СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Медведская, Е. И. Цифровизация образования: о рисках деинтеллектуализации поколения Z / Е. И. Медведская // Адукацыя і выхаванне. 2020. № 7. С. 55–63.
- 2. Сендер, А. Н. История и методология начального курса математики / А. Н. Сендер. Брест : БрГУ, 2003. 155 с.

УДК 512.542

М. М. СОРОКИНА

Россия, Брянск, БГУ имени И. Г. Петровского

О ГРУППАХ С ОБОБЩЕННО СУБНОРМАЛЬНЫМИ ПОДГРУППАМИ

Рассматриваются только конечные группы. Пусть \mathfrak{F} – класс групп. Минимальной не \mathfrak{F} -группой называется группа, не принадлежащая классу \mathfrak{F} , все собственные подгруппы которой принадлежат \mathfrak{F} [1]. В работе [2] для насыщенной наследственной формации \mathfrak{F} установлены условия, при которых разрешимая группа с единичной подгруппой Фраттини является минимальной не \mathfrak{F} -группой. В теореме 1 получено обобщение данного результата для случая ω -насыщенной формации \mathfrak{F} , где ω – непустое множество простых чисел.

Пусть \mathfrak{F} — непустая формация, G — группа, $G^{\mathfrak{F}}$ — \mathfrak{F} -корадикал группы G, т. е. наименьшая нормальная подгруппа группы G, факторгруппа по которой принадлежит \mathfrak{F} ; $O_{\omega}(G)$ — наибольшая нормальная ω -подгруппа группы G. Максимальная подгруппа H группы G называется \mathfrak{F}^{ω} -нормальной (\mathfrak{F}^{ω} -абнормальной) в G, если $G^{\mathfrak{F}} \subseteq M \cap O_{\omega}(G)$ (соответственно, $G^{\mathfrak{F}} \not\subseteq M \cap O_{\omega}(G)$). Подгруппа H группы G называется \mathfrak{F}^{ω} -субнормальной в G, если либо H = G и $G^{\mathfrak{F}}$ — ω -группа, либо существует максимальная (G - H)-цепь вида

$$G = H_0 \supset H_1 \supset \dots \supset H_k = H$$

такая, что H_i – \mathfrak{F}^{ω} -нормальная подгруппа в H_{i-1} , $i=\overline{1,k}$ [3]. Очевидно, что \mathfrak{F}^{ω} -субнормальная подгруппа группы G является \mathfrak{F} -субнормальной в G (например, [1, с. 90]). В случае, когда ω совпадает с множеством

 \mathbb{P} всех простых чисел, понятие \mathfrak{F}^{ω} -субнормальной подгруппы совпадает с понятием \mathfrak{F} -субнормальной подгруппы.

Группа G называется ω -примитивной, если в G существует максимальная подгруппа M такая, что $Core_G(M) \cap O_{\omega}(G) = 1$, при этом подгруппа M называется ω -примитиватором группы G [4]. Формация $\mathfrak F$ называется ω -насыщенной, если ей принадлежит всякая группа G, удовлетворяющая условию $G/L \in \mathfrak F$, где $L \subseteq \Phi(G) \cap O_{\omega}(G)$ [5].

Теорема 1. Пусть \mathfrak{F} – наследственная ω -насыщенная формация u G – разрешимая группа, $O_{\omega}(G) \neq 1$, $\Phi(G) \cap O_{\omega}(G) = 1$. Группа G является минимальной не \mathfrak{F} -группой в том u только в том случае, когда G – ω -примитивная группа с \mathfrak{F}^{ω} -абнормальным ω -примитиватором M u любая собственная подгруппа из M является \mathfrak{F}^{ω} -субнормальной в G.

В случае, когда $\omega = \mathbb{P}$, из теоремы 1 вытекает теорема 2.2 из [2].

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М. : Наука, 1978. 272 с.
- 2. Семенчук, В. Н. О конечных группах с обобщенно субнормальными подгруппами / В. Н. Семенчук, М. В. Селькин, В. М. Селькин // Проблемы физики, математики и техники. − 2017. − № 2 (31). − С. 66–68.

УДК 512.542

И. Л. СОХОР

Беларусь, Брест, БрГУ имени А. С. Пушкина

КОНЕЧНЫЕ ГРУППЫ С МОДУЛЯРНЫМИ СР-ПОДГРУППАМИ

Рассматриваются только конечные группы.

Одним их обобщений нормальности является модулярность. Напомним, что подгруппа H группы G называется модулярной в G подгруппой [1], если H является модулярным элементом решетки подгрупп группы G, т. е.

- 1) $\langle X, H \rangle \cap Y = \langle X, H \cap Y \rangle$ для всех $X, Y \leq G$ таких, что $X \leq Y;$
- 2) $\langle H, X \rangle \cap Y = \langle H, X \cap Y \rangle$ для всех $X, Y \leq G$ таких, что $H \leq Y$.