УДК 635.1/631.811.98

Н. А. ЖМАКОВА 1 , М. Ф. СТЕПУРА 2 , Н. Л. МАКАРОВА 1 , П. В. ПАСЬ 2

¹Беларусь, Минск, Институт природопользования НАН Беларуси ²Беларусь, Минский район, п. Самохваловичи, НПЦ НАН Беларуси по картофелеводству и плодоовощеводству

E-mail: zhmakova@mail.ru

ЖИДКОЕ ГУМАТСОДЕРЖАЩЕЕ УДОБРЕНИЕ «ТЕЗОРО»

В настоящее время в растениеводстве все шире используются жидкие удобрения, которые наряду с основными элементами питания содержат микроэлементы и биологически активные регуляторы роста растений. Высокая эффективность некорневых обработок растений такими удобрениями связана с тем, что весь комплекс веществ, необходимый для роста растений, вносится в один прием, они легко усваиваются растением напрямую, через поверхность листа, действуют быстро и эффективно, что позволяет избежать значительных потерь, которые существуют при внесении удобрений в почву. При этом можно строго дифференцировать питание растений в разные фазы вегетации, что положительно влияет на их рост и развитие, повышение урожайности и качества продукции [1].

Наиболее целесообразно одновременное внесение минеральных удобрений с регуляторами роста растений гуминовой природы, так как при этом растение обеспечивается питательными веществами, а наличие гуминового препарата способствует более полному и эффективному их усвоению. Многолетними исследованиями убедительно доказано, что под влиянием низких концентраций (0,01–0,001 %) гуминовых кислот в растениях активизируются основные звенья обмена веществ, а именно синтез белка, нуклеиновых кислот, пигментов, фосфорсодержащих соединений — переносчиков энергии. Гуминовые кислоты оказывают существенное влияние на ферментативную деятельность растительной клетки, фотохимические процессы, транспорт электронов и фосфорилирование в хлоропластах. Все это способствует повышению урожая и улучшению качества продукции [2].

Немаловажным фактором является также стабилизирующая роль гуматсодержащих добавок в составе жидких удобрений, одним из недостатков которых является неустойчивость питательных солей в растворах и выпадение их в осадок. Гуминовые вещества являются высокомолекулярными коллоидными системами со свойствами полиэлектролитов, имеющих большую обменную емкость, и способны удерживать

в растворе минеральные компоненты удобрения и регулировать их поступление в растения.

Важное значение имеет введение в удобрения микроэлементов, многие из которых необходимы растениям и выполняют различные физиологические функции.

Институтом природопользования НАН Беларуси совместно с РУП «Научно-практический центр НАН Беларуси по картофелеводству и плодоовощеводству» разработана технология получения жидкого гуматсодержащего удобрения «Тезоро», которая заключается во введении в жидкий гуминовый препарат, получаемый методом химической деструкции торфа, соединений азота, калия и микроэлементов бора, молибдена и йода. Химический состав нового удобрения представлен в таблице 1.

Таблица 1 – Химический состав жидкого гуматсодержащего удобрения «Тезоро»

Компоненты	Содержание в удобрении		
Компоненты	г/л	% на ОВ	
Органические вещества, в т. ч.:	406,00	100,0	
Гуминовые кислоты	44,7	11,01	
Карбоновые кислоты	10,09	2,49	
Фенолкарбоновые кислоты	1,60	0,39	
Карбамид	335,81	82,71	
Минеральные вещества, в т. ч.:	34,36		
калий	15,23		
бор	1,20		
молибден	0,12		
йод	0,16		
Общий азот	170,42		

Для исследования минерального состава гуминового удобрения «Тезоро» использовали сухое вещество препарата, полученное путем упаривания и высушивания до полного удаления влаги, а также золу после его сжигания при температуре 650–700 °С. Исследования проводили методом рентгенофлуоресцентного анализа на анализаторе CEP-01(ELVA-X). Экспериментальные данные по содержанию основных макроэлементов в сухом веществе и золе приведены в таблице 2.

В наибольшем количестве в золе и сухом веществе гуминового удобрения представлен калий, доля которого составляет 64,18 % в зольном остатке и 31,23 % в сухом веществе. В значительных количествах присутствуют также железо (6,26 %), алюминий (5,12 %), кремний (6,37 %), кальций (4,61 % в зольной части).

Магний и фосфор составляют в золе соответственно 2,65 и 2,16 %, а натрий – менее 1 %.

Таблица 2 — Содержание основных макроэлементов в сухом веществе и золе удобрения «Тезоро»

Макроэлемент	Сухое вещество		Зола	
	$MK\Gamma/\Gamma$	%	мкг/г	%
Si	41173,2834	4,12	63721,0114	6,37
Al	20126,1489	2,01	51246,2167	5,12
Mg	10124,2110	1,01	26480,3718	2,65
K	312316,7812	31,23	641786,0012	64,18
P	9891,3971	0,99	21608,3154	2,16
Ca	20653,3871	2,07	46078,6100	4,61
Fe	32858,9216	3,29	62551,6512	6,26
Na	875,2060	0,09	8124,6850	0,81

Аналогичная закономерность снижения содержания макроэлементов наблюдается в сухом веществе от калия, кремния и железа к кальцию и алюминию и далее к магнию, фосфору и натрию. В целом основными макроэлементами представлено более 92 % зольной части гуминового удобрения. В основном макроэлементы привнесены зольными составляющими самого торфа, и лишь высокое содержание калия в сухом веществе и, соответственно, в зольном остатке обусловлено применением калиевой щелочи как реагента в технологическом процессе.

Анализ данных химического состава микроэлементов в сухом веществе и золе удобрения «Тезоро» (таблица 3) показывает, что его минеральная часть содержит более 20 микроэлементов, среди которых преобладает бор, массовая доля которого в сухом веществе достигает 0,27 %, а в золе – 0,54 %. Содержание йода в сухом веществе удобрения составляет 0,04 %, а в золе – 0,07 %, молибдена – соответственно 0,03 и 0,05 %, титана – 0,12 % и 0,27 %, марганца – 0,02 % и 0,04 %, кобальта –0,02 и 0,05 %, бария – 0,02 и 0,01 %.

Значительно ниже содержание в зольном остатке никеля, селена, молибдена, ванадия, цинка, брома, свинца. Эти микроэлементы находятся в пределах от 30 до 68 мкг/г сухого вещества удобрения. Кадмий, висмут, бериллий, ртуть и др. присутствуют в виде следов.

Таким образом, гуматсодержащее удобрение «Тезоро» содержит целый комплекс биологически активных веществ и биогенных макромикроэлементов, которые положительно влияют на рост, развитие и продуктивность сельскохозяйственных культур.

Таблица 3 — Содержание основных микроэлементов в сухом веществе и золе удобрения «Тезоро»

Микроэлемент	Сухое вещество		Зола	
	мкг/г	% на СВ	мкг/г	% на СВ
Ti	1208,8110	0,1209	2699,9500	0,2690
Cr	107,9500	0,0108	188,9058	0,0188
Mn	250,2518	0,0250	371,1265	0,04
Ni	68,6202	0,0069	120,2651	0,0120
Zn	11,7784	0,0118	20,4631	0,0020
Br	33,0474	0,0033	58,8351	0,0059
Sr	105,7909	0,0106	230,3311	0,0230
Mo	270,0488	0,027	516,0383	0,0516
Cd	4,7578	0,0004	9,2755	0,0009
I	360,3622	0,0364	745,2348	0,0745
Bi	1,8725	0,0002	5,5151	0,0005
S	498,6390	0,0498	1964,5990	0,1964
Co	237,2741	0,0237	464,9332	0,0464
V	27,9654	0,0028	36,6785	0,0037
Pb	30,0823	0,0030	37,7089	0,0038
Rb	11,3438	0,0011	28,9998	0,0029
Hg	0,7707	0,0001	6,1903	0,0006
Cs	57,0010	0,0057	126,7757	0,0127
Ba	190,6261	0,0191	100,4665	0,0100
Sb	13,6477	0,0014	19,5899	0,0019
Y	13,3122	0,0013	17,1733	0,0017
В	2699,0693	0,2699	5398,6011	0,5398

Гуматсодержащее удобрение «Тезоро» испытано на целом ряде сельскохозяйственных культур, по результатам которых оно внесено в Государственный реестр средств защиты растений и удобрений, разрешенных к применению на территории Республики Беларусь, и может использоваться на культурах огурца и томата, озимых и яровых зерновых культур и рапса, картофеля, кукурузы, зеленных культур в хозяйствах АПК и для розничной продажи населению.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Степуро, М. Ф. Научные основы интенсивных технологий овощных культур / М. Ф. Степуро. Минск : Изд. Вараксин А. Н., 2011. 295 с.
- 2. Томсон, А. Э. Торф и продукты его переработки / А. Э. Томсон, Г. В. Наумова. Минск : Беларус. навука, 2009. 328 с.