УДК 378.14

А. Р. АЛХУТОВА, Н. Н. СЕНДЕР

Беларусь, Брест, БрГУ имени А. С. Пушкина

ПРАКТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Аналитическая геометрия является важной областью математики, которая помогает учащимся понять геометрические объекты и их свойства через алгебраические методы. В данной статье рассмотрим ключевые аспекты изучения аналитической геометрии, включая систему задач, межпредметные связи и методические рекомендации по преподаванию.

Система задач и упражнений

Изучение аналитической геометрии предполагает использование разнообразных типов задач, которые помогают учащимся развивать навыки работы с геометрическими объектами на координатной плоскости. Выделим основные типы задач.

- 1. Построение графиков функций:
- линейные функции;
- квадратичные функции;
- показательные функции;
- тригонометрические функции.
- 2. Нахождение уравнений прямых и плоскостей:
- прямая по двум точкам;
- прямая по угловому коэффициенту и точке;
- плоскость по трем точкам;
- плоскость по нормальному вектору и точке.
- 3. Нахождение расстояний и углов:
- расстояние между двумя точками;
- угол наклона прямой к оси абсцисс;
- угол между двумя прямыми;
- угол между прямой и плоскостью.
- 4. Пересечение графиков:
- точки пересечения двух графиков функций;
- определение количества точек пересечения;
- решение систем уравнений для нахождения точек пересечения.

- 5. Построение геометрических фигур:
- треугольник по трем сторонам;
- окружность по радиусу и центру;
- параллелограмм по сторонам и углу.

Каждый тип задач направлен на развитие конкретных навыков учащихся и углубление их понимания материала. Важно разнообразить задачи, чтобы обеспечить полноценное усвоение и успешное применение знаний.

Уровни сложности задач

Уровни сложности задач варьируются в зависимости от стадии обучения.

- Начальная школа (5–6 классы): задачи на построение графиков линейных функций и нахождение расстояния между двумя точками.
- Средняя школа (7–8 классы): задачи на построение графиков квадратичных и показательных функций, нахождение уравнений прямых и плоскостей.
- Старшая школа (10–11 классы): задачи на построение графиков тригонометрических функций и нахождение уравнений кривых второго порядка.

Постепенное усложнение задач способствует совершенствованию навыков и подготовке к решению более сложных математических задач.

Межпредметные связи

Аналитическая геометрия тесно связана с другими предметами, такими как алгебра и физика. Например, использование алгебраических методов позволяет решать геометрические задачи, а в физике аналитическая геометрия помогает моделировать движение тел и анализировать электромагнитные поля.

В заключение следует сказать, что аналитическая геометрия играет ключевую роль в математическом образовании. Правильное применение методик преподавания и разнообразие задач способствуют глубокому пониманию материала и развитию аналитического мышления у учащихся.

Методические рекомендации по преподаванию

При преподавании аналитической геометрии важно тщательно планировать уроки. Рекомендуется:

1) определение целей и задач: четко сформулированные цели помогают учащимся понять, что они должны усвоить;

- 2) структурирование урока: разделение на вводную часть, основную часть и заключение обеспечивает логичность и последовательность;
- 3) использование интерактивных методов обучения: групповые задания и обсуждения повышают активность учащихся;
- 4) визуальные средства: диаграммы, графики и анимации помогают лучше усвоить материал;
- 5) проверка понимания: краткие тесты и самопроверка позволяют оценить уровень усвоения материала.

УДК 512.624, 519.682

А. М. АНТОНЮК, А. А. ТРОФИМУК

Беларусь, Брест, БрГУ имени А. С. Пушкина

ПОЛИГРАММНЫЙ ШИФР ХИЛЛА

Шифр Хилла представляет собой полиграммный метод шифрования, основанный на применении линейной алгебры над конечными полями. Разработанный Лестером Хиллом в 1929 году, данный алгоритм относится к классу блочных шифров и демонстрирует устойчивость к частотному криптоанализу при корректном выборе параметров. В работе рассматриваются математические основы шифра, процедуры шифрования и дешифрования, а также осуществлена его реализация.

Описание шифра Хилла

В шифре Хилла [1] текст предварительно преобразуют в цифровую форму и разбивают на последовательности (блоки) по n последовательных цифр. Такие последовательности называются n-граммами. Выбирают обратимую по модулю m ($n \times n$)-матрицу $A = (a_{ij})$, где m – число букв в алфавите. Выбирают случайный n-вектор $\mathbf{f} = (f_1, \ldots, f_n)$, после чего n-грамма открытого текста $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ заменяется n-граммой шифрованного текста $\mathbf{y} = (y_1, y_2, \ldots, y_n)$ по формуле:

$$\mathbf{y} = \mathbf{x}A + \mathbf{f} \mod m. \tag{1}$$

Расшифрование проводится по правилу:

$$\mathbf{x} = (\mathbf{y} - \mathbf{f})A^{-1} \mod m. \tag{2}$$