В работе вычислены первые два момента построенной оценки. Доказано, что при некоторых ограничениях на взаимную спектральную плотность процесса $X^r(t)$, $t \in Z$, оценка взаимной спектральной плотности, заданная соотношением (1), является асимптотической несмещенной оценкой взаимной спектральной плотности.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Welch, P. D. The use of FFT for the estimation of power spectra: a method based on time averaging over short, modified periodograms / P. D. Welch // IEEE Transactions on Audio and Electroacoustics. -1967. - Vol. AU-15, N 2. - P. 70-73.

УДК 519.642.2

И. М. МИЩУ K^1 , Ю. М. ВУВУНИКЯ H^2

¹Беларусь, Брест, БрГУ имени А. С. Пушкина ²Беларусь, Гродно, ГрГУ имени Янки Купалы

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РЕШЕНИЯ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

Рассмотрим нахождения решения интегро-дифференциального уравнения вида:

$$u'(t) = \sin(u(t)) + \int_0^t (t - s)u^2(s) \, ds. \tag{1}$$

Компьютерное моделирование данного уравнения методом конечных разностей позволяет не только получить численное решение, но и глубже понять, как ведёт себя функция на заданном отрезке. В основе метода лежит итерационный алгоритм, представляющий собой поэтапный процесс приближения к искомому значению.

Для запуска этого алгоритма требуется задать интервал [a;b], шаг h, а также точность ε . Далее по специальной рекуррентной формуле, выведенной из исходного уравнения путем аппроксимации интеграла и производной, строится цепочка приближённых значений. Итерации продолжаются до тех пор, пока результат не достигнет заранее заданной точности, гарантируя тем самым надёжность и точность решения.

Аппроксимация производной по разностной формуле:

$$u'(t_k) = \frac{u_k - u_{k-1}}{h}. (2)$$

Аппроксимация интеграла с использованием решения методом прямоугольников:

$$\int_0^{t_k} (t_k - s)u^2(s) \, ds \approx h^2 \sum_{j=0}^k (k - j)u_j^2. \tag{3}$$

Применив аппроксимации (2) и (3) в (1) получим следующую рекуррентную формулу:

$$u_k = u_{k-1} + h\sin(u_k) + h^3 \sum_{j=0}^k (k-j)u_j^2.$$
 (4)

На рисунке представлены численные решения уравнения, полученные на интервале [0,2] с шагом $h=\{0,5;\ 0,1;\ 0,05\}$ и заданной точностью ε .

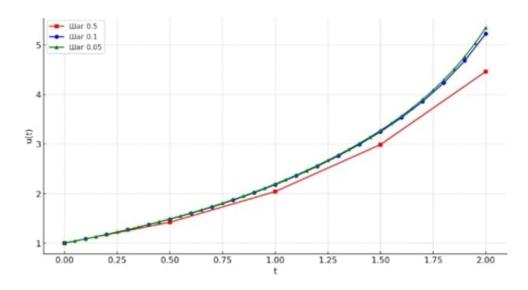


Рисунок – Численное решение интегро-дифференциального уравнения методом итераций

Как видно, с уменьшением шага точность решения увеличивается. Результаты численного эксперимента показывают, что предложенный метод обеспечивает высокую точность в нахождении решения рассматриваемого уравнения.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Кудрявцев, О. Е. Современные численные методы решения интегродифференциальных уравнений, возникающих в приложениях / О. Е. Кудрявцев. М.: Вуз. кн., 2010. 141 с.
- 2. Самсонов, А. Численные методы и программирование / А. Самсонов. М.: Наука, 2019. 640 с.

УДК 517.925

Э. В. МУСАФИРОВ

Беларусь, Гродно, ГрГУ имени Янки Купалы

О ТРЕХМЕРНЫХ КВАДРАТИЧНЫХ СИСТЕМАХ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ СО СКРЫТЫМИ КОЛЕБАНИЯМИ

Введение. Согласно [1], «аттрактор называется скрытым, если область его притяжения не соприкасается с неустойчивыми состояниями равновесия, в противном случае аттрактор называется самовозбуждающимся». В частности, у системы, не имеющей состояний равновесия или имеющей только устойчивые состояния равновесия, аттрактор является скрытым.

Вещественная автономная двумерная система имеет замкнутую траекторию только если у нее существует хотя бы одно состояние равновесия [2, с. 124]. В. И. Булгаков привел пример трехмерной системы [3], которая, в отличие от двумерных систем, не обладает указанным свойством:

$$\dot{x} = 2xz + ay,$$
 $\dot{y} = 2yz - ax, (x, y, z) \in \mathbb{R}^3$
 $\dot{z} = z^2 + bz + 1 - x^2 - y^2,$
(1)

где $a, b \in \mathbb{R}$ — параметры системы. В этой системе при -2 < b < 0 имеется предельный цикл, но отсутствуют состояния равновесия (в этом случае предельный цикл является скрытым аттрактором и система демонстрирует скрытые колебания).