УДК 551.58

А. А. ВОЛЧЕК¹, А. В. ГРЕЧАНИК²

¹Беларусь, Брест, БрГТУ

²Беларусь, Брест, БрГУ имени А. С. Пушкина

E-mail: volchak@tyt.by, hrachanikA@tut.by

МЕТОДЫ ПРИВЕДЕНИЯ РЯДОВ СКОРОСТИ ВЕТРА К МНОГОЛЕТНЕМУ ПЕРИОДУ

Введение. Современные изменения климата привели к повышению требований к качеству данных гидрометеорологических наблюдений. Для эффективного исследования причин климатических изменений необходимы массивы данных, отличающиеся высоким качеством, однородностью и непрерывностью наблюдений. Ключевые критерии таких данных включают продолжительность наблюдений, их непрерывность и однородность временных рядов различных метеорологических параметров.

Анализ и прогноз климатических изменений базируются на анализе данных измерений. По различным причинам в длительных рядах данных метеорологических наблюдений встречаются пропущенные значения либо неполные ряды, что связано с закрытием некоторых метеорологических станций либо переводом их в станции другого разряда. Исключение и игнорирование недостающих значений искажают статистические свойства выборки и, как следствие, ухудшают результаты, получаемые на ее основе.

Методика исследования. Для объективного расчета параметров распределения метеорологических рядов используются аналитические методы, основанные на регрессионном анализе. Приведение параметров кривых распределения ежегодных вероятностей превышения рассматриваемой метеорологической характеристики (скорости ветра) к многолетнему периоду осуществляется в двух вариантах:

- 1) по значениям параметров распределения станций-аналогов;
- 2) по погодично восстановленным по уравнениям регрессии значениям метеорологической характеристики совместно с данными метеорологических наблюдений.
- В первом варианте средняя многолетняя величина $ar{V}$, м/с, определяется по формуле

$$\bar{V}_N = \bar{V}_n + r \cdot \left[\frac{\sigma_n}{\sigma_{n,a}} \right] \cdot \left(\bar{V}_{N,a} - \bar{V}_{n,a} \right), \tag{1}$$

где \bar{V}_n , $\bar{V}_{n,a}$ — среднеарифметические значения скорости ветра соответственно для исследуемой метеорологической станции и станции-

аналога, вычисленные за период совместных наблюдений, м/с; r — коэффициент корреляции между метеорологическими характеристиками исследуемой метеорологической станции и станции-аналога, вычисленный за период совместных наблюдений; \bar{V}_N , $\bar{V}_{N,a}$ — норма скорости ветра за N-летний период соответственно для исследуемой метеорологической станции и станции-аналога, м/с; σ_n , $\sigma_{n,a}$ — средние квадратические отклонения скорости ветра за совместный период n лет соответственно для исследуемой метеорологической станции и станции-аналога.

Средняя квадратическая погрешность приведенной к многолетнему периоду скорости ветра определяется по формуле

$$\varepsilon_{\overline{V}_N} = \frac{100 \cdot \sigma_n}{\overline{V}_N \cdot \sqrt{n}} \cdot \sqrt{1 + r^2 \cdot \left(\frac{n \cdot \sigma_{N,a}^2}{N \cdot \sigma_{n,a}^2} - 1\right)}.$$
 (2)

Коэффициент вариации определяется по формуле

$$C_{V,N} = \frac{\sigma_n}{\overline{V} \cdot \sqrt{1 - r^2 \cdot \left[1 - \frac{\sigma_{n,a}^2}{\sigma_{N,a}^2}\right]}},\tag{3}$$

где $\sigma_{N,a}$ — среднее квадратическое отклонение скорости ветра станциианалога за N-летний период, остальные обозначения те же, что в формуле (1).

Результаты исследования. Необходимо привести к длительному периоду параметры σ_N , \bar{q} , C_v ряда метеорологической станции Лельчицы (период наблюдений 1988–2013 гг., n=26). Исходные данные представлены в таблице 1.

Таблица 1 – Средние годовые скорости ветра на метеорологической
станции Лельчицы, м/с

Год	Скорость ветра	Год	Скорость ветра	Год	Скорость ветра
1988	2,8	1997	2,3	2006	1,9
1989	2,8	1998	2,4	2007	2,1
1990	3,0	1999	2,2	2008	2,1
1991	2,7	2000	2,2	2009	1,9
1992	2,8	2001	2,2	2010	1,9
1993	2,8	2002	2,4	2011	2,0
1994	2,5	2003	2,4	2012	2,1
1995	2,3	2004	2,2	2013	2,0
1996	2,2	2005	1,8		

Для определения параметров распределения на первом этапе необходимо установить, является ли исследуемый ряд репрезентативным. Для этого определяем случайную среднюю квадратическую погрешность

выборочной средней. По формуле (4) находим коэффициент автокорреляции $r(1)=0.87\geq0.5$. Используя формулу (5), получаем $\sigma_{\bar{Q}}=0.119=11.9~\%>10~\%$.

$$r = \frac{n-1}{n} \frac{\sum_{i=1}^{n-1} (V_i - \overline{V}) \cdot (V_{i+1} - \overline{V})}{\sum_{i=1}^{n} (V_i - \overline{V})^2},$$
(4)

где $\bar{V} = \frac{1}{n} \sum_{i=1}^n V_i$ — эмпирическое среднее значение ряда, V_i — i-й элемент ряда.

$$\sigma_{\overline{V}} = \frac{\sigma_Q}{\sqrt{n}} \cdot \sqrt{\frac{1 + \frac{2 \cdot r(1)}{n \cdot (1 - r(1))} \cdot \left(n - \frac{1 - r(1)^n}{1 - r(1)}\right)}{1 - \frac{2 \cdot r}{n \cdot (n - 1) \cdot (1 - r(1))} \cdot \left(n - \frac{1 - r(1)^n}{1 - r(1)}\right)}},$$
(5)

Следовательно, для определения параметров распределения следует привлечь метеорологическую станцию-аналог с более длительным периодом наблюдений. Используя матрицу коэффициентов корреляции, находим, что наиболее приемлемым аналогом является метеорологическая станция Полоцк с периодом наблюдений 1951-2020 гг., N=70 лет. Расчетный период примем с 1988-го по 2020 г., N=33 года. Исходный ряд среднегодовых скоростей ветра станции-аналога приведен в таблице 2.

Таблица 2 — Средние годовые скорости ветра на метеорологической станции Полоцк, м/с

Год	Скорость ветра						
1951	4,1	1969	3,4	1987	2,9	2005	2,0
1952	4,4	1970	3,5	1988	2,9	2006	1,8
1953	4,2	1971	3,3	1989	2,9	2007	2,1
1954	4,3	1972	2,8	1990	3,2	2008	2,1
1955	4,2	1973	3,1	1991	2,8	2009	1,9
1956	4,3	1974	2,6	1992	2,9	2010	1,9
1957	4,6	1975	2,9	1993	3,0	2011	2,0
1958	4,4	1976	2,4	1994	2,9	2012	2,0
1959	4,1	1977	2,3	1995	2,7	2013	1,8
1960	3,6	1978	2,6	1996	2,4	2014	1,9
1961	4,2	1979	2,7	1997	2,5	2015	1,9
1962	4,2	1980	2,7	1998	2,4	2016	1,7
1963	3,4	1981	2,7	1999	2,5	2017	1,8
1964	3,4	1982	2,6	2000	2,5	2018	1,6
1965	3,8	1983	2,8	2001	2,5	2019	1,8
1966	3,4	1984	2,4	2002	2,7	2020	1,8
1967	3,5	1985	2,8	2003	2,4		
1968	3,3	1986	3,0	2004	2,2		

Далее расчет выполняем в следующем порядке.

Вычисляем параметры рядов за период совместных наблюдений *n*:

$$ar{V}_{a,n}=rac{63}{26}=$$
 2,4 m/c; $ar{V}_n=rac{60}{26}=$ 2,3 m/c; $\sigma_{ar{V}_{a,n}}=\sqrt{0.64/25}=$ 0,16; $\sigma_{ar{V}_n}=\sqrt{0.3/25}=$ 0,11.

Коэффициент корреляции между значениями среднегодовой скорости ветра в обоих рядах вычисляем по формуле

$$r = \frac{\sum_{i=1}^{n} \left(\left(V_{a,i} - \overline{V}_{a,n} \right) \cdot \left(V_{i} - \overline{V}_{n} \right) \right)}{n \cdot \sigma_{\overline{V}_{a,n}} \cdot \sigma_{\overline{V}_{n}}} = 0,93.$$

Параметры исходного ряда-аналога за период N = 33 года:

$$ar{V}_{a,n}=75,5/33=2,3 \ {
m m/c}; \ \sigma_{ar{V}_{a,n}}=\sqrt{1,32/33}=0,2 \ C_{V_{a,N}}=0,2/2,22=0,09; \ C_{S_{a,N}}=0,33.$$

Параметры приводимого ряда за период n = 26 лет:

$$\bar{V}_n = 2.3 \text{ m/c}; \sigma_{\bar{V}_n} = 0.11; C_{V_{q_N}} = 0.05; C_{S_{q_N}} = 0.52.$$

Параметры ряда-аналога за период n=26 лет: $\bar{V}_{a,n}=2$,4 м/с ; $\sigma_{\bar{V}_{a,n}}=0$,16.

Приведенная средняя многолетняя годовая скорость ветра в приводимом пункте (Лельчицы) вычисляется по формуле (1):

$$\bar{V}_N = 2.3 + 0.93 \cdot \left[\frac{0.11}{0.16} \right] \cdot (2.3 - 2.4) = 2.3 - 0.066 = 2.23 \text{ M/c}.$$

Средняя квадратическая погрешность приведенной к многолетнему периоду скорости ветра определяется по формуле (2):

$$\varepsilon_{\overline{V}_N} = \frac{100 \cdot 0,11}{2,23 \cdot \sqrt{26}} \cdot \sqrt{1 + 0.93^2 \cdot \left(\frac{26 \cdot 0,2^2}{33 \cdot 0,16^2} - 1\right)} = 1,06.$$

Приведенное значение коэффициента вариации C_{vN} для приводимого ряда вычисляем по формуле (3):

$$C_{V,N} = \frac{0.11}{2.23 \cdot \sqrt{1 - 0.93^2 \cdot \left[1 - \frac{0.16^2}{0.2^2}\right]}} = 0.06.$$

Соотношение между коэффициентами C_V и C_S для среднегодовой скорости ветра в приводимом пункте принимаем по аналогу: $C_S = 2C_V$.

Искомые параметры приведенного ряда: $\bar{V}_N=2,\!23$ м/с; $C_{V_{a,N}}=0,\!06$; $C_S=2C_V$.

Данный прием позволяет восстановить пропуски в рядах наблюдений, а также привести ряды к единому расчетному периоду для получения сопоставимых результатов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Волчек, А. А. Гидрологические расчеты : учеб. пособие / А. А. Волчек. – М. : КНОРУС, 2021. – 418 с.

УДК 556.16.06

А. А. ВОЛЧЕК, О. П. МЕШИК, С. И. ПАРФОМУК, С. В. СИДАК, М. В. БОРУШКО, Ю. П. ГОРОДНЮК, А. В. ЕВКОВИЧ

Беларусь, Брест, БрГТУ E-mail: volchak@tut.by

ПОДХОДЫ К ПРОГНОЗИРОВАНИЮ РЕЧНОГО СТОКА В СОВРЕМЕННЫХ УСЛОВИЯХ

За последние несколько десятилетий разработано большое количество методов прогнозирования речного стока. В основу большинства из них положены модели физического анализа и модели управления данными.

Физические модели основаны на физическом гидрологическом динамическом процессе, объединяющем пространственно-временное распределение осадков, метеорологические условия и свойства подстилающей поверхности. Сложность процессов формирования стока и взаимодействия речного стока с различными факторами, такими как климат, географическая среда и антропогенное воздействие, приводит к трудности построения гидрологических моделей с высокой точностью. Помимо сложности моделирования гидрологического процесса, требование большого объема данных также ограничивает применение физических моделей.

Модели управления данными направлены на изучение характеристик самих данных, а также взаимосвязи между входами и выходами моделей (модели регрессии, анализ временных рядов, искусственные нейронные сети, нечеткие алгоритмы и др.).