УДК 504.455+504.064

Е. Ю. ДОРОЖКО

Беларусь, Минск, Институт природопользования НАН Беларуси E-mail: elizaveta2002belstu@gmail.com

АНАЛИЗ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ДОННЫХ ОТЛОЖЕНИЯХ ПРЕСНЫХ ВОДНЫХ ОБЪЕКТОВ

Пресные водные объекты, такие как реки, озера и водохранилища, играют ключевую роль в экосистемах и обеспечивают накопление водных ресурсов страны. Однако антропогенная нагрузка, вызванная деятельностью человека, оказывает значительное влияние на состояние водоемов, включая их донные отложения (далее — ДО). ДО являются важным индикатором экологического состояния водоемов, так как аккумулируют загрязняющие вещества и служат средой обитания для многих организмов [1].

ДО служат показателями состояния экосистемы. Изменения в их составе могут свидетельствовать о степени антропогенной нагрузки. Основные процессы поступления и миграции тяжелых металлов в водной экосистеме представлены на рисунке 1.

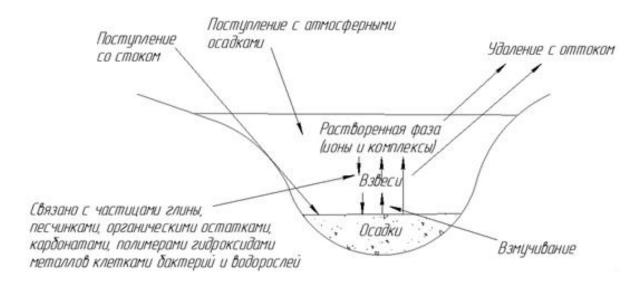


Рисунок 1 — Процесс миграции тяжелых металлов в водной экосистеме

Накопление загрязненных ДО может привести к следующим последствиям вторичного загрязнения водного объекта:

1. Накопление загрязняющих веществ. ДО могут накапливать тяжелые металлы (свинец, ртуть, кадмий) и органические загрязнители (пестициды,

нефтепродукты), что приводит к ухудшению качества воды и угрозе для водной флоры и фауны.

- 2. Изменение биологических сообществ. Антропогенная нагрузка может привести к изменению структуры сообществ донных организмов. Некоторые виды могут исчезать, в то время как другие, более устойчивые к загрязнению могут доминировать.
- 3. Эвтрофикация. Избыточное поступление питательных веществ (азота и фосфора) приводит к цветению водорослей, что может вызывать дефицит кислорода в воде и негативно сказываться на донных экосистемах.
- 4. Физико-химические изменения. Антропогенные факторы могут приводить к изменению pH, температуры и других химических характеристик ДО, что также влияет на экосистему [2].

В качестве объектов исследования были выбраны следующие водные объекты: р. Лошица, вдхр. Чижовское, р. Свислочь (район зоопарка), р. Титовка, в качестве фонового объекта – оз. Сергеевское.

Для оценки антропогенной нагрузки на ДО используются различные методы. В ходе полевых работ были отобраны пробы ДО водных объектов. Пробы отбирались в прибрежных зонах и зонах седиментации.

Пробы ДО отбирались с помощью модифицированного торфяного бура на береговой линии и в зонах наибольшей аккумуляции вещества — наиболее глубокой точке. Глубина определялась с помощью онлайн-карт глубин водных объектов [3]. Пробы воды из тех же водных объектов отбирались с помощью погружного батометра.

Влажность и зольность образцов ДО представлена в таблице 1.

Объект	W, %	A ^c , %
р. Лошица	54,8964	87,62054
вдхр. Чижовское	65,77281	83,43939
р. Свислочь	21,6767	95,0001
р. Титовка	74,09395	82,11646
оз. Сергеевское	91.91157	24.23871

Таблица 1 – Влажность и зольность отобранных отложений

Наибольшая влажность присуща ДО, отобранным из оз. Сергеевское. Можно сделать вывод о том, что отложения носят естественный механизм накопления, о чем также свидетельствует малая зольность вещества.

Тяжелые металлы являются специфичными загрязняющими веществами, относящимися к классу консервативных веществ, которые не покидают водные экосистемы, а под воздействием факторов окружающей среды способны изменять форму своего нахождения в ней.

Гидролиз является одним из наиболее важных процессов, определяющих формы нахождения металла в природных водах. Многие из поступающих в природные водоемы соединений металлов, гидролизуясь, могут образовывать нерастворимые гидроксиды в интервале рН природных вод. Величина рН речных вод обычно варьирует в пределах 6,5–8,5 [4].

С помощью метода атомно-абсорбционной спектроскопии были получены концентрации тяжелых металлов в валовой и подвижной форме (таблица 2). Валовая форма получалась экстракцией форм с помощью азотной кислоты, подвижная форма — с помощью аммиачно-ацетатного буфера.

Таблица 2 – Содержание тяжелых металлов в пробах донных отложений

	Тяжелые металлы						
Объект	Cu,	Zn,	Pb,	Cr,	Ni,	Mn,	
	мг/кг	мг/кг	мг/кг	$M\Gamma/K\Gamma$	мг/кг	$M\Gamma/K\Gamma$	
Валовое содержание							
Лошица, берег	76,8	263	18,6	7,1	8,6	418	
Лошица, русло	43,2	153	14,3	17,6	12,1	334	
Чижовское, берег	158,3	755	35,9	379	106	425	
Чижовское, центр	60,1	462	28,7	145,5	54,1	392	
Титовка, берег	10,7	136	10,9	7,9	5,7	480	
Титовка, русло	24,2	102	10,1	13,6	6,5	359	
Сергеевичи, берег	11,2	52	11,3	3,4	3,4	348	
Сергеевичи, центр	21,9	74,5	10,4	2,5	2,5	405	
Подвижное содержание							
Лошица, берег	2,6	18,2	_	_	_	103,6	
Лошица, русло	1,68	12,6	_	_	_	76,2	
Чижовское, берег	1,98	91,8	_	_	_	107,8	
Чижовское, центр	1,3	56,6	_	_	_	101	
Титовка, берег	0,26	11,2			_	116,4	
Титовка, русло	0,28	11	_		_	105,4	
Сергеевичи, берег	6,84	7,8	2	_	_	103,8	
Сергеевичи, центр	8,56	7,4	2,6		_	61,4	

Для характеристики степени мобилизации тяжелых металлов в донных отложениях использовался показатель подвижности, представленный в виде процентного содержания подвижных их форм относительно общих. Результаты показаны на рисунке 2.

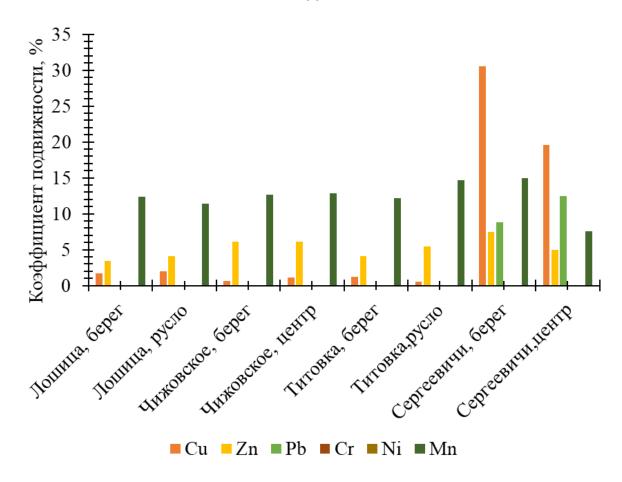


Рисунок 2 – Подвижность тяжелых металлов из донных отложений

Таким образом, можно сделать вывод о том, что наиболее загрязненным водным объектом является вдхр. Чижовское. Полученное содержание превышает ПДК в 3–4 раза, что говорит о большой антропогенной нагрузке на водный объект.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Манихин, В. И. Растворенные и подвижные формы тяжелых металлов в донных отложениях пресноводных экосистем / В. И. Манихин, А. М. Никаноров ; под ред. Т. С. Шмидта. СПб. : Гидрометеоиздат, 2001. 183 с.
- 2. Алекин, О. А. Основы гидрохимии / О. А. Алекин. Ленинград : Гидрометеоиздат, 1953. 296 с.
- 3. Карта глубин озер, водохранилищ и рек. URL: https://by.fishermap.org (дата обращения: 25.02.2025).
- 4. Линник П. Н. Комплексообразование ионов металлов в природных водах / П. Н. Линник, Б. И. Набиванец // Гидробиология. 1983. Т. 19, N_2 3. С. 82—95.