По характеру задачи видно, что сначала машины сближаются, а затем удалятся друг от друга. Таким образом, в силу непрерывности s(t) будет наблюдаться лишь одно экстремальное значение, в нашем случае минимальное. Для определения времени t_{min} соответствующего минимуму функции s(t) (в нашем случае оно будет и наименьшим) возьмем первую производную по времени и приравняем ее к нулю:

$$\frac{ds}{dt} = -\frac{(s_1 - v_1 t)v_1 + (s_2 - v_2 t)v_2}{\sqrt{(s_1 - v_1 t)^2 + (s_2 - v_2 t)^2}}.$$

Отношение равно нулю только тогда, когда равен нулю числитель, т. е.:

$$(s_1 - v_1 t_{min})v_1 + (s_2 - v_2 t_{min})v_2 = 0,$$

отсюда

$$t_{min} = \frac{s_1 v_1 + s_2 v_2}{v_1^2 + v_2^2}. (1)$$

Определим единицу измерения расчетной формулы, причем нет надобности переводить единицы измерения в систему СИ, а достаточно их выразить в одинаковых единицах: $[t] = \left[\frac{\kappa M \cdot \kappa M/4}{(\kappa M/4)^2}\right] = 4$.

Подставив числовые значения в формулу (1), получим: $t_{min} = 0, 8$ ч.

УДК 537.311.33+620.17:669.76

А. В. ДЕМИДЧИК

Беларусь, Брест, БрГУ имени А. С. Пушкина

РАСЧЕТ КОНЦЕНТРАЦИИ И ПОДВИЖНОСТИ НОСИТЕЛЕЙ ЗАРЯДА ДЛЯ ФОЛЬГ СПЛАВА ${\bf Bi}_{0,89}{\bf Sb}_{0,11},$ ЛЕГИРОВАННОГО ИНДИЕМ

Известно, что в сплаве висмут – сурьма концентрации электронов и дырок совпадают, а подвижность электронов μ превышает подвижность дырок ν [1; 2]. Для определения указанных параметров носителей

заряда использовалась двухзонная изотропная модель, согласно которой удельное сопротивление, магнетосопротивление и коэффициент Холла могут быть выражены следующим образом:

$$\rho = \frac{1}{ne(\mu + \nu)}, \quad \beta = B^2 \mu \nu,$$
$$R = \frac{1}{ne} \cdot \frac{\nu - \mu}{\nu + \mu}.$$

Из указанных формул можно выразить параметры носителей тока:

$$n = \frac{1}{\rho e} \cdot \left\{ \frac{R^2}{\rho^2} + \frac{4\beta}{B^2} \right\}^{-\frac{1}{2}},$$

$$\mu = \frac{1}{2} \left[-\frac{R}{\rho} + \left\{ \frac{R^2}{\rho^2} + \frac{4\beta}{B^2} \right\}^{\frac{1}{2}} \right],$$

$$\nu = \frac{1}{2} \left[\frac{R}{\rho} + \left\{ \frac{R^2}{\rho^2} + \frac{4\beta}{B^2} \right\}^{\frac{1}{2}} \right].$$

Расчеты носителей заряда позволят, в частности, сделать вывод о различных механизмах рассеяния при низких температурах и температурах, близких к комнатной, а также объяснить знак коэффициента Холла и дифференциальной термо-ЭДС [3].

Экспериментальные температурные зависимости удельного сопротивления, магнетосопротивления и коэффициента Холла, необходимые в последующем при проведении расчетов, представлены на рисунках 1—3. Удельное сопротивление фольг тройного сплава несколько больше значения для бинарного сплава и монотонно уменьшается во всем исследуемом температурном интервале [4; 5]. Магнетосопротивление тройных сплавов на порядок меньше, чем у бинарных сплавов, и незначительно уменьшается с увеличением температуры, в то время как для бинарных сплавов оно уменьшалось монотонно [6]. Коэффициент Холла положителен в области низких температур, выше температуры 130 К принимает отрицательные значения (для бинарных сплавов он отрицателен во всем температурном интервале 77...300 К) [7].

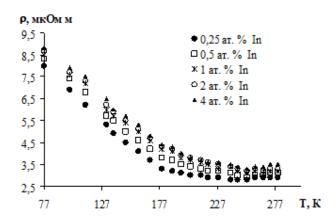


Рисунок 1 — Температурная зависимость удельного электросопротивления сплава на основе ${\rm Bi_{0,89}Sb_{0,11}},$ легированного In

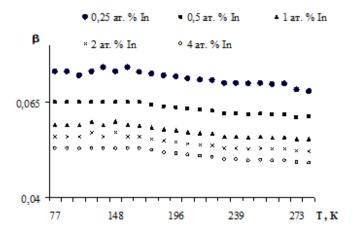


Рисунок 2 — Температурная зависимость магнетосопротивления сплава на основе ${\rm Bi_{0,89}Sb_{0,11}},$ легированного In

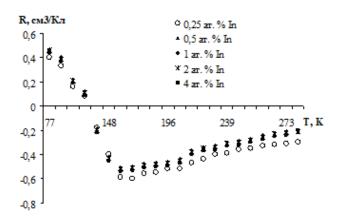


Рисунок 3 — Температурная зависимость коэффициента Холла сплава на основе ${\rm Bi}_{0,89}{\rm Sb}_{0,11},$ легированного In

Таблица – Расчетные значения концентрации и подвижности носителей заряда бинарных и тройных сплавов на основе $\mathrm{Bi}_{0.89}\mathrm{Sb}_{0.11}$

Состав, ат. % Іп	Температура, К	Концентрация, $10^{23} \ \mathrm{m}^{-3}$	Подвижность дырок, ${\rm M}^2/({\rm B\cdot c})$	Подвижность электронов, ${ m M}^2/({ m B\cdot c})$
0,00	77	1,04	2,93	6,74
	280	11,08	0,91	1,51
0,25	77	2,89	1,38	1,33
	280	8,26	1,25	1,36
0,50	77	2,95	1,30	1,25
	280	8,15	1,20	1,27
1,00	77	3,03	1,24	1,19
	280	8,30	1,15	1,21
2,00	77	3,04	1,19	1,18
	280	8,29	1,15	1,14
4,00	77	3,08	1,18	1,13
	280	8,06	1,08	1,14

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Явления переноса в висмуте и его сплавах / Д. В. Гицу, И. М. Голбан, В. Г. Канцер [и др.]. Кишинев : Штиинца, 1983. 238 с.
- 2. Левицкий, Ю. Т. Высокотемпературные исследования электрических и гальваномагнитных свойств сплавов висмут сурьма / Ю. Т. Левицкий, Г. А. Иванов // Физика металлов и металловедение. 1969. Т. 28, № 5. С. 804—812.
- 3. Демидчик, А. В. Использование двухзонной изотропной модели для расчета параметров носителей тока в быстрозатвердевшем сплаве $\mathrm{Bi}_{0,89}\mathrm{Sb}_{0,11}$ / А. В. Демидчик // Научные и методические аспекты преподавания физико-математических дисциплин в высшей школе : сб. материалов регион. науч.-метод. семинара, посвящ. 100-летию со дня рождения М. Г. Маркевича, Брест, 13–14 мая 2021 г. / Брест. гос. унтим. А. С. Пушкина ; под общ. ред. В. С. Секержицкого. Брест : БрГУ, 2021. С. 11–13.
- 4. Демидчик, А. В. Влияние легирования сплава ${\rm Bi}_{0,89}{\rm Sb}_{0,11}$ элементами III и IV группы периодической системы на удельное сопротивление /

- А. В. Демидчик // Менделеевские чтения 2022: сб. материалов Респ. науч.-практ. конф. по химии и хим. образованию с междунар. участием, Брест, 25 февр. 2022 г. / Брест. гос. ун-т им. А. С. Пушкина; под общ. ред. Е. Г. Артемук. Брест: БрГУ, 2022. С. 30—32.
- 5. Демидчик, А. В. Температурная зависимость удельного сопротивления фольг сплава $Bi_{0,89}Sb_{0,11}$, легированного In и Ga / А. В. Демидчик // Математическое моделирование и новые образовательные технологии в математике : сб. материалов Респ. науч.-практ. конф., Брест, 28–29 апр. 2022 г. / Брест. гос. ун-т им. А. С. Пушкина ; под общ. ред. А. И. Басика. Брест : БрГУ, 2022. С. 190–192.
- 6. Демидчик, А. В. Влияние легирования сплава $\mathrm{Bi}_{0,89}\mathrm{Sb}_{0,11}$ индием и германием на магнетосопротивление и дифференциальную термо-эдс / А. В. Демидчик // Менделеевские чтения 2023 : электрон. сб. материалов Междунар. науч.-практ. конф. по химии и хим. образованию, Брест, 23 февр. 2023 г. / Брест. гос. ун-т им. А. С. Пушкина ; редкол.: Э. А. Тур, Е. Г. Артемук (отв. ред.), Н. С. Ступень. Брест : БрГУ, 2023. С. 67–70. URL: http://rep.brsu.by/handle/ 123456789/8679 (дата обращения: 13.03.2025).
- 7. Демидчик, А. В. Влияние легирования сплава $\mathrm{Bi}_{0,89}\mathrm{Sb}_{0,11}$ галлием и индием на коэффициент Холла / А. В. Демидчик // Математическое моделирование и новые образовательные технологии в математике: сб. материалов Междунар. науч.-практ. конф., Брест, 25–27 апр. 2024 г. / Брест. гос. ун-т им. А. С. Пушкина ; под общ. ред. А. И. Басика. Брест : БрГУ, 2024. С. 96–97.

УДК 539.171.016

П. Б. КАЦ, А. М. КУЗЬМИЧ

Беларусь, Брест, БрГУ имени А. С. Пушкина

СРЕДНЯЯ ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ ДЛЯ БОРНОВСКИХ ПРИБЛИЖЕНИЙ МОТТОВСКОГО СЕЧЕНИЯ РАССЕЯНИЯ ДЛЯ ПОЗИТРОНОВ ДЛЯ ЭЛЕМЕНТОВ ОТ КАЛИЯ ДО КСЕНОНА

В работе [1] были вычислены средние по углам и энергиям относительные погрешности $\langle ER \rangle$ трех борновских приближений моттовско-