Gruenberg – Kegel graph / M. Chen, N. V. Maslova, M. R. Zinov'eva // Cornell University Library. – 15 p. – DOI: 10.48550/arXiv.2504.14703.

- 3. Finite groups isospectral to simple groups / M. A. Grechkoseeva, V. D. Mazurov, W. Shi [et al.] // Communications in Mathematics and Statistics. 2023. Vol. 11. P. 169–194.
- 4. Lee, M. Recognisability of the sporadic groups by the isomorphism types of their prime graphs / M. Lee, T. Popiel // Cornell University Library. 23 p. DOI: 10.48550/arXiv.2310.10113.
- 5. Maslova, N. V. On arithmetical properties and arithmetical characterizations of finite groups / N. V. Maslova // Cornell University Library. 15 p. DOI: 10.48550/arXiv.2401.04633.
- 6. Maslova, N. V. On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type / N. V. Maslova, V. V. Panshin, A. M. Staroletov // European Journal of Mathematics. 2023. Vol. 9, No 3. 17 p. DOI: 10.1007/s40879-023-00672-7.

УДК 517.53

Н. М. МАХИНА

Россия, Брянск, БГУ имени И. Г. Петровского

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ГРАНИЦЫ ОБЛАСТИ НА КОМПЛЕКСНОЙ ПЛОСКОСТИ

Конформные отображения, переводящие заданную область $D \subset \mathbb{C}$ в единичный круг $S = \{w \in \mathbb{C} : |w| < 1 \}$, играют ключевую роль в комплексном анализе, математической физике и прикладных задачах.

Хорошо известно что, если D – односвязная область, то существует единственная конформная функция $\varphi: D \to S$, нормированная условиями: $f(a) = 0, f'(a) > 0, a \in D$, реализующая конформный изоморфизм между D и S.

При этом ставятся следующие вопросы: «Как оценить $|\varphi(z)|$ и $|\varphi'(z)|$ в зависимости от геометрии D?», «Какие явные формулы или приближения существуют для конкретных областей?», «Где применяются такие оценки?».

Теорема Кёбе об искажении — один из классических результатов, дающих ответ на первый вопрос в терминах расстояния до границы односвязной области D (см. [1]):

$$\frac{1}{4} \frac{d(\varphi(z), \partial D)}{1 - |z|} \le |\varphi'(z)| \le 4 \frac{d(\varphi(z), \partial D)}{1 - |z|}.$$

Конформное отображение φ , переводящее область D в единичный круг S, сильно зависит от гладкости и геометрических свойств границы ∂D . Различные классы кривых (гладкие, кусочно-гладкие, жордановы, фрактальные) приводят к разным оценкам φ и её производных.

В случае гладкой границы ∂D (класса C^k , аналитической) конформное отображение φ продолжается аналитически через границу, при этом если $\partial D \in C^k$, $k \geq 2$, то справедливы оценки вида

$$|\varphi'(z)| \le c_1 d(z, \partial D)^{-1/2}, z \to \partial D, c_1 = const > 0.$$

В случае границы ∂D из класса Ляпунова $C^{1,\alpha}$ φ' имеет степенную особенность:

$$|\varphi'(z)| \sim d(z, \partial D)^{\alpha - 1}.$$

В случае кусочно-гладкой границы ∂D (с внутренними углами $\pi \alpha_j,$ $0<\alpha_j<2)$ вблизи угла z_j отображение ведёт себя как

$$\varphi(z) \sim (z - z_i)^{1/\alpha_j}$$
.

В частности, для многоугольника φ выражается через интеграл:

$$\varphi(z) = C \int \prod_{j=1}^{n} (z - z_j)^{\alpha_j - 1} dz.$$

Производную φ' в областях с кусочно-гладкой границей можно оценить следующим образом:

$$|\varphi'(z)| \sim d(z, \partial D)^{\frac{1}{\alpha_j} - 1}.$$

Области с асимптотически конформными границами ∂D представляют собой класс областей, промежуточных между областями с гладкими и произвольными жордановыми границами:

$$\sup_{\substack{z_1, z_2 \in \partial D \\ |z_1 - z_2| \le \delta}} \sup_{z \in \Gamma} \left(\frac{|z_1 - z| + |z_2 - z|}{|z_2 - z_1|} - 1 \right) \to 0, \delta \to 0,$$

где Γ – кратчайшая дуга на границе ∂D , соединяющая точки z_1 и z_2 [2]. В данных областях оценки конформно отображающей функции принимают вид:

$$(1-|z|)\left|\frac{\varphi''(z)}{\varphi'(z)}\right|\to 0, |z|\to 1-0.$$

В случае областей с границами класса Лаврентьева – класса негладких жордановых кривых, для которых конформное отображение сохраняет ряд полезных аналитических свойств, несмотря на отсутствие гладкости: $\exists C > 0 : \forall z_1, z_2 \in \partial D$:

$$\operatorname{diam}(\gamma(z_1, z_2)) \le C|z_1 - z_2|,$$

где $\gamma(z_1, z_2)$ — меньшая из двух дуг, соединяющих z_1, z_2 на ∂D , — можно говорить об интегральных оценках производной конформно отображающей функции.

Используя результаты работ [3] и [4], получаем:

Теорема 1. Пусть D – область c границей ∂D класса Лаврентьева, $\varphi:D\to S,\ \varphi(0)=a,\ a\in D,\ \zeta,z\in S.$ Тогда

$$\int_{S} \frac{|\varphi'(z)|^{\beta+2} (1-|z|)^{\beta}}{\left|1-\overline{\zeta}z\right|^{\eta+2}} dm_{2}(z) \leq \frac{c_{2} |\varphi'(\zeta)|^{\beta+2} (1-|\zeta|)^{\beta}}{(1-|\zeta|)^{\eta}},$$

 $npu \ \beta > -1, \eta > \beta + 1, \ c_2 = const > 0.$

Теорема 2. Пусть D – область c границей ∂D класса Лаврентьева, $\varphi: D \to S, \, \varphi(0) = a, \, a \in D, \, \zeta, z \in S.$ Тогда при 1 справедливо неравенство:

$$\int_{S} \frac{|\varphi'(z)|^{\beta+2} (1-|z|)^{\beta} \chi_{\gamma}^{p}(z)}{\left|1-\overline{\zeta}z\right|^{\eta+2} \left|1-\overline{w}z\right|^{\sigma}} dm_{2}(z) \leq \frac{c_{3} |\varphi'(\zeta)|^{\beta+2} (1-|\zeta|)^{\beta} \chi_{\gamma}(\zeta) \chi_{\gamma}^{\frac{p}{q}}(w)}{(1-|\zeta|)^{\eta+2-\frac{2}{p}} (1-|\zeta|)^{\sigma-\frac{2}{q}}},$$

где
$$\chi_{\gamma}(\zeta) = (1-|\zeta|)^{-\frac{\gamma}{pq}}; \frac{1}{p} + \frac{1}{q} = 1, \beta > -1, 0 < \frac{\gamma}{q} < \beta p + 1, \eta \ge \beta - 2 + \frac{3}{p} - \frac{\gamma}{pq};$$
 $\sigma > 2 - \frac{\gamma}{q^2}, c_3 = const > 0.$

Подобные оценки производной конформно отображающей функции применяются при решении различного рода задач в комплексном и гармоническом анализе: теории операторов, теории приближении, описании функционалов и построении базисов в различных пространствах функций.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Голузин, Г. М. Геометрическая теория функций комплексного переменного / Г. М. Голузин. М. : Наука, 1966.-628 с.
- 2. Альфорс, Л. Лекции по квазиконформным отображениям / Л. Альфорс. М. : Мир, 1969. 133 с.
- 3. Махина, Н. М. Некоторые оценки конформно отображающей функции в областях с кусочно-гладкой и асимптотически конформной границей / Н. М. Махина // Вестник Омского университета. 2018. Т. 23, № 3. С. 47–51.
- 4. Махина, Н. М. Некоторые свойства классов ВМОА и интегральные оценки конформно отображающей функции в областях с границей типа Лаврентьева / Н. М. Махина // Научные ведомости Белгородского государственного университета. Серия: Математика. Физика. − 2019. − Т. 51, № 4. − С. 487–495.

УДК 512.542

В. И. МУРАШКО

Беларусь, Гомель, ГГУ имени Ф. Скорины

ПЕРСПЕКТИВЫ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕОРИИ КЛАССОВ КОНЕЧНЫХ ГРУПП

Все рассматриваемые группы конечны. Теория групп находит применения как внутри самой математики (геометрия, топология, теория чисел, дифференциальные уравнения и др.), так и за ее пределами в информатике, химии, физике, финансах и эпидемиологии [1].