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ОБЩЕТЕОРЕТИЧЕСКИЕ ВОПРОСЫ МАТЕМАТИКИ 

УДК 517.954 

О канонической краевой задаче Римана – Гильберта  
для одной бигармонической системы четырех уравнений в R3 

Денис Александрович Басик1 

Научный руководитель: А. И. Басик1, канд. физ.-мат. наук, доцент 
1 Брестский государственный университет имени А. С. Пушкина, Брест, 
Беларусь 
2018asada@gmail.com 

Аннотация. В статье приводится пример эллиптической системы четырех диффе-
ренциальных уравнений первого порядка бигармонического типа с тремя перемен-
ными. Для этой системы изучается вопрос регуляризуемости канонической задачи 
Римана – Гильберта в ограниченной односвязной области. Доказывается, что в той 
точке границы области, в которой внутренняя нормаль параллельна оси Ox1, однород-
ная предельная задача имеет ненулевое решение в пространстве устойчивых решений. 

Ключевые слова: эллиптическая система; регуляризуемость; краевая задача Ри-
мана – Гильберта. 

Финансирование: Результаты работы получены при финансовой поддержке 
Министерства образования Республики Беларусь (№ гос. рег. 20240574). 

On the canonical Riemann-Hilbert boundary value problem  
for one biharmonic system of four equations in R3 
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Abstract. The paper gives an example of an elliptic system of four first-order differen-
tial equations of biharmonic type with three variables. For this system we study the 
question of regularizability of the canonical Riemann-Hilbert boundary value problem 
in a bounded one-connected region. It is proved that at the point of the boundary of the 
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domain in which the internal normal is parallel to the Ox1 axis, the homogeneous limit 
problem has a nonzero solution in the space of stable solutions. 

Keywords: elliptic system; regularizability; the Riemann-Hilbert boundary value prob-
lem. 

Funding: The results of the work were obtained with the financial support of the Minis-
try of Education of the Republic of Belarus (State Registration no. 20240574). 

В ограниченной, гомеоморфной шару области   R3, границей   ко-
торой является гладкая поверхность Ляпунова, рассмотрим линейную одно-
родную систему четырех дифференциальных уравнений первого порядка вида 
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функция; T  – транспонирование. 
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Отсюда следует, что матрица )(A  является невырожденной при каж-
дом ненулевом векторе 3R . Последнее означает, что система (1) является 
эллиптической. 

Отметим, что система (1) не является трехмерным аналогом системы Коши 
– Римана [1], однако обладает тем свойством, что каждая компонента произволь-
ного ее непрерывно дифференцируемого решения удовлетворяет бигармониче-
скому уравнению в R3 [2] (является системой бигармонического типа [3]). 

Задача Римана – Гильберта для системы (1) состоит в нахождении ее 
решения класса )()( ,01   CC ,  ( (0;1] ), удовлетворяющего граничным 
условиям: 
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где ,1f  ,2f  ,km  R:kn  – заданные непрерывные по Гельдеру с показа-
телем α  функции ( 1,...,4k  ). 
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В теории аналитических функций задача Римана – Гильберта состоит в 
нахождении в ограниченной односвязной области голоморфной функции по 
известной на границе этой области линейной комбинации ее действительной 
и мнимой части. Эта задача известна также как задача Гильберта и достаточ-
но подробно изучена [4, с. 217]. 

В многомерном случае первые результаты в исследовании задачи Ри-
мана – Гильберта были получены В. И. Шевченко для системы Моисила – 
Теодореску [5]. Им было выведено условие, обеспечивающее регуляризуе-
мость (краевая задача называется регуляризуемой, если для нее выполнено 
условие Я. Б. Лопатинского [6]) краевой задачи в произвольной односвязной 
области, проведена гомотопическая классификация регуляризуемых задач и 
вычислен индекс регуляризуемой задачи. В частности, задача Римана – Гиль-
берта для системы Моисила – Теодореску с граничным условием 

1 1| ( ),u f y    2 1 3 2 4 3 2( ) | ( ).u u u f y                              (2) 

является регуляризуемой, где 3: R  – единичное поле внутренних нор-
малей на поверхности  . 

Для эллиптических систем ортогонального типа, рассмотренных в [7], 
задача c граничными условиями вида (2) также является регуляризуемой. 
Действительно, векторные поля L и P [см. формулу (4)] [7] в этом случае за-
даются следующими равенствами: 

( ) ( )L y y ,   ayaayyyP );();()()(   , 

и, следовательно, в каждой точке Ωy  имеем 
2( ); ( ) 1 ( ); 0y P y y a    . 

Согласно теореме 1 [7], задача Римана – Гильберта для систем, рас-
смотренных в [7], и с граничным условием (2) является регуляризуемой. В 
связи с вышесказанным будем называть условия (2) каноническими. 

В настоящей работе доказывается нерегуляризуемость задачи (1)‒(2). 
Известно, что выполнение условия регуляризуемости обеспечивает нетеро-
вость задачи Римана – Гильберта как в классической постановке, так и в ши-
рокой шкале гильбертовых пространств [6]. 

Теорема. Задача (1)‒(2) не является регуляризуемой. 
Доказательство. Покажем, что в точке y~ , в которой внутренняя 

нормаль параллельна оси Ox1, предельная задача задачи (1)‒(2) имеет нетри-
виальное ядро [6]. Не ограничивая общности, будем считать, что точка y~  
совпадает с началом координат. Рассмотрим краевую задачу (1)‒(2) «под 
микроскопом» в окрестности начала координат с все бόльшим увеличением 
[8]. Получим предельную задачу, состоящую в нахождении устойчивого на 
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бесконечности решения системы (1) в полупространстве 01 x , т. е. стремя-
щегося к нулю при x1 → +∞ и удовлетворяющего граничным условиям: 

),(|),,(| 3220232101 11
xxfuxxfu xx       )),(( 2

32 Rxx .                      (3) 

Применяя к обеим частям (1), (3) преобразование Фурье по перемен-
ным x2, x3, получим задачу для системы дифференциальных уравнений: 

2 3
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где ξ′= (ξ2,ξ3), ),,(ˆ
321 xU  – преобразование Фурье U(x) по x2, x3.  

Непосредственная проверка показывает, что при  51,52'  и при 
произвольной постоянной C вектор-функция  

Tx xixixCeU )35,52,53,6(ˆ
111

1  

 
является устойчивым решением однородной задачи (4)‒(5). Последнее озна-
чает, что задача (4)‒(5) не является однозначно разрешимой при всех ξ′.  

Теорема доказана. 
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