- А. В. Демидчик // Менделеевские чтения 2022: сб. материалов Респ. науч.-практ. конф. по химии и хим. образованию с междунар. участием, Брест, 25 февр. 2022 г. / Брест. гос. ун-т им. А. С. Пушкина; под общ. ред. Е. Г. Артемук. Брест: БрГУ, 2022. С. 30—32.
- 5. Демидчик, А. В. Температурная зависимость удельного сопротивления фольг сплава $Bi_{0,89}Sb_{0,11}$, легированного In и Ga / А. В. Демидчик // Математическое моделирование и новые образовательные технологии в математике : сб. материалов Респ. науч.-практ. конф., Брест, 28–29 апр. 2022 г. / Брест. гос. ун-т им. А. С. Пушкина ; под общ. ред. А. И. Басика. Брест : БрГУ, 2022. С. 190–192.
- 6. Демидчик, А. В. Влияние легирования сплава $\mathrm{Bi}_{0,89}\mathrm{Sb}_{0,11}$ индием и германием на магнетосопротивление и дифференциальную термо-эдс / А. В. Демидчик // Менделеевские чтения 2023 : электрон. сб. материалов Междунар. науч.-практ. конф. по химии и хим. образованию, Брест, 23 февр. 2023 г. / Брест. гос. ун-т им. А. С. Пушкина ; редкол.: Э. А. Тур, Е. Г. Артемук (отв. ред.), Н. С. Ступень. Брест : БрГУ, 2023. С. 67–70. URL: http://rep.brsu.by/handle/ 123456789/8679 (дата обращения: 13.03.2025).
- 7. Демидчик, А. В. Влияние легирования сплава $\mathrm{Bi}_{0,89}\mathrm{Sb}_{0,11}$ галлием и индием на коэффициент Холла / А. В. Демидчик // Математическое моделирование и новые образовательные технологии в математике: сб. материалов Междунар. науч.-практ. конф., Брест, 25–27 апр. 2024 г. / Брест. гос. ун-т им. А. С. Пушкина ; под общ. ред. А. И. Басика. Брест : БрГУ, 2024. С. 96–97.

УДК 539.171.016

П. Б. КАЦ, А. М. КУЗЬМИЧ

Беларусь, Брест, БрГУ имени А. С. Пушкина

СРЕДНЯЯ ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ ДЛЯ БОРНОВСКИХ ПРИБЛИЖЕНИЙ МОТТОВСКОГО СЕЧЕНИЯ РАССЕЯНИЯ ДЛЯ ПОЗИТРОНОВ ДЛЯ ЭЛЕМЕНТОВ ОТ КАЛИЯ ДО КСЕНОНА

В работе [1] были вычислены средние по углам и энергиям относительные погрешности $\langle ER \rangle$ трех борновских приближений моттовско-

го сечения рассеяния позитронов для первых 18 элементов периодической системы химических элементов. Как и для рассеяния электронов [2] погрешности уменьшались с ростом номера борновского приближения от первого до третьего.

$$ER(E_i) = \sqrt{\frac{\sum_{k=1}^{36} \left[R(E_i, \theta_k) - R^{EXACT}(E_i, \theta_k) \right]^2}{\sum_{k=1}^{36} \left[R^{EXACT}(E_i, \theta_k) \right]^2}},$$
 (1)

$$\langle ER \rangle = \frac{1}{15} \sum_{i=1}^{15} ER(E_i). \tag{2}$$

Рассматривались углы рассеяния от 5 до 180 градусов и энергии позитронов от 5 кэВ до 10 МэВ.

 R^{EXACT} — нормированное моттовское сечение рассеяния, вычисленное по точным формулам Мотта [3]. R — соответствующее сечение в борновском приближении [3–5].

Погрешности борновских приближений для позитронов (таблица) оказываются меньше, чем для электронов. Например, для Z=54 погрешности второго и третьего борновских приближений составляют 22~% и 10,1~% соответственно. Средняя погрешность первого борновского приближения для электронов уже для Z=29 достигает 16~%.

Таблица – Среднее арифметическое значение относительной ошибки

Z, %	19	20	21	22	23	24
$\langle ER \rangle_B$	6.25	6.50	6.75	7.00	7.23	7.46
$\langle ER \rangle_{MF}$	2.20	2.42	2.65	2.88	3.13	3.38
$\langle ER \rangle_{JWM}$	0.551	0.637	0.730	0.832	0.942	1.06
Z, %	25	26	27	28	29	30
$\langle ER \rangle_B$	7.69	7.91	8.12	8.33	8.53	8.72
$\langle ER \rangle_{MF}$	3.64	3.90	4.18	4.46	4.74	5.04
$\langle ER \rangle_{JWM}$	1.19	1.33	1.47	1.63	1.79	1.97
Z, %	31	32	33	34	35	36
$\langle ER \rangle_B$	8.91	9.10	9.28	9.45	9.62	9.79
$\langle ER \rangle_{MF}$	5.34	5.65	5.96	6.28	6.61	6.94
$\langle ER \rangle_{JWM}$	2.15	2.34	2.55	2.77	3.00	3.24

П	_
Продолжение	таблицы
продолистис	таолицы

Z, %	37	38	39	40	41	42
$\langle ER \rangle_B$	9.95	10.10	10.25	10.40	10.54	10.67
$\langle ER \rangle_{MF}$	7.27	7.61	7.96	8.31	8.67	9.03
$\langle ER \rangle_{JWM}$	3.48	3.74	4.02	4.30	4.59	4.90
Z, %	43	44	45	46	47	48
$\langle ER \rangle_B$	10.81	10.93	11.06	11.18	11.29	11.41
$\langle ER \rangle_{MF}$	9.40	9.77	10.14	10.52	10.91	11.29
$\langle ER \rangle_{JWM}$	5.22	5.55	5.89	6.24	6.61	6.99
Z, %	49	50	51	52	53	54
$\langle ER \rangle_B$	11.51	11.62	11.72	11.82	11.91	12.00
$\langle ER \rangle_{MF}$	11.68	12.08	12.48	12.88	13.28	13.69
$\langle ER \rangle_{JWM}$	7.38	7.78	8.20	8.63	9.07	9.52

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Калишук, Д. И. Разные варианты расчета средней погрешности борновских приближений моттовского сечение рассеяния для позитронов для элементов от водорода до аргона / Д. И. Калишук // Физика и астрономия : научный и методический аспекты : сб. материалов регион. науч.-практ. конф., Брест, 22 мар. 2023 г. / Брест. гос. унтим. А. С. Пушкина ; под общ. ред. А. В. Демидчика. Брест : БрГУ, 2023. С. 19–21.
- 2. Архутик, А. В. О точности борновских приближений моттовского сечения рассеяния / А. В. Архутик, П. Б. Кац // Веснік Брэсцкага ўніверсітэта. Серыя 4, Фізіка. Матэматыка. 2022. № 2. С. 5—28.
- 3. Mott, N. F. The Polarization of Electrons by Double Scattering / N. F. Mott // Proceedings of the Royal Society A. 1932. Vol. 135. P. 429–458.
- 4. McKinley, W. A. The Coulomb Scattering of Relativistic Electrons by Nuclei /A. William, Jr. McKinley, H. Feshbach // Physical Review. − 1948. − Vol. 74, № 12. − P. 1759–1763.
- 5. Johnson, W. R. Coulomb Scattering of Polarized Electrons / W. R. Johnson, T. A. Weber, C. J. Mullin // Physical Review. 1961. Vol. 121, № 4. P. 933–939.