УДК 551.501; 551.502

И. М. ЧЕРНЯКОВА, Ю. А. ГЛЕДКО

Беларусь, Минск, БГУ

E-mail: irinacernakova03@gmail.com

ОПТИМИЗАЦИЯ СЕТИ ПРИЗЕМНЫХ МЕТЕОРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ В РЕСПУБЛИКЕ БЕЛАРУСЬ: ВЛИЯНИЕ ПЛОТНОСТИ СЕТИ НА КАЧЕСТВО И ТОЧНОСТЬ НАБЛЮДЕНИЙ

Основой системы получения информации о состоянии окружающей среды является наблюдательная сеть, включающая в себя наземную систему стационарных пунктов наблюдений, предназначенных для наблюдений за физическими и химическими процессами, происходящими в окружающей среде, определения ее гидрометеорологических и гелиогеофизических характеристик, а также для определения уровня загрязнения атмосферного воздуха, почв и водных объектов.

Пункты наблюдений расположены таким образом, чтобы обеспечить комплексное изучение гидрометеорологического режима и уровня загрязнения окружающей среды.

Одним из показателей достаточности наблюдательной сети является индекс плотности — территория в тыс. κm^2 , приходящаяся на один пункт наблюдения.

В соответствии с Руководством по Глобальной системе наблюдений (ГСН) плотность станций метеорологической сети должна соответствовать необходимому разрешению наблюдаемых метеорологических величин и давать возможность предоставить их достаточно точные значения в любой точке между двумя станциями в результате интерполяции с учетом влияния орографии на них.

К информационному критерию относится показатель достаточности наблюдательной сети. Метеорологическая сеть является оптимальной для большинства наблюдаемых метеорологических величин, если расстояние между метеорологическими станциями составляет в среднем 50–60 км (индекс плотности станций равен 3,5–4,0); для осадков – если расстояние между пунктами наблюдений не превышает 20–30 км (индекс плотности равен 0,5–0,9).

Станции размещаются на территории так, чтобы обеспечивалась необходимая точность интерполяции фоновых значений метеорологических величин для любой точки территории между станциями.

Функционирующая в настоящее время на территории Республики Беларусь сеть наблюдений (только станции) имеет средний индекс плотности 3,7, среднее расстояние между пунктами наблюдений в среднем 50–60 км.

Согласно рекомендациям Всемирной метеорологической организации, для оптимальной сети с индексом плотности не менее 4,0 необходимо 52 метеорологические станции, что говорит о том, что количество станций в Республике Беларусь оптимально для прогнозирования погоды и климата. Для наблюдений за осадками с оптимальным индексом плотности 0,9 необходимо 230 пунктов наблюдений при функционирующих сегодня 135 пунктах наблюдения.

Метеорологические параметры подразделяются на три группы.

К первой группе относятся: атмосферное давление воздуха, температура почвы на глубинах и продолжительность солнечного сияния, для определения которых допустимое расстояние между пунктами наблюдений в равнинной местности составляет 150–200 км (наименьшая плотность сети).

Ко второй группе относятся: температура и влажность воздуха, ветер и количество облачности, допустимое расстояние между пунктами наблюдений в равнинной местности для которых составляет 50–60 км (средняя, или оптимальная, плотность сети).

К третьей группе относятся: осадки, характеристики снежного покрова и атмосферные явления, для которых необходимы расстояния между пунктами наблюдения, не превышающие 30 км, что дает возможность интерполяции только средних месячных значений метеорологических величин и их характеристик, например сумм осадков.

Проблема обоснования рационального размещения пунктов наблюдений наземной сети всегда относится к числу приоритетных. Одним из ключевых вопросов в этой проблеме является выбор климатической классификации и показателей районирования территории [1].

Расчет необходимого количества пунктов наблюдения по основным метеорологическим параметрам, таким как давление, температура воздуха и ветер, количество осадков, произведен с учетом количественных критериев рационального размещения пунктов метеорологических наблюдений в соответствии с требованиями к необходимой плотности наблюдательной сети. Это позволяет получить в любой точке территории путем интерполяции значения каждой метеорологической величины с требуемой точностью [2].

Результаты расчетов минимально необходимого количества пунктов наблюдений по основным метеорологическим параметрам (атмосферное

давление, температура воздуха, осадки), исходя из физико-географического районирования, отражены в таблице 1, составленной автором по [3].

Таблица 1 — Расчет минимально необходимого количества пунктов наблюдений по различным метеорологическим параметрам

	Атмосферное		Температура		Осадки	
Физико- географическая провинция	давление		воздуха			
	Количество пунктов		Количество пунктов		Количество пунктов	
	наблюдений		наблюдений		наблюдений	
	действую-	необходи-	действую-	необходи-	действую-	необходи-
	щих	мых	щих	мых	щих	мых
Поозерская	11	4	11	9	11 (+1)	40
Западно-	14	5	15	13	15 (+9)	52
Белорусская						
Восточно-	7	2	7	6	7	25
Белорусская	/	2	/	O	/	23
Предполесская	11	4	11	11	11	48
Полесская	12	6	12	15	12 (+2)	66
ВСЕГО	55	21	56	54	56 (+12)	231
					66 (135)	

Анализируя результаты расчетов, онжом сделать вывод, метеорологической сети наблюдений возникает необходимость пересмотра программы наблюдений на метеостанциях. При необходимости допускается наблюдений исключение наблюдения ИЗ планов за атмосферным давлением более чем на 50 % станций, а также возникает необходимость в увеличении на 96 пунктах наблюдения (включая метеорологические станции и гидрологические посты) за количеством осадков, чтобы приблизиться к норме.

Минимально необходимое количество пунктов наблюдения по метеорологическим параметрам третьей группы, к которой относятся осадки, характеристика снежного покрова и атмосферные явления, составляет 230 пунктов наблюдения при функционирующих в настоящее время 182 пунктов наблюдения.

В настоящий момент информация о количестве осадков поступает на 135 пунктов наблюдения, из них 67 метеостанций (56 + 11 AMC) и 66 гидрологических постов. Используя информацию по осадкам со всех пунктов наблюдений, можно сделать вывод, что количество пунктов наблюдений за атмосферными осадками недостаточно относительно оптимально необходимого (135), для чего необходимы дополнительные наблюдения (в настоящий момент это можно решить, используя дорожно-измерительные станции (ДИС)).

Достаточность сети наблюдений относительно измерения различных метеорологических параметров может быть разной. В таблицах 2 и 3, составленных автором по [3], показаны результаты расчетов по группам метеорологических параметров.

Таблица 2 — Минимально необходимое количество пунктов наблюдений по метеорологическим параметрам первой группы

	Количество	Минимально		
Область	Атмосфер-	Температура	Продолжитель-	необходимое
	ное давле-	почвы	ность солнеч-	количество ПН
	ние		ного сияния	(нормативное)
Республика	55	49	17	20–21
Витебская	12	11	3	4
Минская	12	10	3	4
Гродненская	6	5	4	2–3
Могилевская	8	7	2	3
Брестская	9	9	3	3
Гомельская	8	7	2	4

Таблица 3 — Минимально необходимое количество пунктов наблюдений по метеорологическим параметрам второй группы

	Колич	Минимально необходимое			
Область	Температура	Влажность	Облачность	Ветер	количество ПН
	воздуха				(нормативное)
Республика	56	55	47	55	52
Витебская	12	12	11	12	10
Минская	13	12	9	12	10
Гродненская	6	6	5	6	6
Могилевская	8	8	7	8	7
Брестская	9	9	8	9	8
Гомельская	8	8	7	8	10

Из таблиц 2 и 3 можно заметить, что в настоящий момент времени сеть наблюдений близка к достаточной (оптимальной) по основным метеорологическим параметрам, таким как температура воздуха, направление и скорость ветра, атмосферное давление, температура почвы, но существует необходимость в дополнительных пунктах наблюдений за продолжительностью солнечного сияния и облачностью. Кроме того, существует необходимость в дополнительных пунктах наблюдений в Гомельской области.

Так, для построения оптимально необходимой метеорологической сети наблюдений по метеорологическим параметрам первой группы в соответствии с регламентом ВМО есть необходимость ввести в программу наблюдений наблюдения за продолжительностью солнечного сияния на 3 (4) станциях. Возможно при необходимости сокращение программы наблюдений на 35 (36) метеостанциях по такому метеорологическому параметру, как атмосферное давление, на 28 (29) — по измерению температуры почвы, на 3–4 станциях по параметрам «температура воздуха», «влажность», «ветер».

Таким образом, можно сделать вывод, что в настоящий момент времени сеть наблюдений близка к достаточной (оптимальной) по основным метеорологическим параметрам, таким как температура воздуха, направление и скорость ветра, атмосферное давление, температура почвы (2 см), но существует необходимость в дополнительных пунктах наблюдений за продолжительностью солнечного сияния. Кроме того, существует необходимость в дополнительных пунктах наблюдений в Гомельской области.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Брилевский, М. Н. Физическая география Беларуси : пособие / М. Н. Брилевский. Минск : БГУ, 2022.-119 с.
- 2. Методика расчета минимально необходимого количества пунктов метеорологических наблюдений : утв. приказом Росгидромета от 5 сент. $2008 \ \Gamma$. $\ C\Pi6$., 2008. 15 с.
- 3. Государственный климатический кадастр: материалы наблюдений Государственной сети гидрометеорологических наблюдений Республики Беларусь. № свидетельства 0870100021. 2025.

УДК 551.579:551.502(476)

Е. В. ШАМАТУЛЬСКАЯ, О. Д. СТРОЧКО, К. К. СТУКАЧЕВА

Беларусь, Витебск, ВГУ имени П. М. Машерова E-mail: shamelena08@gmail.com

НАСЫЩЕННОСТЬ РЕГИОНОВ БЕЛАРУСИ ГИДРОМЕТЕОРОЛОГИЧЕСКИМИ ПУНКТАМИ

Гидрометеорологические наблюдения – инструментальные измерения, наблюдения, в т. ч. визуальные, за состоянием отдельных компонентов природной среды в целях оценки и прогноза их метеорологических,