомендации на выбор в методе параметра регуляризации. 

5.1. Априорный выбор числа итераций в неявном методе решения  

линейных уравнений с приближенным оператором 

5.1.1. Постановка задачи  

 Пусть H и F – гильбертовы пространства и A L ),( FH , т. е. A – ли-

нейный непрерывный оператор, действующий из H в F. Предполагается, 

что нуль принадлежит спектру оператора A, но не является его собствен-

ным значением. Решается уравнение 

         .yAx                                                  (5.1) 

 Задача отыскания элемента Hx  по элементу Fy  является некор-

ректной, т. к. сколь угодно малые возмущения в правой части y могут вы-

зывать сколь угодно большие возмущения решения. 

 Предположим, что точное решение Hx *
 уравнения (5.1) существу-

ет и является единственным. Будем искать его с помощью неявного итера-

ционного процесса 

                   0

1
1 2 , 0, .k k k

n nE A x E A x A y x k N
              (5.2) 

 Считаем, что оператор A и правая часть y уравнения (5.1) заданы при-

ближенно, т. е. вместо y известно приближение y , , yy  а вместо 

оператора A известен оператор A , . AA  Предполагаем, что 

),(0  ASp   .,0)( MASp   Тогда метод (5.2) примет вид 

     0

1
1 2 , 0, .k k k

n nE A x E A x A y x k N
                  (5.3) 

 Случай приближенной правой части уравнения и точного оператора 

для рассматриваемого метода изучен в разделе 3.1. Там исследованы апри-

орный и апостериорный выборы параметра регуляризации, изучен случай 

неединственного решения задачи, доказана сходимость метода в энергети-

ческой норме.  
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 Исследуем сходимость метода (5.3) в случае априорного выбора па-

раметра регуляризации при решении уравнения   yxA  с приближенным 

оператором A  и приближенной правой частью y , получим априорные 

оценки погрешности. Подобные вопросы изучались в [21], но только для 

других методов. 

5.1.2. Случай самосопряженных неотрицательных операторов 

 Пусть ,FH   ,0*  AA  ,0*   AA   ,,0)( MASp   .0 0  

Итерационный метод (5.3) запишем в виде ,)(  yAgx nn  где 
































 

n

k

k

ng
1

1
1)( 1 .  В разделе 3.1 при 0  получены условия 

для функций )(ng : 

k
n

M

ng 1

0

)(sup 



, kk 12  , ( 0n ),                        (5.4)           

ks
sn

s

M

ng 



 )(1sup
0

, ( 0n ),  s0 , 
ks

s
ek

s










 ,    (5.5) 

(здесь s – степень истокопредставимости точного решения ,* zAx s   

,0s  z ); 

0
0

)(1sup 


n
M

g , 10  , ( 0n ).                          (5.6) 

Справедлива  

 Лемма 5.1. Пусть ,0*  AA  ,0*   AA  , AA   ,,0)( MASp   

),0( 0  0  и выполнено условие (5.6). Тогда 0nG  при 

0, n  ,H  где  ( ).n nG E A g A     

Доказательство леммы аналогично доказательству леммы 4.1 из пункта 

4.1.2. Условие сходимости для метода (5.3) дает 

  Теорема 5.1. Пусть ,0*  AA  ,0*   AA  , AA   ,,0)( MASp   

),0( 0  0,   ),(ARy   yy  и выполнены условия (5.4), (5.6). 

Выберем ),(  nn  в методе (5.3) так, чтобы 0),()( 1  kn  при 

,),( n .0,0   Тогда *
),( xxn   при .0,0    

 Теорема 5.2. Пусть 0*  AA , 0 
 AA ,  AA , ],0[)( MASp  , 

)0( 0 , 0,   )(ARy ,  yy  и выполнены условия (5.4), (5.5). 
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Если точное решение истокопредставимо, т. е. zAx s* , 0s , z , 

то справедлива оценка погрешности 

 *1),1min(
0

*
),( xnnсxx kks

s
s

sn  
 ,  s0 .   (5.7) 

Теоремы 5.1–5.2 доказываются аналогично как в пункте 4.1.2. 

Если минимизировать правую часть оценки (5.7) по n, то найдем  

1)1(
)1()(

)1(
опт 2 


 








 ss

sks
sk e

k

s
n   )1(

*)1(


 
sk

sk x .  

Подставив оптn  в (5.7), получим 


опт

*
),( xxn 













))1(()1(
)1(),1min( 2

skks
sss

s
k

s
с  

  )1(1
)1(

*))1(()1( 


  s
ss

sks xes , ( 2 0 1дляsс s   ). 

Замечание 5.1. Оптимальная оценка погрешности не зависит от  , 

но оптn  от   зависит. Т. к. на   нет ограничений сверху ( 0 ), то 

можно   выбрать так, чтобы оптn = 1. Для этого достаточно взять 

  )1(
*)1()1(

)1()(
)1(2





 










sk
skss

sks
sk

onт xe
k

s
.  

5.1.3.  Случай несамосопряженных операторов 

  В случае несамосопряженной задачи метод (5.3) примет вид 

      .,0,2 0

*1**
1

* NkxyAAAxAAExAAE
k

n

k

n

k


















 



   (5.8) 

 Из леммы 5.1 следует 

 Лемма 5.2. Пусть A, A L (H, F), , AA  ,
2

MA   0  и 

выполнено условие (5.6). Тогда  

0vKn  при , 0,n  ,)()( *ARANv  
 

0
~

zKn  при , 0,n     ,)(* ARANz 


 

где  ,**
  AAgAAEK nn   **~

  AAgAAEK nn . 

Справедливы 

 Теорема 5.3. Пусть A, A L (H, F), ,A A    
2

,A M   0(0 ),    

0,   ( ),y R A   yy  и выполнены условия (5.5), (5.6). Выберем па-

раметр ),(  nn  так, чтобы 0)( 21 kn  при ( , ) ,n    0,  

0.  Тогда *
),( xxn  при 0,  0.  
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 Теорема 5.4. Пусть A, A L (H, F), ,A A    
2

,A M   0(0 ),    

0,   ( ),y R A  .y y     Если точное решение представимо в виде 

* ,
s

x A z  0,s   ,z     21*AAA   и выполнены условия (5.5), (5.6), то 

справедлива оценка погрешности 

 

  .0,2

ln1

*)2(1)2(121

)2(
2

),1min(
0

*
),(



 


sxnk

nсxx

kk

ks
s

s
sn

                   (5.9) 

Теоремы 5.3–5.4 доказываются аналогично как в пункте 4.1.3. 

Минимизируя правую часть неравенства (5.9) по n, получим априор-

ный момент останова:  

  .
2

)1(2
*)1(21)1()1()(

)1()2( 














sk
sksssks

ssk

xek
s

nопт  

 Подставив оптn  в оценку (5.9), получим оптимальную оценку погреш-

ности для метода итераций (5.8)  

 

  .0,)1(

2
ln1

)1(
*)1(1))1(2())1(2()1(

))1(2()21(
),1min(
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5.2. Апостериорный выбор числа итераций в неявном методе решения 

линейных уравнений с приближенным оператором 

5.2.1.  Случай самосопряженной задачи  

 Рассматривается уравнение Ах = у из подраздела 5.1.1. Для его реше-

ния используется итерационный метод (5.3). 

 Докажем сходимость метода (5.3) в случае апостериорного выбора 

параметра регуляризации для решения уравнения   yxA , где оператор 

A  и правая часть уравнения заданы приближенно: ,A A     .y y    

Считаем, что 0 не является собственным значением оператора A , но при-

надлежит его спектру. Предположим, что уравнение   yxA  имеет един-

ственное решение. 

 Зададим уровень останова 0  и определим момент m останова про-

цесса (5.3) условием (4.15). Предположим, что при начальном приближе-

нии ),(0 x  невязка достаточно велика, больше уровня останова  , т. е. 

  yxA ),(0 . Покажем возможность применения правила (4.15) к ме-

тоду итераций (5.3). 

Пусть ,H F  * 0,A A   0,A A    ( ) [0, ].A M   Справедливы 

 Лемма 5.3. Пусть * 0,A A   0,A A    ,A A     ,A M   0  

и выполнено условие (5.5). Тогда для )(   AgAEG nn  справедливо со-

отношение для ( ) :R A  01  n
k GAn  при ,n  .0   

 Лемма 5.4. Пусть * 0,A A   0,A A    ,A A     ,A M   0  

и выполнены условия (5.4), (5.6). Если для некоторых 0 ( ),R A   

_

pn n const   и 0p  имеем 00  ppp nGA  при ,p  то .00 ppnG  

 Теорема 5.5. Пусть ,H F  * 0,A A   0,A A    ,A A     ,A M   

 00 ,  ( ),y R A  ,y y    0  и выполнены условия (5.4), (5.5), 

(5.6). Пусть параметр ),( m  выбран по правилу останова (4.15). Тогда 

1 *
( , )( ) ( , ) 0,k

mm x x         при 0, 0.   

 Теорема 5.6. Пусть выполнены условия теоремы 5.5. Если * ,sx A z    

0, ,s z   то справедливы следующие оценки   

  
,

)1(

1
1

)1/(

1
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)1/(




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






sk

s

sk

сxb
ek

s
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    



)1/(1

)1/(
*

1
),1min(*

),( )1( s
ss

s
s

sm xbсcxx  

  
 .

))1(

1
12 *

1

)1/(

1
*

)1/(
1 





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








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










x

cxb
ek

s
k

k

sk

s

sk
k        (5.10) 

Леммы 5.3–5.4 и теоремы 5.5–5.6 доказываются аналогично подобным 

леммам и теоремам из пункта 4.2.1. 

 Замечание 5.2. Порядок оценки (5.10) есть   )1/( 


ss
O  и, как 

следует из [21], он оптимален в классе задач с истокообразно представи-

мыми решениями. 

 Замечание 5.3. Хотя формулировка теоремы 5.6 дается с указани-

ем степени истокопредставимости s и истокопредставляющего элемен-

та z, на практике их значения не потребуются, так как они не содержат-

ся в правиле останова (4.15). Знание истокопредставимости необходимо 

только для получения оценок в теореме 5.6. 

5.2.2.  Случай несамосопряженной задачи 

 В случае несамосопряженной задачи итерационный метод (5.3) при-

мет вид (5.8). Нетрудно показать, что метод (5.8) с правилом останова 

(4.15) сходится, и получить оценку для момента останова и оценку по-

грешности метода (5.8).  

Справедливы 

 Лемма 5.5. Пусть AA, L (H, F), 
2

, ,A A A M      0  и вы-

полнено условие (5.5). Тогда 0)2/(1  vKAn n
k  при ,0, n  

),( *ARv  где    AAgAAEK nn
** .  

 Лемма 5.6. Пусть AA, L (H, F), 
2

, ,A A A M      0  и вы-

полнены условия (5.4), (5.6). Если для некоторого 
*

0 ( ),v R A  pn n const   

и 0p  имеем 00  vKA
ppp n  или 00

*  vKAA
pppp n  при ,p   

то 0 0.
p pnK v   

 Теорема 5.7.  Пусть AA, L (H, F), 
2

, ,A A A M       00 ,  

( ),y R A  ,y y    0  и выполнены  условия  (5.5), (5.6). Пусть пара-

метр ),( m  выбран по правилу (4.15). Тогда ,0),()( 12  km  

*
),( xxm   при 0,  0.  
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 Теорема 5.8. Пусть выполнены условия теоремы  5.7. Если 
* ,

s
x A z  

0,s   ,z   
1/2

* ,A A A  то справедливы оценки 

  
;

12

1
1

)1/()2(

2/1
*




























sk

scxbek

s
m  

      



)1/(1

)1/(
*

2/1
),1min(*

),( )1(ln1 s
ss

s
s

sm xbccxx  

 
 









































*

)2/(1
)1/()2(

2/1
*

)2(121

)1(2

1
12 x

cxbek

s
k

k
sk

s

k  . (5.11) 

Леммы 5.5–5.6 и теоремы 5.7–5.8 доказываются аналогично подобным 

леммам и теоремам из пункта 4.2.2. 

Замечание 5.4. Порядок оценки (5.11) есть   )1/( 


ss
O  и, как 

следует из [21], он оптимален в классе задач с истокообразно представи-

мыми решениями. 

 Замечание 5.5. Знание порядка 0s  и истокопредставляющего 

элемента z, используемое в теореме 5.8, на практике не потребуется. При 

останове по невязке автоматически делается нужное число итераций для 

получения оптимального по порядку решения. 
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ГЛАВА 6 

ТЕОРЕМА М. А. КРАСНОСЕЛЬСКОГО И ПОСТРОЕНИЕ  

ИТЕРАЦИОННЫХ СХЕМ РЕШЕНИЯ НЕКОРРЕКТНЫХ  

УРАВНЕНИЙ ПЕРВОГО РОДА 
 

В данной главе в гильбертовом пространстве исследуются методы по-

следовательных приближений к точным решениям некорректных опера-

торных уравнений первого и второго рода с самосопряженным операто-

ром. Получены условия сходимости этих последовательных приближений 

и выяснена скорость их сходимости к точным решениям в исходной  

и в «ослабленных» нормах как на всем пространстве, так и на некоторых 

подпространствах плотно вложенных в исходное; проведен анализ поведе-

ния невязок и поправок при построении этих последовательных прибли-

жений; наконец, изучено поведение соответствующих ошибок в случаях, 

когда правые части заданы приближенно и когда сами вычисления произ-

водятся с некоторыми ошибками. 

Метод последовательных приближений – один из основных методов 

приближенного решения линейных операторных уравнений второго рода 

fBxx   в гильбертовом и банаховом пространствах. Основные теоремы  

о сходимости этого метода, скорости сходимости, оценках погрешности   

и т. д. сводятся к исследованию свойств ряда Неймана 


0n

nB  для соответ-

ствующего оператора B и изложены  во многих учебниках, монографиях  

и статьях, из которых отметим [43; 59]. При этом основная часть этих ре-

зультатов относится к так называемому некритическому случаю, когда 

спектральный радиус )(B  этого линейного оператора строго меньше 1 – 

это условие является необходимым и достаточным для сходимости ряда 

Неймана в пространстве операторов. Однако позднее обнаружилось, что 

ряд Неймана может сходиться (но уже не по норме операторов, а только 

сильно) и в случаях, когда спектральный радиус )(B  соответствующего 

оператора равен 1. Одним из первых результатов в этом направлении был 

получен М. А. Красносельским [58–59], которым было показано, что для 

уравнения fBxx   с самосопряженным оператором B в гильбертовом 

пространстве при условии 1)(  BB  и дополнительном предположе-

нии, что –1 не является собственным значением B, последовательные при-

ближения сходятся к одному из решений рассматриваемого уравнения, ес-

ли только это уравнение разрешимо. Эта теорема не является тривиальной, 

т. к. при сделанных предположениях уравнение ,x Bx f   вообще говоря, 

относится к классу некорректных (ill-posed).  
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Первая цель настоящей главы – показать, как упомянутая выше тео-

рема М. А. Красносельского о сходимости последовательных приближе-

ний для уравнений с самосопряженными операторами с некоторыми есте-

ственными дополнениями содержит в себе основные результаты об итера-

ционных методах приближенного решения некорректных линейных урав-

нений второго рода с самосопряженным оператором В в гильбертовом 

пространстве H. 

Для приближенного построения решений операторных уравнений 

первого рода Ax = y метод последовательных приближений также широко 

используется. Основная схема использования метода последовательных 

приближений здесь основывается на переходе от исходного уравнения 

Ax = y к эквивалентному (или почти эквивалентному) уравнению второго 

рода .x Bx f   Один из основных методов такого перехода основан на 

использовании в качестве оператора B функций f (A) от оператора A. 

Методы такого типа изучались многими авторами [59], однако основные 

результаты здесь получены для случая корректных уравнений Ax = y, 

иными словами, при дополнительном предположении, что 0 .SpA  

Вторая цель настоящей главы – исследовать возможности применения 

метода последовательных приближений для отыскания приближенных 

решений уравнения Ax = y именно в случае, когда это уравнение 

некорректно, т. е. когда 0 .SpA  При этом мы ограничимся случаем, когда 

оператор A, как и построенный по нему оператор B = f (A), являются само-

сопряженными операторами в гильбертовом пространстве H. Тем самым 

основным инструментом исследования некорректных линейных опера-

торных уравнений первого рода снова окажется упомянутая выше теорема 

М. А. Красносельского. 

Следует отметить, что теория некорректных линейных операторных 

уравнений с самосопряженным оператором в гильбертовом пространстве 

развивалась независимо с разных точек зрения и с разной степенью 

подробности многими авторами. Здесь достаточно отметить монографии 

[1–А; 2–А; 3–А; 11; 21; 41; 64; 111; 126–127; 129; 137; 151; 182; 187–188].  

Третья цель шестой главы работы – показать, как известные ранее 

частные результаты этих работ укладываются в общую схему, а также 

сформулировать ряд новых утверждений. 

6.1.  Уравнения второго рода 

6.1.1.  Сходимость последовательных приближений 

Пусть H – гильбертово пространство, B – самосопряженный оператор, 

.f H  Рассмотрим уравнение  

.x Bx f                        (6.1) 
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Для нахождения решений этого уравнения естественно использовать 

метод последовательных приближений 

1n nx Bx f    0( , 0,1, 2, ...).x H n                             (6.2) 

Действительно, если определенная равенством (6.2) последователь-

ность  nx  сходится, то ее предел будет решением уравнения (6.1). 

 Анализ сходимости последовательных приближений (6.2) исследован 

с достаточной полнотой в случае, когда ( ) 1.B   Последнее неравенство 

(для любого непрерывного линейного и не обязательно самосопряженного 

оператора B) эквивалентно сходимости ряда Неймана и равенству 

1

0

( ) .n

n

E B B






   

Поэтому ниже нас будет интересовать только «критический» случай, когда 

( ) 1.B   Для самосопряженного оператора это означает, что 1B  и что 

 1,1 .SpB    В случае SpB1  уравнение (6.1) остается однозначно 

разрешимым при любом ,f H  хотя вопрос о сходимости к соответству-

ющему решению последовательных приближений (6.2) остается откры-

тым. В случае же SpB1  уравнение (6.1) оказывается разрешимым для 

одних правых частей Hf   (и в этом случае решение оказывается неедин-

ственным) и неразрешимым при других правых частях .f H  

В работе [58] М. А. Красносельским был дан полный ответ об усло-

виях сходимости последовательных приближений в описанном выше кри-

тическом случае. В приводимой ниже модификации теоремы М. А. Крас-

носельского приведено также и утверждение о том, к какому из решений 

сходятся последовательные приближения в случаях, когда уравнение (6.1) 

разрешимо неоднозначно. 

Теорема 6.1. Пусть В – самосопряженный оператор с 1)(  B  в гиль-

бертовом пространстве Н, причем –1 не является его собственным зна-

чением.  

Пусть уравнение (6.1) разрешимо. Тогда последовательные прибли-

жения (6.2) при любом начальном условии Hx 0  сходятся к одному  

из решений уравнения (6.1).  

Более точно, приближения (6.2) сходятся к решению x  уравнения 

(6.1), для которого 0PxPx  , где P – ортопроектор на множество соб-

ственных векторов оператора В, отвечающих собственному значению 1.  

Доказательство. Приведем простую схему доказательства этой тео-

ремы ([58–59]). Из (6.1) и (6.2) очевидным образом вытекают равенства 

 
1

0 ( )n n
nx B x E B B f      (n = 0, 1, 2, …),               (6.3) 

1( )n nx B x E B B f
       (n = 0, 1, 2, …),               (6.4) 
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откуда 

).( 0   xxBxx n
n                                         (6.5) 

Отсюда, в силу теорем о спектральном разложении самосопряженных опе-

раторов в гильбертовом пространстве (например, [43; 133]) 

,)),(( 00
22

  

SpB

n
n xxxxdExx                      (6.6) 

где E  спектральная мера для оператора В. Последовательность 
n2

  

сходится к нулю всюду на SpB )1,1( . Точка  –1 (если она входит в SpB) 

в условиях теоремы 6.1 имеет нулевую спектральную меру. Точка 1 (опять 

таки, если она входит в SpB) может иметь положительную меру, однако 

лишь в случае, когда 0.Px Px   Тем самым утверждение теоремы 6.1 сле-

дует из теоремы Лебега о предельном переходе под знаком интеграла. Тео-

рема 6.1 доказана. 

Отметим, что сходимость последовательных приближений в общем 

случае может быть сколь угодно плохой. Это непосредственно видно  

из равенства (6.6). Без труда приводятся и соответствующие примеры. 

6.1.2.  Сходимость невязок и поправок 

Рассмотрим теперь вопрос о поведении невязок fBxx nn   для при-

ближений (6.2). Очевидно 

1,n n n nx Bx f x x      

т. е. невязки в рассматриваемом случае совпадают с взятыми с обратным 

знаком поправками. Из (6.3) вытекает 

0 0( ).n
n nx Bx f B x Bx f                                 (6.7) 

Из этого равенства, снова в силу спектральной теоремы для самосопря-

женных операторов, вытекают равенства 

2 2
0 0 0 0( ( ), ).

n
n n

SpB

x Bx f dE x Bx f x Bx f                (6.8) 

К этому неравенству снова можно применить теоремы Лебега о предель-

ном переходе. В результате получаем следующее утверждение: 

Теорема 6.2. Пусть В – самосопряженный оператор с 1)(  B  в гиль- 

бертовом пространстве Н, не имеющий –1 собственным значением. 

Пусть 0Pf , где P – ортопроектор на множество собственных векто-

ров оператора В, отвечающих собственному значению 1. Тогда невязки 

fBxx nn   для последовательных приближений (6.2) при любом началь-

ном условии Hx 0  сходятся к нулю. 
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Отметим, что условие 0Pf  в этой теореме необходимо, но в общем 

случае не достаточно для разрешимости уравнения (6.1). Таким образом, 

невязки для последовательных приближений могут сходиться к нулю  

и в том случае, когда исходное уравнение вообще не имеет решений. 

Из теоремы 6.2 следует, что скорость сходимости невязок и поправок 

к нулю в рассматриваемом случае определяется свойствами первой невяз-

ки 0 0 .x Bx f   

6.1.3.  Сходимость ошибок, невязок и поправок на специальных 

подпространствах 

Как показывают простые примеры и равенства (6.6), (6.8) скорость 

сходимости последовательных приближений к точному решению и невя-

зок к нулю существенно зависит от начального приближения 0x  и правой 

части f уравнения (6.1). Оценить эти скорости сходимости можно более 

точно для функций f из некоторых (обычно незамкнутых!) подпространств 

H
~

 пространства H. Среди таких подпространств наиболее простыми яв-

ляются подпространства истокообразно представимых функций. Эти под-

пространства определяются при помощи некоторой определенной на SpB 

оператора B функции )(  как множество HB)( элементов вида 

( ) ( ) ( ).

SpB

x B h dE h h H

 
      
 
 

                          (6.9) 

Множество HB)(  превращается в нормированное линейное прост-

ранство, если на его элементах норму определить равенством 

         ( )
inf : , ( ) .

B H
x h h H B h x


                  (6.10) 

Нетрудно проверить, что с этой нормой (но не с первоначальной!) 

пространство HB)(  является банаховым. 

Формула (6.6) при НВxx )(0    переписывается в виде 

.),()(
222

  

SpB

n
n hhdExx                          (6.11) 

Из нее, в силу спектральной теоремы для самосопряженных операторов, 

следует неравенство 

HBnn xxxx
)(0     ),)(( 0 HBxx                    (6.12) 

где 

)(max 


n

SpB
n .                                          (6.13) 

Если 0n  при ,n  то (6.12) дает квалифицированную оценку 

скорости сходимости приближений (6.2) к решению уравнения (6.1) сразу 
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для всех функций 0x  и f, для которых 0 ( ) .x x B H   Последнее условие 

трудно проверяемо, т. к. x  неизвестно. Однако оно выполняется, если 

0 0 ( ) ,x Bx f B H    где функции   и 
~

 связаны равенством ( ) (1 ) ( ).       

В результате вместо (6.12) мы имеем оценку 

HBnn fBxxxx
)(

~00
~

   ),)(
~

( 00 HBfBxx           (6.14) 

где 

max ( ) .
n

n
SpB

                                             (6.15) 

Аналогично, формула (6.8) при НВfxBЕ )()( 0   приводит к оценке 

hfBxx nnn    ),,)(( 00 HhhBfBxx               (6.16) 

где последовательность  n  снова определяется равенством (6.13).  

Справедливы 

Теорема 6.3. Пусть В – самосопряженный оператор с 1)(  B  в гиль-

бертовом пространстве Н, не имеющий –1 собственным значением. Если 

 определенная на спектре SpB функция с 0)1(  , то 0n  и, следо-

вательно, при HBxx )(0    скорость сходимости приближений (6.2)  

к соответствующему решению x  уравнения (6.1) оценивается неравен-

ством (6.12). Более того, если )(
~

)1()(   с 0)1(
~

 , то 0~ n   

и, следовательно, при HBfBxx )(
~

00   скорость сходимости при-

ближений (6.2) к соответствующему решению x  уравнения (6.1) оцени-

вается неравенством (6.14). 

Теорема 6.4. Пусть В – самосопряженный оператор с 1)(  B  в гиль-

бертовом пространстве Н, не имеющий –1 собственным значением. Если 

 определенная на спектре SpB функция с 0)1(  , то 0n  и, следо-

вательно, при HBfBxx )(00   скорость сходимости невязок для 

приближений (6.2) к нулю оценивается неравенством (6.16). 

Обе теоремы вытекают из следующей леммы.         

Лемма 6.1. Пусть функция   R 1,1:)(  удовлетворяет условию 

( 1) 0.    Тогда .0)(maxlim
11




n

n
 

Доказательство. Пусть задано 0 1.    Тогда существует такое 0,   

что  при 11   справедливо неравенство ( ) .     На множестве 

  1:  выполняется неравенство ( ) (1 ) ,
n nc       где ,)(max

11



с  

и, значит,  )(
n

 при 
1ln( )

.
ln(1 )

c
n

 


 
 Но при  11:   также 
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справедливо неравенство  )(
n

 и, значит, это неравенство верно при 

всех  1,1 . Т. к.   произвольно, а n не зависит от  , то 0)( 
n

 

при n  равномерно по  1,1 . Лемма 6.1 доказана. 

Отметим, что условия теорем 6.3 и 6.4 содержат начальное приближе-

ние 0x . Если, как это обычно делается 00 x , то условия теорем 6.3 и 6.4 

сводятся к предположениям о самом решении x  или о заданной правой 

части f. Последнее справедливо и в том случае, когда 0x  берется ненуле-

вым, но «достаточно хорошим» (в примерах «достаточно гладким»). 

Наконец, отметим также, что по существу утверждения теорем 6.3  

и 6.4 означают сходимость к нулю по норме последовательности операто-

ров )(BBn  или сходимость к нулю последовательности операторов  

)(BTBn  , где Т – квазиобратный (возможно неограниченный) оператор для 

оператора )( BЕ  ( BЕBЕTBЕ  )()( ). 

6.1.4.  Сходимость методов в энергетических нормах 

В ряде задач при исследовании последовательных приближений до-

статочно установить их сходимость в норме, более слабой, чем исходная 

норма гильбертова пространства X. Примером таких норм может служить: 

,
0

Txx                                                   (6.17) 

где T – некоторый оператор с 0KerT . При этом наиболее простым ока-

зывается случай, когда оператор T перестановочен с оператором B 

(TB = BT). Cреди таких операторов наиболее простыми являются операто-

ры вида 

( ),T B                                                    (6.18) 

где  )( некоторая ограниченная функция, для которой элементы 

 0)(: SpB  не являются собственными значениями. В этом случае 

(6.17) является нормой, т. к. из 0Tx  очевидным образом следует, что 

0x . Нормы такого типа иногда называют энергетическими. Отметим, что 

пространство H с нормой (6.17) является неполным, если функция )(1   

является неограниченной на спектре SpB. 

Напомним вытекающее из (6.3), (6.4) равенство (6.5):  

0( );n
nx x B x x     

здесь nx последовательные приближения fBxx nn 1  с Hx0  на-

чальное приближение к решению уравнения (6.1), x точное решение 

уравнения (6.1). 

Из этого равенства для нормы (6.17) с T, определенным равенством 

(6.18) имеем равенство  



 
 

 

 

 

169 

)()( 0   xxBBxx n
n , 

и, далее, 

,)),(()( 00
222

  

SpB

n
n xxxxdExx  

откуда, 

  xxxx nn 0 ,                                      (6.19) 

где  
n

SpB
n 


)(max .                                           (6.20) 

Применяя лемму 6.1, приходим к следующему утверждению, допол-

няющему теорему 6.1. 

Теорема 6.5. Пусть В – самосопряженный оператор с 1)(  В  в гиль- 

бертовом пространстве Н, не имеющий –1 собственным значением. 

Пусть 0)1(   и уравнение (6.1) разрешимо. Тогда последовательные 

приближения (6.2) при любом начальном условии Hx 0  сходятся в норме 

(6.17) к решению x  уравнения (6.1), для которого 0PxPx  , где P – орто-

проектор на множество собственных векторов оператора В, отвечаю-

щих собственному значению 1. При этом эта сходимость равномерна от-

носительно Hxx  0  на каждом ограниченном шаре. 

Подчеркнем, что в условиях теоремы 6.5 отсутствует требование  

об истокообразной представимости точного решения или правой части 

уравнения (6.1). Отметим еще, что в условиях теоремы 6.5 последова-

тельность приближений (6.2) в случае неразрешимости уравнения (6.1) 

может быть в норме (6.17) фундаментальной. Иными словами, она может 

оказаться сходящейся в пополнении H  пространства Н по норме (6.17), 

причем этот предел окажется обобщенным решением уравнения (6.1). 

Аналогично теореме 6.5 доказывается нижеследующая теорема 6.6; 

при этом вместо равенства (6.5) используется также вытекающее из (6.3), 

(6.4) равенство (6.7): 

)( 00 fBxxBfBxx n
nn  ; 

здесь nx последовательные приближения fBxx nn 1  с 0 ,x H 0x  на-

чальное приближение к решению уравнения (6.1) (само решение может  

и не существовать). 

Теорема 6.6. Пусть В – самосопряженный оператор с 1)(  В  в гиль-

бертовом пространстве Н, не имеющий –1 собственным значением. 

Пусть Pf = 0, где P – ортопроектор на множество собственных векторов 

оператора B, отвечающих собственному значению 1. Тогда невязки 
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fBxx nn   для последовательных приближений (6.2) при любом началь-

ном условии Hx 0   сходятся в норме (6.17) к нулю. При этом эта сходи-

мость равномерна относительно HfBxx  00  на каждом ограни-

ченном шаре. 

6.1.5.  Сходимость при ошибках в вычислениях 

Пусть теперь снова для самосопряженного оператора В выполнены 

условия теоремы 6.1. Пусть уравнение (6.1) разрешимо. В этом случае 

последовательные приближения (6.2) сходятся к одному из решений x  

уравнения (6.1). Рассмотрим теперь вместо точных последовательных 

приближений (6.2) приближения для случая, когда правая часть уравнения 

(6.1) задана приближенно или когда при вычислениях этих приближений 

на каждом шаге делается ошибка. Оба варианта таких приближений 

достаточно хорошо описываются равенствами 

nnn fxBx 
~~

1  (n = 0, 1, 2, …)                              (6.21)  

в предположении, что nn ff   (n = 0, 1, 2, …), где  n некоторая по-

следовательность малых положительных чисел, ограниченная числом  . 

Из этих равенств и из (6.3) немедленно вытекает 

)()()(~
120

1 ffffBffBxx nn
n

nn  
   

и, следовательно, 

120120
1~


  nnnn

n
nn ffffBffBxx  . 

Таким образом, 

,n n n nx x x x x x       

и, значит, 

 ,~
120   nnnn xxxx                      (6.22) 

где x точное решение уравнения (6.1). 

Из неравенств (6.22) сходимость nx~  к x  не вытекает, т. к. правая 

часть в (6.22) при n  не стремится к нулю (и, более того, обычно 

стремится к бесконечности). Однако во многих случаях из этих неравенств 

вытекает, что, с одной стороны, при достаточно больших, но не слишком 

больших, номерах n приближения (6.21) находятся достаточно близко  

к точному решению x  уравнения (6.1). Более того, эти приближения для 

достаточно малых в естественном смысле последовательностей  n  «под-

ходят» к точному решению x  сколь угодно близко! 

В условиях теоремы 6.1 при каждом начальном приближении Hx 0  

точные приближения nx  сходятся к x , или, иными словами, для неко-

торой стремящейся к нулю последовательности неотрицательных чисел n  

справедливо неравенство 
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.n nx x   

Напомним еще, что в условиях теоремы 6.1 последовательность  n  су-

щественно зависит от начального условия Hx 0  и правой части .f H  

Однако теорема 6.3 позволяет описать и некоторые множества начальных 

условий Hx 0  и правых частей ,f H  для элементов которых последо-

вательность  n  может быть выбранной, независящей от Hx 0  и .f H  

Положим      

00  ,  120   nnn  (n = 1, 2, …). 

Тогда неравенство (6.22) переписывается в виде     

 nnn xx  
~  (n = 0, 1, 2, …).                         (6.23)   

Для оценки «малости» последовательности  n  удобнее всего пред-

положить, что эта последовательность  n  принадлежит некоторому бана-

ховому пространству L (с монотонной в обычном смысле нормой)  

и эту «малость» оценивать нормой   .n L
  При этом, числа 120   nn  

(n = 1, 2, …) можно рассматривать как значения на последовательности 

 n  линейных функционалов n  (n = 0,1,2,…), порождаемых последо-

вательностью (1,1,…,1,0,…), первые n элементов которой равны 1,  

а остальные нулю. По определению норм функционалов n , справедливы 

неравенства 

         nnn 120    (   ...,2,1,0,  n
Ln ).        (6.24)  

Из неравенств (6.23) и (6.24) вытекают оценки      

  nnn xx~   (   ...,2,1,0,  n
Ln ).            (6.25) 

Последовательность  n  является возрастающей; приводимые ниже 

примеры показывают, что она может быть как неограниченной, так  

и ограниченной. 

Особенности поведения последовательности   nn  нам удобно 

сформулировать в виде нижеследующего утверждения. При этом для даль-

нейшего нам удобно будет рассмотреть более общую последовательность 

  nn c , где c – некоторое положительное число. 

Лемма 6.2. Пусть последовательность  n  стремится к нулю,  

а последовательность  n  неубывающая. Тогда 

           .0lim
0,




nn
n

c
n

                               (6.26) 

Более точно, пусть задано 0 . Тогда существует такое )(N , что при 

любых N , N , для которых   NNN )(  существует такое 

),(  NN , что при ),(0  NN  справедливы неравенства 
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          , , .n nc n N N                                      (6.27) 

Иначе говоря, при заданном 0  при достаточно малых 0  выпол-

няется неравенство  nn c  на сколь угодно далеких и сколь угодно 

больших промежутках изменения n. 

Доказательство. Равенство (6.26) очевидно. Пусть теперь задано 

0.   Чтобы установить неравенство (6.27), заметим сначала, что при 

любом t,  t0 , при )(tNn   выполняется неравенство .n t   Далее, при 

этом же самом t выберем произвольные числа N , N , для которых 

  NNN )(  и затем число ),(  NN  таким образом, чтобы при 

  NNn ,  выполнялось неравенство .





c

t
n  Тогда при ),(  NN  

и   NNn ,  .



 c

c

t
tc nn  Лемма 6.2 доказана. 

Соотношение (6.26) леммы 6.2 иногда записывается в виде 

            .0minlim
0

Nc nn
n




                       (6.28) 

Однако без дополнительного предположения о сходимости последова-

тельности  n  к нулю, это соотношение слабее (6.26). 

 Сделаем еще важное замечание. Неравенства (6.25) оказываются 

полезными лишь в тех случаях, когда при увеличении n правая часть 

 nn  уменьшается. Факт уменьшения на одном шаге этой правой 

части эквивалентен неравенству 
nn

nn










1

1 . Тем самым, проведенные 

рассуждения показывают, что последовательное вычисление приближений 

(6.21) оказывается полезным при  Nn ,0  лишь в случае, если 

         

 
 ....,,1,0

1

1 Nn
c nn

nn 








               (6.29) 

При выполнении этого соотношения будем говорить, что соответ-

ствующий итерационный метод квазисходится. 

 Еще раз отметим, что в случае квазисходимости итерационного 

метода (6.21) речь не идет об обычной сходимости соответствующих приб-

лижений к точному решению. Можно лишь утверждать, что при доста-

точно малых   эти приближения оказываются близкими к точному реше-

нию, а затем, как правило, от него удаляются; при этом эти приближения 

оказываются тем ближе к точному решению, чем меньше  . Более того, 

если   не является достаточно малым, то использование приближений 

(6.21) окажется бесполезным – эти приближения могут удаляться от точ-

ного решения. 

Из проведенных рассуждений и леммы 6.2 вытекает         
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Теорема 6.7. Пусть выполнены условия теоремы 6.1 и пусть приб-

лижения (6.2) вычисляются с ошибками, не превышающими 0n   

на каждом шаге n = 0,1,2,…, причем   Ln  , где L – некоторое банахово 

пространство последовательностей с монотонной нормой. Тогда приб-

лижения (6.21) «сходятся» в описанном выше смысле к соответ-

ствующему решению x  уравнения (6.1), т.е. справедливо соотношение 

         .0~lim
0,

 


xxn
n n

                                   (6.30)    

Отметим еще, что в упомянутом выше «парадоксальном случае» 

0n  оказывается, что начальное приближение 0x  совпадает с решением 

x . Именно в этом случае рассуждения о последовательности   nn , 

приведенные выше, вырождаются и оценка (6.25) делается бесполезной. 

Однако она и должна быть таковой – если начальное приближение совпа-

дает с точным решением x , то уточнять это приближение какими-либо 

итерационными процедурами бессмысленно.  

Приведем теперь формулы для норм n  функционалов n   

(n = 0,1,…) для классических пространств, упомянутых выше. Для прост-

ранств   plp 1  имеют место равенства      

.,...2,1,0,1
11

1















n

pp
n p

n  

В этом равенстве следует отметить два частных случая, когда p   

и 1p . В первом из них условие    ln  означает, что при вычислениях 

делаются ошибки, не превышающие числа   ;n l


    при этом nn   

при всех n = 0,1,2,… . Отметим также, что предположение, что 0n  

(или, иначе,     lcln 0
o

) не приводит к уточнению поведения по-

следовательности норм  ,n  обе последовательности норм для прост-

ранств c0 и l  совпадают. Во втором случае, когда   1,n l   последова-

тельность норм  n  оказывается ограниченной! 

Для пространств m    последовательностей, ограниченных с весом 

 0 1 2( , , , ), 0, 0,1, 2, ... ,k k         справедливы формулы     

 .,...2,1,0
11

0




 




n
n

k k
n  В частном случае, когда ),)1(...,,2,1(   k  

справедливы равенства  .,...2,1,0
11

0

 





n
k

n

k
n  В этом равенстве сле-

дует также отметить частный случай, когда 1 . В этом случае, по-
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следовательность норм  n , как и в случае пространства 1l , также 

оказывается ограниченной:  ,...2,1,0)()(   nn m ; здесь  )(  фун-

кция Римана. 

6.1.6.  Основной пример 

В качестве примера здесь можно рассмотреть в пространстве  

H = )(2 L , где Ω – некоторое замкнутое множество отрезка [–1,1] c 1  

(или 1 ), уравнение  
( ) ( ) ( ).x t tx t f t   

Это уравнение разрешимо в H, если и только если )()()1( 2
1   Ltft . 

Последовательные приближения (6.2) в этом случае имеют вид 

)()()(1 tfttxtx nn   

или, что то же самое, 
2 1

0( ) ( ) (1 ... ) ( ).n n
nx t t x t t t t f t      .  

Они сходятся в H (при любом )()( 20 Ltx ) к функции )()1( 1 tft  , 

которая по предположению о разрешимости уравнения принадлежит 

)(2 L . Уравнение в этом примере не является корректным. Аналогичная 

ситуация имеет место и в случае, если ),(2  LH , где  некоторая 

мера на Ω, причем    01  .  

Пример этот носит достаточно общий характер – известно, что каж-

дый самосопряженный оператор с простым спектром подобен оператору 

умножения на независимую переменную в пространстве ),(2 L при 

подходящем выборе меры  . Для самосопряженных операторов B с не-

простым спектром также верно аналогичное утверждение, однако здесь  

в качестве Ω приходится брать топологически сложно устроенное 

дизъюнктное объединение отрезков [–1,1]. 
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6.2.  Уравнения первого рода 

6.2.1.  Принцип сведения 

Пусть A – самосопряженный оператор в гильбертовом пространстве 

Н. Рассматривается линейное уравнение 

yАx  ,                                                 (6.31) 

где Нy . Нас будет интересовать случай, когда 0 является точкой спектра 

SpA оператора А. 

Пусть  )( некоторая вещественная и аналитическая на спектре опе-

ратора А функция, принимающая в нулевой точке значение 1; тогда 
),(1)(   

где )(  тоже вещественная и аналитическая на SpА функция. Простей-

шими примерами таких функций могут служить полиномы или рацио-

нальные функции.               

Для каждой функции )(  описанного вида определен оператор )(A ; 

он также является самосопряженным. Определен также и оператор )(A . 

Очевидно равенство 

AxАxАx )()(  . 

Из этого уравнения вытекает, что каждое решение x уравнения (6.31) явля-

ется решением уравнения  

yАxАx )()(  .                                        (6.32) 

Обратное тоже верно, однако при дополнительном предположении, что  

0 не является собственным значением оператора )(A . Действительно, 

(6.32) можно переписать в виде 

0))((  yAxА , 

откуда следует, что x является и решением уравнения (6.31). Предположе-

ние, что 0 не является собственным значением оператора )(A эквива-

лентно тому, что 1 не является собственным значением оператора )(A . 

Последнее, очевидно, означает, что решение уравнения (6.32), если оно 

существует, единственно. Таким образом, если уравнение (6.31) имеет 

единственное решение x , то оно является единственным решением урав-

нения (6.32), и, наоборот, если уравнение (6.32) имеет единственное реше-

ние, то оно будет и единственным решением уравнения (6.31). Отметим, 

что в общем случае (без предположения, что 0 не является собственным 

значением оператора A) в случае разрешимости уравнения (6.31) решение 

x  уравнения (6.32) не обязательно является решением уравнения (6.31), 

однако решением уравнения (6.31) в этом случае обязательно является 

элемент ))(( xАx  , где   – произвольное решение уравнения (6.31).   
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Итак, вместо анализа свойств разрешимости уравнения (6.31) можно 

исследовать уравнение (6.32). Однако последнее уравнение имеет вид 

fBxx   с )(AB  , yAf )( , и для его исследования естественно ис-

пользовать отмеченную выше теорему М. А. Красносельского. Условия 

последней будут выполнены, если 1)(  A  и 1  не является собственным 

значением оператора ( ).A  Т. к. по теореме Данфорда [133] ( ) ( ),Sp A SpA   

и оператор )(A  является самосопряженным, то равенство 1)(  A  экви-

валентно неравенству 

)(1)( SpA                                          (6.33) 

(напомним, что 1)0(   и потому (6.33) означает 1)(  A ). Второе усло-

вие означает, что никакой корень уравнения 01)(  не является соб-

ственным значением оператора А. Итак, верна  

Теорема 6.8. Пусть A – самосопряженный оператор в гильбертовом 

пространстве Н и его область значений не является замкнутой. Пусть 

 )( аналитическая в окрестности SpA функция, для которой 

а) );(1)(   

б) );(1)( SpA  

в) нули функции 1)(   не являются собственными значениями опе-

ратора А. 

Тогда, если уравнение (6.31) разрешимо, то приближения  

 ...),2,1,0()()(1  nyАxАx nn                        (6.34) 

сходятся к одному из решений уравнения (6.31).  

Естественно возникает вопрос о скорости сходимости приближений (6.34). 
Из теоремы 6.1 вытекает, что в общем случае эта скорость может быть 

сколь угодно медленной. Для полноты приведем здесь вычисления  

из раздела 6.1, модифицированные непосредственно для  уравнения (6.32). 

Из (6.34), очевидно, вытекает 

yAAAAExAx nn
n )())()()(()( 12

0    (n = 0, 1, 2, …),  (6.35) 

а из (6.32) – 

yAAAAExAx nn )())()()(()( 12  
   (n = 0, 1, 2, …).  (6.36)  

Вычитая (6.36) из (6.35), получим 

))(( 0   xxAxx n
n  (n = 0, 1, 2, …)                        (6.37) 

и, далее,  

.)),(()( 00
22

  

SpA

n
n xxxxdExx                   (6.38) 
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Из формулы (6.38) вытекает сходимость приближений nx  к x  в силу тео-

ремы Лебега о предельном переходе под знаком интеграла для сходящейся 

почти всегда к нулю последовательности. Из этой формулы следует, как 

уже отмечалось, что эта сходимость может оказаться сколь угодно мед-

ленной и существенно зависит от свойств «гладкости» начальной ошибки 

0 ,x x  а эти последние – от свойств «гладкости» правой части y и свойств 

«некорректности» оператора А. Однако следует также отметить, что эта 

сходимость тем быстрее, чем «меньше» функция )(  на ( ).Sp A   

6.2.2.  Сходимость невязок и поправок 

Рассмотрим теперь вопрос о поведении невязок yAxn   и поправок 

nnnn xyAxAxx  )()(1  для приближений (6.34).  

Из (6.35) следует 

  yAAAAAEAxAAx nn
n )())()()(()( 12

0   

  yAEAAAEAxA nn ))())(()()(()( 12
0   

= yAEAxA nn ))(()( 0  , 

и, значит, 

))(( 0 yAxAyAx n
n  .                                 (6.39) 

Из этого равенства вытекает, что 

.)),(()( 00
22

  

SpA

n
n yAxyAxdEyAx                    (6.40) 

Аналогично, из (6.35) для поправок nn xx 1  имеем  

))()()(()()())()(( 0001 xyAxAAyAAxEAAxx nnn
nn   

или 

1 1 0( )( ).n
n nx x A x x                                       (6.41) 

Отсюда 

.)),(()( 0101
22

1   

SpA

n
nn xxxxdExx                    (6.42) 

В результате из (6.40) и (6.42) получаем следующее утверждение: 

Теорема 6.9. Пусть выполнены условия теоремы 6.8. Пусть 0Py , 

где P – ортопроектор на множество собственных векторов оператора 

)(A , отвечающих собственному значению 1. Тогда невязки yAxn   и по-

правки nn xx 1  для последовательных приближений (6.34) при любом 

начальном условии Нx 0  сходятся к нулю. 

Здесь снова следует отметить, что невязки и поправки стремятся  

к нулю без предположения о разрешимости уравнения (6.31).         
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6.2.3.  Сходимость на подпространствах 

Как показывают равенства (6.38), (6.40), (6.42) скорость сходимости 

последовательных приближений (6.32) к точному решению уравнения 

(6.31), соответственно, скорость сходимости к нулю  невязок и поправок 

существенно зависит от правой части y уравнения (6.31) и начального 

условия 0x . Однако скорости этих сходимостей могут быть уточнены, 

если правые части y уравнения и, соответственно, начальные условия  

0x  берутся из некоторых подпространств Н
~

 пространства Н. Среди таких 

подпространств наиболее простыми являются упоминавшиеся выше под-

пространства истокообразно представимых функций. Рассмотрим случаи, 

когда  правые части y уравнения и, соответственно, начальные условия 

0x  лежат в пространствах НА)( , которые определяются по оператору A 

точно также как определялись пространства НВ)(  при помощи некото-

рой определенной на SpА  функции )(  как множество элементов вида 

( ) ( )

SpA

x dE h h H     с нормой  ( )
inf : , ( ) .

A H
x h h H A h x


     

Как и для пространств НВ)(  для пространств НА)(  будем предпола-

гать, что нули функции )(  не являются собственными значениями 

оператора A. 

  В предположении, что для НАy )(  существует ,h Н  для которого 

hАx )( , имеем     

 .),()()(
222

  

SpA

n
n hhdExx            (6.43) 

Отсюда 

         
HAnn xxxx

)(0      ),)(( 0 HAxx                  (6.44) 

где )()(max 


n

SpА
n .                 

Если 0n  при ,n  то (6.44) дает квалифицированную оценку 

скорости сходимости приближений (6.34) к решению уравнения (6.31) сра-

зу для всех функций 0x  и y, для которых 0 ( ) .x x A H   Условие 

HAxx )(0    трудно проверяемо, т. к. x  неизвестно. Однако оно вы-

полняется, если 0 ( ) ,Аx y A H   где функции   и 
~

 связаны равенством 

( ) ( ).     В результате вместо (6.44) мы имеем оценку 

HAnn yAxxx
)(

~0
~

    ),)(
~

( 0 HAyAx               (6.45) 
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где max ( ) ( ) .
n

n
SpA

                                                         

Естественно, для доказательства 0n  при n  и 0~ n  при 

n  нам понадобится аналог леммы 6.1: 

 Лемма 6.2. Пусть функция RSpA :)(  удовлетворяет условиям 

теоремы 6.8 и функция RSpA :)(  такова, что из 1)(   следует, 

что 0)(  . Тогда .0)()(maxlim 


n

SpAn
 

Доказательство этой леммы полностью аналогично доказательству  

леммы 6.1.  

Из вышесказанного и леммы 6.2 вытекает 

Теорема 6.10. Пусть выполнены условия теоремы 6.8. Тогда: 

а) если  определенная на спектре SpА функция, для которой  

из 1)(   вытекает 0)(  , то 0n  и, следовательно, при 

HАxx )(0    скорость сходимости приближений (6.34) к соответству-

ющему решению x  уравнения (6.31) оценивается неравенством (6.44);  

б) если  определенная на спектре SpА функция, для которой  

из  1)(   вытекает 0)(
~

 , где )()(
~ 1  

, то 0~ n  и, следова-

тельно, при HAyAx )(
~

0   скорость сходимости приближений (6.34)  

к соответствующему решению x  уравнения (6.31) оценивается неравен-

ством (6.45). 

Формулы (6.40) и (6.42), в свою очередь, приводят к оценкам 

HAnn yAxyAx
)(0 

   ),)(( 0 HAyAx               (6.46) 

HAnnn xxxx
)(011     ),)(( 01 HAxx               (6.47) 

где последовательность  n  снова определяется равенством 

max ( ) ( ) .
n

n
SpА

       Из этих замечаний и снова леммы 6.2 вытекает 

Теорема 6.11. Пусть выполнены условия теоремы 6.8 и пусть   

определенная на спектре SpА функция, для которой из  1)(   вытекает 

0)(  . Тогда 0n  и, следовательно, при HAyAx )(0   скорость 

сходимости невязок для приближений (6.34) к нулю оценивается неравен-

ством (6.46) и при HAxx )(01   скорость сходимости поправок для 

приближений (6.34) к нулю оценивается неравенством (6.47). 

6.2.4.  Сходимость в энергетических нормах 

Продолжим изучение поведения последовательных приближений 

yАxАx nn )()(1   для линейного операторного уравнения yАx    
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с действующим в гильбертовом пространстве Н самосопряженным опера-

тором A в случае, когда 0 является точкой спектра оператора A. В ряде 

задач при исследовании последовательных приближений достаточно 

установить их сходимость в норме, более слабой, чем исходная норма 

гильбертова пространства Н.  Как и выше будем рассматривать нормы 

         ,
0

Txx                              (6.48) 

где T  некоторый оператор с 0KerT  и такой, что TA = AT. Повторяя 

рассуждения подраздела 6.1.4, ограничимся операторами вида      

)(АT  ,                                              (6.49) 

где  некоторая функция, положительная на SpA, нули которой не явля-

ются собственными значениями оператора A. В этом случае (6.48) является 

нормой, так как из Tx = 0 очевидным образом следует, что x = 0. 

Напомним [31–А; 32–А], что справедливы равенства    

yAAAAExAx nn
n )())()()(()( 12

0   , 

yAAAAExAx nn )())()()(()( 12  
  . 

 Отсюда 

))(( 0   xxAxx n
n   (n = 0, 1, 2, …).                 (6.50)                                            

Здесь nx последовательные приближения yАxАx nn )()(1   с ,0 Hx   

x точное решение уравнения yАx  .        

Из равенства (6.50) для нормы (6.48) (с T, определенным равенством 

(6.49)) следует  равенство 

0( )
( ) ( )( ) ,n

n A H
x x A A x x 
      

и, далее, 

,)),(()()( 00
222

)(   

SpA

n

HAn xxxxdExx  

откуда, 

0( )
,n nA H

x x x x 
     

где 
n

SpA
n )()(max 


. 

  Повторяя рассуждения из подраздела 6.1.4, приходим к следующему 

утверждению, дополняющему теорему М. А. Красносельского. 

Теорема 6.12. Пусть выполнены условия теоремы 6.8. Пусть 

0)1(   и уравнение yАx   разрешимо. Тогда последовательные прибли-

жения yАxАx nn )()(1   при любом начальном условии 0x H  схо-

дятся в норме (6.48) к решению x  уравнения yАx  , для которого 

0PxPx  , где P ортопроектор на множество собственных векторов 
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оператора A, отвечающих собственному значению 0. При этом эта 

сходимость равномерна относительно Hxx  0 на каждом ограни-

ченном шаре. 

Достаточно показать, что 0n при .n  Но этот факт вытекает 

непосредственно из леммы 6.2, в которой функцию   следует заменить на 

функцию .  

Подчеркнем, что в условиях теоремы 6.12 отсутствует требование об 

истокообразной представимости точного решения или правой части  

уравнения (6.31).         

Теорема 6.12 является аналогом теоремы 6.5. Описанные выше 

построения позволяют сформулировать и аналоги теоремы 6.6 о схо-

димости к нулю невязок и поправок в нормах (6.48) при соответствующем 

выборе функций  для уравнений первого рода (6.31). Ограничимся здесь 

только соответствующей формулировкой. 

Теорема 6.13. Пусть выполнены условия теоремы 6.8. Пусть 

0)1(   и Py = 0, где P – ортопроектор на множество собственных 

векторов оператора A, отвечающих собственному значению 0. Тогда 

невязки yАxn   и поправки nn xx 1  для последовательных приближений 

(6.34) при любом начальном условии Hx 0 сходятся в норме (6.48) к нулю. 

К тому же эта сходимость равномерна относительно НуAx 0 и, 

соответственно, 01 xx   на каждом ограниченном шаре. 

6.2.5. Сходимость приближений при неточных данных  

и в присутствии ошибок 

Пусть теперь снова для самосопряженного оператора A выполнены 

условия теоремы 6.8, причем 1)(  A  и, следовательно, 1))((  A . Пусть 

уравнение (6.31) разрешимо. В этом случае последовательные приближе-

ния (6.34) сходятся к одному из решений x  уравнения (6.31). Рассмотрим 

теперь вместо точных приближений (6.34) приближения для случая, когда 

правая часть уравнения (6.31) вычисляется на каждом шаге n с ошибкой, 

не превышающей n . В этих случаях новые приближения nx~  записывают-

ся в виде 

...),2,1,0()(~)(~
1  nyАxАx nnn                       (6.51)  

с приближенной правой частью ny ,  nn yy  . 

Из равенств (6.34), как нетрудно видеть, вытекают справедливые при 

всех n = 0, 1, 2, …  равенства  

))()()()()(()(~
0

1
210 yAAyAAyAxAx n

nn
n

n  
  . 

Отсюда и из (6.34) 

))(()())(()())((~
0

1
21 yyAAyyAAyyAxx n

nnnn  
  , 
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и, в силу 1)(  A , 

yyAyyAyyAxx nnnn   021 )()()(~  , 

и, наконец, 

)...()(~
110  nnn Axx     (n = 0, 1, 2, …). 

Так как nnnn xxxxxx  
~~ , то из последнего неравенства 

вытекает 

         )...()(~
110   nnn Axxxx   (n = 0, 1, 2, …).   (6.52) 

Положим 

         )(max 
 SpA

с .                                           (6.53)       

Из спектральной теоремы для самосопряженных операторов вытекает, что 

это число совпадает с )(А . Поэтому из (6.52) и (6.53) вытекает анало-

гичная (6.25) оценка               

)...(~
110   nnn сxxxx     (n = 0, 1, 2, …).     (6.54)           

К правой части этого неравенства можно применить лемму 6.2. Из нее 

вытекают соотношения (6.26) и (6.28) и, следовательно, и аналог  

теоремы 6.7.          

Иными словами, справедлива 

  Теорема 6.14. Пусть выполнены условия теоремы 6.8 и пусть приб-

лижения (6.34) на каждом шаге n = 0, 1, 2, … вычисляются с ошибками, 

не превышающими 0n , причем   Ln  , где L некоторое банахово 

пространство последовательностей с монотонной нормой.  Тогда приб-

лижения (6.51) «квазисходятся» в описанном выше смысле к соответ-

ствующему решению x  уравнения (6.31), т. е. справедливо соотношение  

                  .0~lim
0,

 


xxn
n n

                                      (6.55)    

6.2.6.  Пример 

В качестве примера здесь можно рассмотреть в пространстве  

H = )(2 L , где Ω – некоторое ограниченное замкнутое множество прямой 

R c 0 , уравнение  
( ) ( ).tx t y t  

Это уравнение разрешимо в H, если и только если 
1

2( ) ( ).t y t L    После-

довательные приближения (6.51) в этом случае имеют вид 

)()()()()(1 tyttxttx nn   

или, что то же самое, 

)()())(...)()(1()()()( 12
0 tytttttxttx nn

n  
.  
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При выполнении условий сходимости соответствующих теорем этого 

раздела эти последовательные приближения сходятся в H (при любом 

)()( 20 Ltx ) к функции 1 ( ),t y t  которая по предположению о разреши-

мости уравнения принадлежит 2( ).L   Уравнение в этом примере не явля-

ется корректным. Как и для уравнений второго рода, аналогичная ситуация 

имеет место и в случае, если 2( , ),H L    где  некоторая мера на Ω, 

причем   1 0.    

Как было отмечено в подразделе 6.1.6 пример носит достаточно 

общий характер. 
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6.3.  Частные итерационные методы для уравнений первого рода 

6.3.1.  Явные итерационные схемы 

Выбирая различные, удовлетворяющие условиям а), б), с) теоремы 

6.8, функции )(  и )( , получим разнообразные итерационные схемы 

приближенного построения решений уравнения (6.31). Мы ограничимся 

здесь несколькими примерами ([2–А; 11; 21, 137; 151; 153; 182], где они 

исследованы с другой точки зрения).  

Рассмотрим прежде всего ([2–А]) итерационный метод (6.34), соответ-

ствующий полиному      

         k)1()(                                             (6.56) 

 (k – натуральное число, 0 ).  Для него      

         





k)1(1
)(                                        (6.57) 

и, далее, условие б) теоремы 6.8 выполняется, если 











2
,0SpA , а условие 

c), если 



2

не является собственным значением оператора A. 

Соответственно, итерации (6.34) имеют вид 

       1
1

k k
n nx E A x A E E A y


      
  

 (n = 0,1,2,…).         (6.58)        

Для этого метода наиболее удобно в качестве функции )(  брать 

функцию 
s )(

 

(s – некоторое положительное число). Эта функция 

удовлетворяет условиям теоремы 6.10, если  MSpA ,0 , где 



2

M . 

Последовательность  n , определенная равенством )()(max 


n

SpА
n , 

будет определяться при 



1

M  равенством 

kns

n
kns

kn

kns

s






















)(     
(n = 0,1,2,…) 

и при 





21
M  равенством 

n max



































kns
kns

MM
kns

kn

kns

s
)1(,

)(
  (n = 0,1,2,…). 

В обоих случаях, как нетрудно видеть справедливо соотношение    
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  n  ~ 
1

.

s

s

s

e k n

 
 
 

                                               (6.59)          

 Рассмотрим теперь [2–А] итерационный метод (6.34), соответству-

ющий полиному               

)1()( k                                                 (6.60) 

(k – натуральное число, 0 ).  Для него      

         1( ) .k   
  
                                               (6.61) 

Условие б) теоремы 6.8 при k четном выполняется, если 







































kk
SpA

11

2
,

2
 и при k нечетном, если 





























k
SpA

1

2
,0 .  Далее, 

условие c) выполнено, если 
k

1

2












 

в первом случае и 
k

1

2












  
во втором не являются собственным значением оператора A. Соответ-

ственно, итерации (6.34) имеют вид 

   yAxAEx k
n

k
n

1
1


    (n = 0,1,2,…).                    (6.62)          

Для этого метода также наиболее удобно в качестве функции )(  

брать функцию 
s )( (s –  некоторое положительное число). Условия 

теоремы 6.10 выполняются, если  MMSpA ,
 
при четном k и  MSpA ,0  

при нечетном k, где 
k

M

1

2










 . Последовательность  n , определенная 

равенством )()(max 


n

SpА
n , будет определяться при 

k
M

1

1










  

равенством 

 

n
k

s

n
kns

kn

kns

s






















)(     
(n = 0,1,2,…) 

и при  
kk

M

11

21





















равенством 

n max  





































nks
n

k

s

MM
kns

kn

kns

s
1,

)(
  (n = 0,1,2,…). 
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В обоих случаях, как нетрудно видеть справедливо соотношение 

   n  ~ 
1

.

s

k

s k

s

e k n

 
 
 

                                           (6.63)   

Сравнение равенств (6.59) и (6.63) показывает, что при s )(  

метод (6.58) сходится лучше метода (6.62). 

6.3.2.  Неявные итерационные схемы 

Рассмотрим сначала случай 
1

( ) ( 0)
1 k

    


 и, соответственно, 

k

k








1
)(

1

. В этом случае мы имеем дело с неявным методом итера-

ций, описываемых формулами 

  yAxxAE k
nn

k 1
1


     (n = 0,1,2,…).                 (6.64)          

Условие б) теоремы 6.8 при k четном выполняется при  ,SpA  
  

(т. е., всегда) и при k нечетном, если  0, .SpA   Далее, условие c) вы-

полнено всегда. 

Для применения теоремы 6.10 рассмотрим снова случай ( ) ;s     

здесь s любое положительное число, если   ,0SpA  и рациональное 

положительное число с четным знаменателем, если  , 0 .SpA    

Несложные вычисления показывают, что 1n  при 
k

s
n   и при 

k

s
n    

n

n
k

s

nk

snk

snk

s







 









 )(  

~ 
ks

k

s

nke

s 1










.                 (6.65)          

Подобным образом исследуется и случай 
1

( )
1

k

k


  

  
(  – поло-

жительное число)  и, соответственно, 
12

( ) .
1

k

k


  

 
 Итерационный метод 

(6.34) при этом совпадает с неявным методом итераций, определяемым 

равенствами 

    yAxAExAE k
n

k
n

k 1
1 2 
 

  
(n = 0,1,2,…).          (6.66)          

Условие б) теоремы 6.8 при k четном выполняется при  ,SpA  
  

(т. е., всегда) и при k нечетном, если   ,0SpA . Далее, условие c) также 

выполнено всегда. 
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Для применения теоремы 6.10 рассмотрим снова случай ( ) ;s     

здесь s любое положительное число, если   ,0SpA  и рациональное 

положительное число с четным знаменателем, если  , 0 .SpA    

Вычисления постоянных n  приводят к довольно громоздким формулам. 

Поэтому мы ограничимся выяснением их асимптотического поведения при 

.n  В самом деле,    max 1 1 .
n n

s k k
n

SpА




       Производная 

функции     nknks 
 11)(  определяется равенством 

      
1 1

1 2 2( ) 1 1 2 .
n n

s k k k ks s kn
  

            

При больших n эта производная обращается в нуль в точке n ,  

для которой    
2

2 0,k ks kn s       откуда  

s

nk

s

nks

nk

s

nkk




















1

1
1

2

2

 ~ 
nk

s 1

2
 .             (6.67) 

Отсюда, при n , 

 n

n

k

k
s




















1

1

 
~ 

ks

k

s

nke

s 1

2










.                          (6.68)  

Наконец, рассмотрим еще случай, когда 
 

,
1

1
)(

22

2

k

k






 
0 ,   

и, соответственно, 
1

2 2

2
( ) .

1

k

k


  

 
 В этом случае получим следующий 

итерационный метод 

     yAxAExAE k
n

k
n

k 12

1
22 2 

    (n = 0,1,2,…).        (6.69)          

При нечетном k получаем, что условия теоремы 6.8 выполнены, если 

  ,0SpA , а при четном k получаем, что условия теоремы 6.8 выпол-

нены всегда. 

Для применения теоремы 6.10 рассмотрим снова случай ( ) ;s     

здесь s  любое положительное число. Вычисления постоянных n  здесь 

сводится к анализу корней некоторого кубического уравнения. Однако 
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асимптотика поведения этих корней определяется достаточно просто; 

оказывается, что для n  справедливо соотношение   ~ ,
1

2 1

1

k

k

nk

s









  
и поэтому 

n  ~ .
1

2 ks

k

s

nke

s









               

                             (6.70)

 
Сравнение соотношений (6.65), (6.68), (6.70) показывает, что скорость схо-

димости всех трех рассмотренных в этом подразделе методов одинакова.          
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ГЛАВА 7 

РЕГУЛЯРИЗАЦИЯ НЕКОРРЕКТНЫХ ЗАДАЧ  

В БАНАХОВОМ ПРОСТРАНСТВЕ 
 

Практически отсутствуют работы, в которых исследуется сходимость 

итерационных методов решения некорректных задач в банаховом про-

странстве. В данной главе изучены некоторые свойства предложенной яв-

ной схемы итераций решения некорректных задач с линейным непрерыв-

ным оператором: доказана сходимость приближений с априорным выбо-

ром параметра регуляризации в банаховом пространстве, получены оцен-

ка погрешности и априорный момент останова. 

7.1 Постановка задачи 

В банаховом пространстве E исследуется уравнение первого рода 

Ax = y,                                                   (7.1) 

где A – линейный непрерывный оператор, действующий в пространстве E. 

Нуль принадлежит спектру оператора A, но не является его собственным 

значением, следовательно, задача (7.1) некорректна и имеет единственное 

решение. Приведем уравнение (7.1) к виду, удобному для итераций. Для 

этого уравнение Ax – y = 0 умножим на параметр ( )  и к обеим частям 

уравнения добавим x, получим ( )x Ax y x   ; ( )x I A x y   , где  

I – единичный оператор. Обозначим B I A  , .f y  Тогда уравнение 

(7.1) запишется в виде 

 .x Bx f                                           (7.2) 

Для отыскания решения уравнения (7.2) используем итерационный 

процесс 

 1 ,n nx Bx f    ( 0,1,2,...)n  .                               (7.3) 

Однако на практике часто точная правая часть уравнения (7.2) неизвестна, 

а вместо нее известно   – приближение :|| ||f f f    . Тогда метод (7.3) 

примет вид 

 1, ,n nx Bx f     , ( 0,1,2,...)n  . (7.4) 
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7.2 Сходимость метода при точной правой части уравнения  

Изложение материала раздела 7.2 аналогично [59]. Изучим уравнение 

x Bx .                                                  (7.5) 

Рассмотрим последовательность 

1n nx Bx  .                                                (7.6) 

Справедлива 

Теорема 7.1. Пусть оператор B преобразует в себя замкнутое мно-

жество M E  и является оператором сжатия: |||||||| yxqByBx  , 

)10,,(  qMyx . Тогда итерационный процесс (7.6) при любом 

начальном приближении Mx 0  сходится к единственному решению 
*x  

уравнения (7.5). 

Верно неравенство 

 
*

0 0 ,
1

n

n
q

x x x Bx
q

  


 ...),2,1( n . (7.7) 

Теорема 7.1 и неравенство (7.7) вытекают из принципа сжимающих 

отображений [75; 112]. Уравнение (7.5) имеет, очевидно, решение 
*x = 0. 

Оценка (7.7) не может быть улучшена в общем случае, однако при 

дополнительных предположениях можно гарантировать более быструю 

сходимость. 

Вернемся к уравнению (7.2). Если 1B  , то из теоремы 7.1 следует, 

что последовательные приближения (7.3) сходятся. Докажем более точное 

утверждение. 

       Теорема 7.2. Пусть спектральный радиус )(B  оператора B удовле-

творяет неравенству 1)(  B . Тогда последовательные приближения 

(7.3) сходятся к решению 
*x  уравнения (7.2) и для каждого  , 

0 1 ( ),B     справедлива оценка 

  *
0 0|| || ( ) ( ) || || .

n
nx x c B x Bx f         

Доказательство. Введем в банаховом пространстве E такую эквива-

лентную норму *||||  , при которой норма линейного оператора B сколь 

угодно близка к его спектральному радиусу, т. е. 

 ||||)(||||||||)( * xMxxm  , )( Ex ,                        (7.8) 

   ** ||||)(|||| xBBx  , )( Ex . (7.9) 

Покажем, как построить такую эквивалентную норму (7.8), (7.9). Известно, 

что спектральный радиус n n

n
BB ||||lim)(


  и ( ) || || .B B   Определим 

такое n, что  )(|||| BBn n , где 0  – заданное число. Положим 
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    ||||...||||)(||||)(|||| 121
* xBBxBxBx nnn 

 . 

Очевидно, 

       ||||||||...||||)()(||||||||)( 121
*

1
xBBBBxxB nnnn 

 , 

т. е. нормы ||||   и *||||   эквивалентны. 


)(||||sup|||| *
1||||

*

*

BBxB
x

 [59, 

с. 16]. Т. к. в любой норме *||||)( BB  , то  )(||||)( * BBB . Таким 

образом, норму *||||   из (7.8), (7.9) можно построить. 

Из (7.9) вытекает, что уравнение (7.2) можно рассматривать как  

уравнение (7.5) со сжимающим  оператором. Поэтому приближения (7.3) 

сходятся к 
x . Из неравенств (7.9) и (7.7) вытекает оценка 

 
0 0

( )
.

1 ( )

n

n

B
x x x Bx f

B





  
   

  
 Из этой оценки и из (7.8) следует 

  fBxxBcxx
n

n  
00)()( , 

где 
 


)(1)(

1
)(

Bm
c . Теорема 7.2 доказана. 
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7.3. Сходимость метода при приближенной правой части уравнения  

Покажем, что итерационный метод (7.4) можно сделать сходящимся, 

если разумным образом согласовывать число итераций n с уровнем по-

грешности  . 

Ниже, под сходимостью метода (7.4) понимается утверждение о том, 

что приближения (7.4) сколь угодно близко подходят к точному решению 

операторного уравнения (7.2) при подходящем выборе n и достаточно ма-

лых  . Иными словами, метод (7.4) сходится, если 0inflim ,
*

0








  


n
n

xx . 

Рассмотрим   ,
*

,
*

nnnn xxxxxx . В разделе 7.2 показано, 

что  nxx n ,0*
. Докажем, что 0,  nn xx . 

Из формулы (7.3) при fx 0  получаем 1 2, ( )x Bf f x B Bf f f       

2B f Bf f   . Предположим, что при kn   
1k k

kx B f B f     

+ Bf f  и, используя (7.3), найдем  

 
 ffBffBfBBfBxx kk

kk )( 1
1   

= fBffBfB kk  1
. 

Итак, по индукции доказано, что fBffBfBx nn
n   1

. Анало-

гично имеем, что 


  fBffBfBx nn
n 1
, . Отсюда 

)()()()( 1
, 


  ffffBffBffBxx nn

nn  .   (7.10) 

Пусть 1)(  B  и для   выполняется )(10 B , тогда 

1)( 


BB  и 










 )()()( 1

, ffBffBffBxx nn
nn   


 )1)(()1( nMffnff , 

т. к.  ff . Следовательно,   )1)((, ndxx nn , где 
)(

)(
)(






m

M
d . 

     )1)(()()( 00,
* ndfBxxBcxx

n
n . (7.11) 

Из оценки (7.11) следует, что если выбирать n зависящим от   так, 

чтобы 0n при ,0, n  то метод итерации (7.4) сходится. 

Итак, доказана 

Теорема 7.3. Пусть выполняются условия 1)(  B  и для каждого 

   )(10 B . Тогда последовательные приближения (7.4) сходятся  
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к решению 
x  уравнения (7.2), если число итераций n выбирать в зависи-

мости от   так, чтобы 0n при .0, n  

Оценку погрешности (7.11) можно уточнить, если воспользоваться 

неравенством (7.9), по которому  
  ffBffB )()( . Из (7.10) 










 ffffBffBffBxx nn

nn )()()( 1
, 

       



ffBBB

nn
1)()()(

1   

 
   

   ,)(1)()(
)(1

)(1

)(1

)(1 1
11


















n

nn

BkM
B

B
ff

B

B
 

где 





)(1

)(
)(

B

M
k . 

Поэтому   1, ( ) 1 ( )
n

n nx x l B


         и, следовательно, 

    1*
, 0 0( ) ( ) ( ) 1 ( ) ,

n n
nx x c B x Bx f l B


                 (7.12) 

где 
)(

)(
)(






m

k
l . 

Таким образом, доказана 

Теорема 7.4. Пусть спектральный радиус )(B  оператора B удовле-

творяет условию 1)(  B . Тогда при любом  , )(10 B  для итера-

ционного процесса (7.4) справедлива оценка погрешности (7.12). 

Оптимизируем по n оценку погрешности (7.11). Для ее минимизации 

производную по n от правой части неравенства (7.11) приравняем к нулю. 

Получим     ;0)()(ln)()( 00  dBfBxxBc
n

 

  
 




)(ln)(

)(
)(

00 BfBxxc

d
B

n
.                  (7.13) 

Т. к. по условию теоремы 7.4 0 1 ( ),B     то 1)(  B  и, следова-

тельно,  ln ( ) 0,B    значит, правая часть равенства (7.13) положитель-

на. Из (7.13) получаем априорный момент останова итераций 

nопт  =    ( )
0 0

( )
log

( ) ln ( )
B

d

c x Bx f B
 

  

     
. 

Подставим nопт в (7.11), тогда оптимальная оценка погрешности для 

приближений (7.4) примет вид  
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*
,nx x  опт  

 ( )
0 0

( )
log

( ) ln ( )

0 0( ) ( )

B
d

c x Bx f B

c x Bx f B

 
 

 
  

    

         

   ( )
0 0

( )
( ) 1log

( ) ln ( )
B

d
d

c x Bx f B
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ПРИЛОЖЕНИЕ  

Для иллюстрации некоторых свойств описанных методов проанали-

зируем модельные численные примеры.  

В первых двух задачах задаются точные решения )(sx  и ядра tK ( , )s , 

а с помощью методов численного интегрирования [61] находятся правые 

части )(ty , в которые вносятся ошибки. В задаче 3 задаются ядро tK ( , )s , 

точные решения )(sx  и правые части )(ty . Примеры решались на ПЭВМ 

методом Ландвебера   0, ,0,,,1   xAxyxx nnn  [158] и метода-

ми, предложенными в разделах 2.1–2.4, 3.1, при этом использовались пра-

вила останова по невязке и по соседним приближениям. 

 Программы для решения предложенных задач были реализованы  

на языке программирования C#. 

Задача 1. Рассмотрим в пространстве 2L (0,1) задачу в виде  

уравнения 

 
1

0

),()(),( tydssxstK     0   t   1                        (П.1) 

c симметричным положительным ядром 

tK ( , )s  =
2)(1001

1

st 
.                                  (П.2) 

В качестве точного решения сформулированной задачи выберем функцию  
















.1
2

1
,1

,
2

1
0,

)(

ss

ss

sx  

С использованием метода правых прямоугольников при m = 32, 

mh 1  была вычислена в точках ,ihti   i m,1   правая часть )(ty  уравне-

ния (П.1), результаты указаны в таблице П.1 (ввиду симметрии приведена 

лишь половина таблицы). 

 Сформулированная  задача относится к классу обратных задач теории 

потенциала. Обычно на практике мы не знаем точной функции )(ty ,  

а вместо нее известны значения приближенной функции )(~ ty  в некотором 

числе точек с определенной, часто известной  погрешностью  , и по этим 

приближенным данным требуется приближенно найти решение. Чтобы 

имитировать эту ситуацию, будем считать заданными значения iy~ , i m,1 , 

полученные следующим образом iy~ = [
k

ity 10)(  + 0,5] / ,k10  где )( ity взя-

ты из таблицы П.1, квадратные скобки означают целую часть числа  

и .4;3k  При 3k  величина погрешности .10 3  При 4k  величина 
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погрешности .10 4  Действительно, имеем     



1

0 1

22 ~)()(~)(
m

i
ii hytydttyty

 
  

    2
10 kmh

k210 . Заменим интеграл в уравнении (П.1) квадратурной 

суммой, например, по формуле правых прямоугольников с узлами 

,1,,1, mhmjjhs j   т. е. 

1

0

( , ) ( )K t s x s ds  



m

j
jj hxstK

1
.,  Тогда по-

лучим равенство  
1

,
m

j j
j

K t s hx



 + )()( tytm  , где  )(tm  остаток квадра-

турной замены. Записав последнее равенство в точках ,,1, miti   получим 

уравнения  


m

j
jji hxstK

1

, + )()( iim tyt  , .,1 mi   Точные значения )( ity  

мы не знаем, а знаем лишь приближения iy~  и, отбросив теперь остаточный 

член, получим линейную алгебраическую систему уравнений относитель-

но приближенного решения 

 


m

j
jji hxstK

1

, =  iy~  ,  .,1 mi                                (П.3) 

Выберем для определенности 32m  и будем решать систему (П.3) мето-

дом итераций (2.3) при k = 2, который в дискретной форме запишется 

     
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











 



         (П.4)                             

При счете используется 8,0 . Задача была решена при 
310   

и  
410 . Результаты счета приведены в таблице П.1. 

Затем система (П.3) решалась методом [158], который в данном случае 

запишется  

  .,1,0,,~ )0(

1

)()()1(
mixhxstKyxx i
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
 

Здесь 8,0 выбиралось из условия  
A4

5
0   при A   0,32. Для по-

лучения оценки A  использовалась теорема 1 из [43, с. 324] при ,2 qp   
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1 r . Результаты счета также приведены в таблице П.1. 

 При решении задачи методами (П.4) и [158] на каждом шаге итерации 

вычислялись: 
m

n yAx ~)(  =   








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jji hyhxstK  дискретная 

норма невязки,   












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2
1

2

1

)()( hxx
m

i

n
i

m

n  норма приближенного решения  

и  дискретная норма разности между точным и приближенным решениями 

  .)(
2
1

2

1

)()(













 


hxtxxx
m

i

n
ii

m

n  В обоих случаях для решения задачи 

сведений об истокопредставимости точного решения не потребовалось,  

т. к. здесь воспользовались правилом останова по невязке (2.20), выбрав 

уровень останова .5,1   Итак, при 
33 105,1,10   для достижения 

оптимальной точности при счете методом итераций (П.4) потребовалось 

10 итераций, при счете методом Ландвебера [158] – 21 итерация. При 
44 105,1,10    соответственно потребовалось 17 и 48 итераций. 

Пример счета показал, что для достижения оптимальной точности метод 

итераций (П.4) требует примерно в 2,5 раза меньше итераций, чем метод 

[158], что соответствует результатам раздела 2.1. Графики точного реше-

ния и приближенного решения, полученного методом  (П.4)  при 
410 , 

приведены на  рисунке П.1. 

 Кроме этого, предложенная задача была решена методом (2.73), кото-

рый в дискретной форме запишется  
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При счете выбирались: 4,4,8,0  . Применялось правило останова  

по соседним приближениям (2.37). Используя метод (2.73) для достижения 

оптимальной точности при 
310  потребовалось 6 итераций, а при 

 410  15 итераций. Пример счета показал, что для достижения опти-

мальной точности метод итераций (2.73) требует примерно в 3 раза мень-

ше итераций, чем метод [158], что соответствует результатам раздела 2.4. 



 
 

 

 

 

 

230 

 Задача 2. Будем решать в пространстве )1,0(2L  уравнение (П.1)  

с симметричным положительным ядром (П.2). В качестве точного реше-

ния задачи возьмем функцию 
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Путем интегрирования по методу правых прямоугольников вычисле-

на при 32m  правая часть уравнения (П.1), полученные значения указаны 

в таблице П.2 (ввиду симметрии приведена лишь половина таблицы). 

Сформулированная задача тоже относится к обратным задачам теории по-

тенциала. Ее будем решать аналогично задаче 1 методом итераций (П.4) 

( 8,0 ) и методом [158] ( 8,0 ), взяв .32m  Погрешность в правую 

часть уравнения была внесена по тем же формулам, что и в задаче 1. Поль-

зуемся правилом останова по невязке (2.20), выбрав уровень останова 

.5,1   При ,10 3  3105,1   и счете методом итераций (П.4)  

потребовалось 11 итераций, методом [158] – 26 итераций. При 
44 105,1,10    соответственно потребовалось 17 и 62 итераций. Та-

ким образом, нашли подтверждение результаты раздела 2.1, т. е. для до-

стижения оптимальной точности методом итераций (П.4) требуется при-

мерно в 2,5 раза меньше итераций, чем методом [158]. Здесь также не по-

требовалось сведений об истокопредставимости точного решения. Ис-

пользование правила останова по невязке сделало методы (П.4) и [158] 

вполне эффективными. Результаты счета приведены в таблице П.2. Графи-

ки точного решения и приближенного решения, полученного методом 

(П.4) при 
410 , приведены на рисунке П.2. 

Данная задача была решена также методом (2.61) при k = 2, который  

в дискретной форме запишется  
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Применялось правило останова по соседним приближениям (2.37).  

На каждом шаге итерации вычислялась дискретная норма разности сосед-

них приближений   .
2
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nn  Выбиралось 8,0 . 

Для достижения оптимальной точности при 
310  потребовалось  

11 итераций, а при  410  22 итерации. 



 
 

 

 

 

 

231 

Задача 3. Решим в пространстве )1,0(2L  модельную задачу  

10)()()(
1

0

 t,tydssxs,tК  с симметричным положительным ядром  










,10,)1(

,10,)1(
),(

tsts

stst
stК  точной правой частью 

12

)1)(1(
)(

2 


tttt
ty   

и решением  ).1()( tttx   

Оператор, описанный выше интегральным уравнением, непрерывен, 

взаимнооднозначен и аддитивен. Для метода (П.4) возьмем 8,0 .  

В задаче использовано правило останова по невязке (2.20). Задача была 

решена методами (П.4) и [158] при 
310  и  

410 . Результаты  счета 

приведены в таблице П.3 (ввиду симметрии приведена лишь половина 

таблицы). 

В обоих случаях для решения  предложенной задачи сведений об ис-

токопредставимости точного решения не потребовалось, так как здесь 

воспользовались правилом останова по невязке (2.20), выбрав уровень 

останова .5,1   Итак, при ,10 3 3105,1   для достижения опти-

мальной точности при счете методом (П.4) потребовалось 6 итераций, при 

счете методом [158] – 14 итераций. При  410 , 4105,1   соответ-

ственно потребовалось 7 и 26 итераций. Пример счета показал, что для до-

стижения оптимальной точности метод итераций (П.4) требует примерно  

в 2,5 раза меньше итераций, чем метод [158], что соответствует результа-

там раздела 2.1. На рисунке П.3 изображены графики точного решения  

и приближенного решения, полученного методом (П.4) при 
410 . 

 Предложенная задача была решена методом (2.73). При счете выби-

рались: 4,4,8,0  . Применялось правило останова по соседним при-

ближениям (2.37). Для достижения оптимальной точности при 
310  

потребовалось 5 итераций, а при  410  12 итераций. 
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Таблица П.1 – Результаты счета итераций методами (П.4) и [158]  

для задачи 1 

 

Узлы 

it  

 

Правые 

части 
)( ity  

 

Точное 

реше-

ние 
)( itx  

Приближенные  решения 

Метод  

[158] 
310  

Метод 

(П.4) 
310  

Метод 

[158] 
410  

Метод 

(П.4) 
410  

0,00000 

0,03125 

0,06250 

0,09375 

0,12500 

0,15625 

0,18750 

0,21875 

0,25000 

0,28125 

0,31250 

0,34375 

0,37500 

0,40625 

0,43750 

0,46875 

0,50000 

0,01928 

0,02731 

0,02895 

0,03481 

0,04109 

0,04763 

0,05433 

0,06107 

0,06778 

0,07437 

0,08075 

0,08680 

0,09239 

0,09729 

0,10123 

0,10384 

0,10476 

0,00000 

0,03125 

0,06250 

0,09375 

0,12500 

0,15625 

0,18750 

0,21875 

0,25000 

0,28125 

0,31250 

0,34375 

0,37500 

0,40625 

0,43750 

0,46875 

0,50000 

0,02545 

0,04720 

0,06434 

0,09336 

0,11916 

0,15809 

0,17986 

0,21664 

0,25403 

0,27776 

0,32050 

0,35277 

0,37633 

0,40855 

0,43586 

0,46042 

 0,46830 

0,02747 

0,05036 

0,06746 

0,09657 

0,12165 

0,16048 

0,18059 

0,21667 

0,25327 

0,27508 

0,31732 

0,34834 

0,37013 

0,40152 

0,42815 

0,45265 

0,46053 

0,01743 

0,03168 

0,05962 

0,08898 

0,12293 

0,15407 

0,18629 

0,21965 

0,25037 

0,28194 

0,31061 

0,34454 

0,37835 

0,41187 

0,44206 

0,46570 

0,47776 

0,01792 

0,03218 

0,06012 

0,08925 

0,12303 

0,15397 

0,18614 

0,21959 

0,25039 

0,28211 

0,31077 

0,34471 

0,37840 

0,41171 

0,44168 

0,46520 

 0,47732 

m

n yAx ~)(   0,00140 0,00137 0,00013 0,00015 

m

nx )(  0,28343 0,28332 0,28843 0,28834 

m

nxx )(  0,01465 0,01331 0,00656 0,00667 

Количество итераций:               21              10               48                17 
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 Рисунок П.1 – Графики точного решения и приближенного решения,  

полученного методом (П.4) при 410  для задачи 1 
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Таблица П.2 – Результаты счета итераций методами (П.4) и [158]  

для задачи 2 

 

Узлы 

it  

 

Правые 

части 
)( ity  

 

Точное 

реше-

ние 
)( itx  

Приближенные  решения 

Метод  

[158] 
310  

Метод 

(П.4) 
310  

Метод 

[158] 
410  

Метод 

(П.4)
410  

0,00000        

0,03125        

0,06250        

0,09375        

0,12500        

0,15625        

0,18750        

0,21875        

0,25000        

0,28125        

0,31250        

0,34375        

0,37500        

0,40625        

0,43750        

0,46875        

0,50000        

0,03038        

0,03801        

0,04695        

0,05669        

0,06669        

0,07639        

0,08519        

0,09244        

0,09753        

0,10021        

0,10071        

0,09961        

0,09755        

0,09508        

0,09274        

0,09103        

0,09040        

0,00000        

0,06250        

0,12500        

0,18750        

0,25000        

0,31250        

0,37500        

0,43750        

0,50000        

0,46875        

0,43750        

0,40625        

0,37500        

0,34375        

0,31250        

0,28125        

0,25000        

0,04025 

0,07789 

0,12639 

0,19125 

0,25682 

0,30803 

0,37318 

0,41555 

0,46200 

0,45018 

0,44362 

0,41646 

0,38401 

0,33873 

0,31626 

0,28839 

0,27274 

0,04669 

0,08404 

0,13130 

0,19389 

0,25691 

0,30600 

0,36851 

0,40922 

0,45415 

0,44334 

0,43792 

0,41287 

0,38280 

0,34033 

0,31964 

0,29362 

0,27859 

0,02731 

0,06017 

0,11313 

0,18107 

0,24990 

0,31914 

0,38502 

0,43699 

0,46778 

0,46967 

0,44699 

0,41290 

0,37434 

0,34103 

0,30473 

0,27946 

0,27103 

0,02795 

0,06099 

0,11391 

0,18168 

0,25001 

0,31879 

0,38444 

0,43621 

0,46717 

0,46910 

0,44646 

0,41256 

0,37428 

0,34144 

0,30520 

0,27998 

0,27159 

m

n yAx ~)(   0,00102        0,00145       0,00011       0,00015 

m

nx )(  0,33540        0,33322       0,33792       0,33777   

m

nxx )(  0,01794        0,02211       0,01267       0,01272 

Количество итераций:              26                11              62                17 
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Рисунок П.2 – Графики точного решения и приближенного решения,  

полученного методом (П.4) при 410  для задачи 2 
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Таблица П.3 – Результаты счета итераций методами (П.4) и [158]  

для задачи 3 

 

 

Узлы 

it  

 

Правые 

части 
)( ity  

 

Точное 

реше-

ние 
)( itx  

Приближенные  решения 

Метод  

[158] 
310  

Метод 

(П.4) 
310  

Метод 

[158] 
410  

Метод 

(П.4) 
410  

0,00000        

0,03125        

0,06250        

0,09375        

0,12500        

0,15625        

0,18750        

0,21875        

0,25000        

0,28125        

0,31250        

0,34375        

0,37500        

0,40625        

0,43750        

0,46875        

0,50000               

0,00000        

0,00260        

0,00517        

0,00768        

0,01011        

0,01243        

0,01463        

0,01668        

0,01855        

0,02025        

0,02175        

0,02304        

0,02411        

0,02495        

0,02555        

0,02592        

0,02604        

0,00000        

0,03027        

0,05859        

0,08496        

0,10938        

0,13184        

0,15234        

0,17090        

0,18750        

0,20215        

0,21484        

0,22559        

0,23438        

0,24121        

0,24609        

0,24902        

0,25000        

0,00000 

0,03442 

0,04415 

0,07984 

0,09159 

0,10488 

0,14515 

0,16257 

0,18264 

0,18848 

0,20654 

0,21080 

0,21857 

0,22998 

0,24521 

0,23926 

0,23728 

0,00000 

0,03452 

0,04781 

0,08325 

0,09803 

0,11393 

0,15275 

0,17169 

0,19257 

0,19403 

0,21932 

0,22551 

0,23427 

0,24573 

0,26000 

0,25562 

0,25416 

0,00000 

0,02652 

0,05399 

0,07869 

0,10152 

0,12330 

0,14487 

0,16698 

0,18575 

0,20184 

0,21586 

0,22364 

0,23490 

0,24067 

0,25057 

0,25886 

0,26012 

0,00000 

0,02700 

0,05437 

0,07999 

0,10421 

0,12737 

0,14982 

0,17186 

0,19128 

0,20836 

0,22335 

0,23392 

0,24530 

0,25258 

0,26093 

0,26289 

0,26354 

m

n yAx ~)(   0,00138        0,00091       0,00013       0,00009 

m

nx )(  0,16996        0,17477       0,18116       0,18276   

m

nxx )(  0,01492 0,01057       0,00454      0,00542 

Количество итераций:             14               6                26                   7 
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Рисунок П.3 – Графики точного решения и приближенного решения,  

полученного методом (П.4) при 410  для задачи 3 

 

 

Кроме этого, задача 3 была решена неявным методом итераций (3.2) 

при k = 1, который в дискретной форме запишется  

miyhxstKxhxstKx i

m

j

n
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j

n
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Результаты счета 410  приведены в таблице П.4 (ввиду симметрии 

приведена лишь половина таблицы). Для решения предложенной задачи 

сведений об истокопредставимости точного решения не потребовалось, 
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так как здесь воспользовались правилом останова по невязке (2.20),  

выбрав уровень останова .5,1   Пример счета показал, что для достиже-

ния оптимальной точности методом итераций (П.5) при 9  требуется 

только одна итерация, что соответствует результатам раздела 3.1. На ри-

сунке П.4 изображены графики точного решения и приближенного реше-

ния, полученного методом (П.5) при 410 . 

 

Таблица П.4 – Результаты счета итераций методом (П.5) для задачи 3 

 
 

Узлы 

it  

 

Правые 

части 
)( ity  

 

Точное 

решение 
)( itx  

Приближенное  

решение 

Метод (П.5) 
410  

0 0 0 0 

0,0312 0,00259 0,03027 0,02429 

0,0625 0,00517 0,05859 0,04865 

0,0937 0,00768 0,08496 0,07275 

0,125 0,01011 0,10938 0,09629 

0,1562 0,01243 0,13184 0,11898 

0,1875 0,01463 0,15234 0,14056 

0,2187 0,01668 0,17089 0,1608 

0,2500 0,01855 0,1875 0,17948 

0,2812 0,02025 0,20215 0,19641 

0,3125 0,02175 0,21484 0,21142 

0,3437 0,02304 0,22559 0,22437 

0,375 0,02411 0,23438 0,23514 

0,4062 0,02495 0,24121 0,24361 

0,4375 0,02555 0,24609 0,24972 

0,4687 0,02591 0,24902 0,25341 

0,5000 0,02604 0,25000 0,25464 

m

n уAx ~)(   0,00015 

m

nx )(
 0,17972 

m

nxx )(  0,00798 
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Рисунок П.4 – Графики точного решения и приближенного решения,  

полученного методом (П.5) при 410  для задачи 3 
 

Исходный код программы для метода (П.5) на языке C# 

Вспомогательные классы Matrix и Vector: 
using System; 
using MTask.CoreClass; 
namespace Helpers.Classes 
{ 
    public class Matrix 
    { 
        private int _height, _width; 
        private double[,] data; 
        private double[] t; 
        public int Height { get { return _height; } } 
        public int Width { get { return _width; } } 
        public double[,] Data { get { return data; } set { data = value; } } 
        public Matrix(int height, int width) 
        { 
            _height = height; _width = width; 



 
 

 

 

 

 

240 

            data = new double[_height, _width]; 
        } 
        private int getFirstNonZero(int RowNum) 
        { 
            for ( nti  = 0; i < _width; i++) 
                if (Data[RowNum, i] != 0) return i; 
            return _width; 
        } 
        private void Sort(Vector temp) 
        { 
            t = new double[_width]; 
            for ( nti  = 0; i < _height – 1; i++) 
                for (int j = i + 1; j < _height; j++) 
                    if (getFirstNonZero(i) > getFirstNonZero(j)) 
                    { 
                        for (int h = 0; h < _width; h++) t[h] = Data[i, h]; 
                        for (int h = 0; h < _width; h++) Data[i, h] = Data[j, h]; 
                        for (int h = 0; h < _width; h++) Data[j, h] = t[h]; 
                        double t1 = temp.Data[i]; 
                        temp.Data[i] = temp.Data[j]; 
                        temp.Data[j] = t1; 
                    } 
        } 

        private void ToStage(Vector temp) 
        { 
            double alpha; 
            for ( nti  = 0; i < _height; i++) 
            { 
                if (Data[i, i] == 0) continue; 
                for (int j = i + 1; j < _height; j++) 
                { 
                    if (Data[j, i] == 0) continue; 
                    alpha = Data[j, i] / Data[i, i]; 
                    for (int h = 0; h < _width; h++) 
                        Data[j, h] -= Data[i, h] * alpha; 
                    temp.Data[j] -= temp.Data[i] * alpha; 
                    Data[j, i] = 0; 
                } 
                Sort(temp); 
            } 
            Sort(temp); 
        } 
        public void CopyFrom(Matrix m) 
        { 
            Data = new double[m._height, m._width]; 
            _height = m._height; _width = m._width; 
            for ( nti  = 0; i < m._height; i++) 
                for (int j = 0; j < m._width; j++) 
                    Data[i, j] = m.Data[i, j]; 
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        } 
        public Vector GetSolution(Vector b) 
        { 
            Vector res = new Vector(); 
            Vector temp = new Vector(); 
            temp.CopyFrom(b); 
            ToStage(temp); 
            if (Data[_height – 1, _width – 1] == 0) 
                res.Data[_width – 1] = 0; 
            else 
                res.Data[_width – 1] = temp.Data[_width – 1] /  
                                       Data[_height – 1, _width – 1]; 
            for ( nti  = _height – 2; i >= 0; i--) 
            { 
                if (Data[i, i] == 0) 
                    res.Data[i] = 0; continue; 
                double sum = 0; 
                for (int j = i + 1; j < _width; j++)  
                    sum += Data[i, j] * res.Data[j]; 
                temp.Data[i] -= sum; 
                res.Data[i] = temp.Data[i] / Data[i, i]; 
            } 
            return res; 
        } 
    } 
    public class Vector 
    { 

        private int _dimension; 
        private double[] data; 
        public int Dimension { get { return _dimension; } } 
        public double[] Data { get { return data; } set { data = value; } } 
        public Vector(int dimension) 
        { 
            _dimension = dimension; 
            data = new double[dimension]; 
        } 
        public Vector() 
        { 
            _dimension = Core.M; 
            data = new double[Core.M]; 
        } 
        public void CopyFrom(Vector w) 
        { 
            this._dimension = w._dimension; 
            for ( nti  = 0; i < _dimension; i++) 
                this.Data[i] = w.Data[i]; 
        } 
    } 

} 
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Вспомогательный класс Core (класс, решающий поставленную задачу): 
using System; 
using Helpers.Classes; 
namespace Mtask.CoreClass 
{ 
    public class Core 
    { 
        private double h; 
        private Matrix K, Z; 
        private double n1, n2, n3; 
        private int iterations; 
        private Vector solution, v1, v2, y, x0; 
        public  nti  int M = 32, k = 4; 
        public const double alpha = 9, a = 0, b = 1, delta = 1e-4, eps = 1.5 * delta; 
        public double Norm1 { get { return n1; } } 
        public double Norm2 { get { return n2; } } 
        public double Norm3 { get { return n3; } } 
        public Vector PreciselySolution { get { return v2; } } 
        public Vector Solution { get { return solution; } } 
        public int TotalIterations { get { return iterations; } } 
        public Core() 
        { 
            v1 = new Vector(); v2 = new Vector(); x0 = new Vector();  
            y = new Vector(); solution = new Vector(); 
            K = new Matrix(M, M); 
        } 
        private void GetMatrix() 
        { 
            for ( nti  = 0; i < M; i++) v1.Data[i] = i * h; 
            for ( nti  = 0; i < M; i++) 
                for (int j = 0; j < M; j++) 
                    K.Data[i, j] = GetK(v1.Data[i], v1.Data[j]); 
        } 
        private double GetPoint( nti ) 
        { 
            return i * h; 
        } 
        public double GetY( nti ) 
        { 
            double f = GetPoint(i); 
            return f * (f – 1) * (f * f – f – 1) / 12; 
        } 
        private double GetK(double t, double s) 
        { 
            if (t <= s) return t * (1 – s); 
            if (s <= t) return s * (1 – t); 
            return 0; 
        } 
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        private Vector GetRightPart(Vector xn) 
        { 
            Vector res = new Vector(); 
            for (int k = 0; k < M; k++) 
            { 
                double t1 = GetY(k); 
                double t2 = 0; 
                for (int j = 0; j < M; j++) t2 += K.Data[k, j] * xn.Data[j] * h; 
                res.Data[k] = xn.Data[k] – alpha * t2 + 2 * alpha * t1; 
            } 
            return res; 
        } 
        public double GetQ(Vector v) 
        { 
            double sum = 0; 
            for ( nti  = 0; i < M; i++) 
            { 
                double t = 0; 
                for (int j = 0; j < M; j++) 
                    t += K.Data[i, j] * h * v.Data[j]; 
                t -= (GetY(i) * Math.Pow(10, k) + 0.5) / Math.Pow(10, k); 
                t *= t; 
                t *= h; 
                sum += t; 
            } 
            return Math.Sqrt(sum); 
        } 
        public void Solve() 
        { 
            h = (b – a) / M; 
            iterations = 0; 
            x0 = new Vector(); 
            solution = new Vector(); 
            GetMatrix(); 
            Z = new Matrix(M, M); 
            for ( nti  = 0; i < M; i++) 
            { 
                double t0 = 1 + alpha * K.Data[i, 0] * h; 
                Z.Data[i, i] = t0; 
                for (int j = 0; j < M; j++) 
                { 
                    if (i == j) continue; 
                    Z.Data[i, j] = alpha * K.Data[i, j] * h; 
                } 
            } 
            Vector bb = GetRightPart(x0); 
            solution = Z.GetSolution(bb); 
            n1 = GetQ(solution); 
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            for ( nti  = 0; i < M; i++) 
                v2.Data[i] = GetPoint(i) * (1 – GetPoint(i)); 
            double t = 0; 
            for ( nti  = 0; i < M; i++)  
                t += solution.Data[i] * solution.Data[i] * h; 
            n2 = Math.Sqrt(t); t = 0; 
            for ( nti  = 0; i < M; i++)  
                t += (v2.Data[i] – solution.Data[i]) *  
                     (v2.Data[i] – solution.Data[i]) * h; 
            n3 = Math.Sqrt(t); 
        } 
    } 
} 

Главный класс программы: 
using System; 
using Mtask.CoreClass; 
namespace Mtask 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Core core = new Core(); 
            core.Solve(); 
            Console.WriteLine(“Precisely solution: “); 
            for ( nti  = 0; i < 32; i++)  
                Console.WriteLine(“x” + i + “: “ + core.PreciselySolution.Data[i]); 
            Console.WriteLine(); 
            Console.WriteLine(“Approximately solution: “); 
            for ( nti  = 0; i < 32; i++)  
                Console.WriteLine(“x” + i + “: “ + core.Solution.Data[i]); 
            Console.WriteLine(); 
            Console.WriteLine(“Total iterations: “); 
            Console.WriteLine(core.TotalIterations); 
            Console.WriteLine(); 
            Console.WriteLine(“Norm: “); 
            Console.WriteLine(core.Norm1); 
            Console.WriteLine(core.Norm2); 
            Console.WriteLine(core.Norm3); 
            Console.WriteLine(); 
            Console.WriteLine(“Ti”); 
            for ( nti  = 0; i < 17; i++) 
                Console.WriteLine((Core.b – Core.a) / Core.M * (i)); 
            Console.WriteLine(); 
            Console.WriteLine(“Yi”); 
            for ( nti  = 0; i < 17; i++) 
                Console.WriteLine(core.GetY(i)); 
        } 
    } 
} 
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Также в гильбертовом пространстве решались и другие численные 

модельные задачи в виде интегрального уравнения 
1
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