эпидемии при смене доминирующего штамма:

$$\begin{cases}
\frac{dY}{dt} = R_2 Y(t) \exp(-\varsigma Y(t - \gamma \tau) - \varepsilon \sqrt{(J - N(t - \tau))^2}, \\
\frac{dN}{dt} = R_1 N(t) \ln\left(\frac{\mathfrak{K}}{N(t - \tau \gamma)}\right) - \frac{\delta N^2 (t - \tau_1 \gamma)}{(J - Y(t))^2} - \varphi Y(t), \\
\delta > q, \gamma(\omega) \in [1, 2].
\end{cases} (3)$$

В системе (3) учтен эффект борьбы штаммов при эволюции на уклонение от связывания с антителами. При $Y(0) < J < \mathcal{K}\ N(t) \to 0 + \epsilon$ происходит смена характеристик осцилляционного режима. Положение экстремумов колебаний $N(t) \to N_*(t), \max N_*(t) < J, \min N_*(t)$ зависит от возмущения запаздывания.

Исследование выполнено в рамках бюджетной темы СПБ ФИЦ РАН (руководитель A.~C.~ Гейда).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Переварюха, А. Ю. Интерпретация поведения моделей динамики биоресурсов и моментальная хаотизация в новой модели / А. Ю. Переварюха // Нелинейный мир. 2012. Т. 10, № 4. С. 255–262.
- 2. Переварюха, А. Ю. Хаотические режимы в моделях теории формирования пополнения популяций /А. Ю. Переварюха // Нелинейный мир. -2009. Т. 10, № 4. -С. 925–932.

УДК 517.53

И. И. СОРОКИН

Россия, Брянск, БГУ имени И. Г. Петровского

О НЕКОТОРЫХ ПРИЛОЖЕНИЯХ ТЕОРЕМ ЕДИНСТВЕННОСТИ В ВЕСОВЫХ ПРОСТРАНСТВАХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

В комплексном и гармоническом анализе важную роль играет представление функций, принадлежащих тому или иному классу на заданном множестве, в виде простых дробей с фиксированными полюсами. В данной работе рассмотрены некоторые случаи таких представлений, доказательство которых основано в том числе на использовании теоремы единственности в соответствующем классе.

Пусть \mathbb{C} – комплексная плоскость, $D=\{z\in\mathbb{C}:|z|<1\}$ – единичный круг на комплексной плоскости, $T=\{z\in\mathbb{C}:|z|=1\}$ – единичная окружность; H(D) – множество всех аналитических функций в D.

Предположим, что E – некоторое замкнутое множество на единичной окружности T и обозначим $e_{\zeta,k}\left(z\right)$ множество всех простых дробей вида

$$e_{\zeta,k}(z) = \frac{1}{(1-\zeta z)^k}, \ z \in D, \ k \in \mathbb{Z}_+, \ \zeta \in E.$$

Положим также

$$M\left(r,f\right) = \max_{|z| \leq r} \left|f\left(z\right)\right| \ = \max_{|z| = r} \left|f\left(z\right)\right| \ , \quad 0 \leq r < 1.$$

Символом X_{α} обозначим пространство всех аналитических в D функций, для которых

$$X_{\alpha} = \left\{ f \in H(D), \ M(r, f) e^{-\frac{1}{(1-r)^{\alpha}}} \underset{r \to 1-0}{\longrightarrow} 0, \alpha > 0 \right\},$$

$$\|f\|_{X_{\alpha}} = \sup_{0 \le r < 1} \left\{ M(r, f) e^{-\frac{1}{(1-r)^{\alpha}}} \right\}. \tag{1}$$

Основной результат работы – получить полное описание тех замкнутых множеств E на окружности T, для которых система функций

$$Y(E) = \{e_{\zeta,k}\}, \quad k \in \mathbb{Z}_+, \ \zeta \in E \tag{2}$$

составляет всюду плотное множество в пространстве X_{α} и соответственно в $A_{\alpha}^{p}\left(D\right)$, где

$$A_{\alpha}^{p} = \left\{ f \in H(D), \ M(r, f) e^{-\frac{1}{(1-r)^{\alpha}}} \underset{r \to 1-0}{\longrightarrow} 0 \right\} =$$

$$= \left\{ f \in H(D) : \|f\|_{A_{\alpha}^{p}(D)} = \right.$$

$$\left(\int_{D} |f(z)|^{p} \exp\left(-\frac{1}{(1-|z|)^{\alpha}}\right) \right)^{\frac{1}{p}} dm_{2}(z) < +\infty \right\}.$$

Известно, что при $1 \leq p < +\infty$ $A^p_{\alpha}(D)$ является нормированным пространством, а при 0 – метрическим пространством относительно соответствующей метрики. Вышеуказанные пространства введены и исследовались в работах [1], [2].

Сформулируем основные результаты работы в виде следующих двух теорем.

Теорема 1. Пусть E – замкнутое множество на единичной окружености T, $\{l_k\}_{k=1}^{+\infty}$ – дополнительные интервалы множества $E^* = \{\varphi \in [-\pi, \pi] : e^{i\varphi} \in E\}.$

Тогда, если

$$\sum_{k=1}^{+\infty} l_k^{\frac{1}{1+\alpha}} = +\infty, \tag{3}$$

mo

$$\overline{Y(E)} = X_{\alpha},$$

где замыкание берется в топологии пространства X_{α} .

В случае пространства $A^{p}_{\alpha}\left(D\right)$ справедливо следующее утверждение.

Теорема 2. Пусть 0 , <math>E – множество из теоремы 1, Y(E) определяется равенством (2). Тогда если дополнительные интервалы множества E удовлетворяют условию (3), то

$$\overline{Y(E)} = A_{\alpha}^{p}(D)$$

при всех $0 , <math>0 < \alpha < +\infty$, где замыкание Y(E) берется в топологии пространства $A^p_{\alpha}(D)$.

Доказательство теоремы 2 основано на следующих вспомогательных результатах.

Лемма 1. Пусть Φ – линейный непрерывный функционал на X_{α} ,

$$e_{\zeta}(z) = \frac{1}{1 - \zeta z}, \ z, \zeta \in D.$$

Предположим, что $g(\zeta) = \Phi(e_{\zeta})$. Тогда $g \in H(D)$, причем

$$g\left(\zeta\right) = \sum_{k=0}^{+\infty} \Phi\left(\delta_k\right) \zeta^k,$$

 $e \partial e \, \delta_k(\zeta) = \zeta^k, \, \zeta \in D.$

Лемма 2. Пусть Φ – линейный непрерывный функционал на X_{α} , e_{ζ} , g – функции, определенные в лемме 1. Тогда

$$\left|g^{(n)}\left(\zeta\right)\right| \le A^n n^{n\left(1+\frac{1}{\alpha}\right)}, \ n \in \mathbb{Z}_+,$$

 $г de \ A$ — некоторое положительное число, зависящее только от Φ .

Лемма 3. Пусть g – функция, определенная в лемме 1, E – некоторое замкнутое множество на T. Тогда если $g^{(k)}(\zeta) = 0$, $k \in \mathbb{Z}_+$, $\zeta \in E$, и при этом дополнительные интервалы $\{l_k\}_{k=1}^{+\infty}$ множества $E^* = \{\varphi \in [-\pi, \pi] : e^{i\varphi} \in E\}$ удовлетворяют условию (3), то функция g равна нулю тождественно, m. e. $g(z) \equiv 0$, $z \in D$.

Лемма 4. Пусть Φ – линейный непрерывный функционал на X_{α} , e_{ζ} , g – функции, определенные в лемме 1. Тогда для произвольной $f \in X_{\alpha}$ справедливо следующее представление

$$\Phi(f) = \lim_{\rho \to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\rho e^{i\varphi}) g(\rho e^{i\varphi}) d\varphi.$$

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Djrbashian, A. E. Topics in the theory of spaces / A. E. Djrbashian, F. A. Shamoyan // Leipzig: Teubner-Texte zur Math. 1988. Vol. 105. 200 p.
- 2. Шамоян, Ф. А. Введение в теорию весовых Lp-классов мероморфных функций / Ф. А. Шамоян. Брянск : РИО БГУ, 2009. 180 с.

УДК 517.977

О. Б. ЦЕХАН

Беларусь, Гродно, ГрГУ имени Янки Купалы

ОБ ОПЕРАТОРЕ ДЕКОМПОЗИЦИИ СИНГУЛЯРНО ВОЗМУЩЕННОЙ СИСТЕМЫ С ПОСТОЯННЫМ ЗАПАЗДЫВАНИЕМ

Пусть μ — малый параметр, $\mu \in (0, \mu^0], \mu^0 \ll 1, p \stackrel{\Delta}{=} \frac{d}{dt}$ — оператор дифференцирования, h > 0 — запаздывание, e^{-ph} — оператор запаздывания: $e^{-ph}z(t) = z(t-h), PC\left([a,b]; \mathbb{R}^k\right)(C, \overline{PC})$ — линейное пространство