УДК 519.24

Е. И. МИРСКАЯ, И. Д. БОРЕЙКО

Беларусь, Брест, БрГУ имени А. С. Пушкина

ИССЛЕДОВАНИЕ ПЕРВЫХ ДВУХ МОМЕНТОВ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ, ПОСТРОЕННОЙ С ИСПОЛЬЗОВАНИЕМ ОКНА ХЭММИНГА

Одной из задач спектрального анализа временных рядов является построение состоятельных в среднеквадратическом смысле оценок спектральной плотности и исследование их статистических свойств.

В данной работе в качестве оценки неизвестной взаимной спектральной плотности стационарного случайного процесса исследована оценка, построенная по методу Уэлча [1] с использованием окна просмотра данных Хэмминга.

Рассмотрим $X^r(t)$, $t \in Z$, r-мерный стационарный в широком смысле случайный процесс с $MX^r(t)=0,\ t\in Z$, и неизвестной взаимной спектральной плотностью $f_{ab}(\lambda),\ \lambda\in\Pi,\ a,b=\overline{1,r}$. Предположим, что число наблюдений T=S(N-M)+M, где S – число пересекающихся интервалов разбиения длины $N,\ N$ и M являются целыми числами, $0\leqslant M< N,\ (S$ не зависит от T).

В качестве оценки неизвестной взаимной спектральной плотности процесса в работе исследована статистика вида

$$\tilde{f}_{ab}^{T}(\lambda) = \frac{1}{S} \sum_{s=1}^{S} I_{ab}^{s(N-M)}(\lambda), \tag{1}$$

 $\lambda \in \Pi,\, a,b=\overline{1,r},$ где расширенная периодограмма задана выражением

$$I_{ab}^{s(N-M)}(\lambda) = d_a^{s(N-M)}(\lambda) \overline{d_b^{s(N-M)}(\lambda)},$$

а модифицированное конечное преобразование Фурье наблюдений $d_a^{s(N-M)}(\lambda)=$

$$= \frac{1}{2\sqrt{2\pi N}} \sum_{(s-1)(N-M)}^{(s-1)(N-M)+M-1} \left(1 + \cos\frac{\pi(t - (s-1)(N-M))}{T}\right) X_a(t) e^{-it\lambda}.$$

В работе вычислены первые два момента построенной оценки. Доказано, что при некоторых ограничениях на взаимную спектральную плотность процесса $X^r(t)$, $t \in Z$, оценка взаимной спектральной плотности, заданная соотношением (1), является асимптотической несмещенной оценкой взаимной спектральной плотности.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Welch, P. D. The use of FFT for the estimation of power spectra: a method based on time averaging over short, modified periodograms / P. D. Welch // IEEE Transactions on Audio and Electroacoustics. -1967. - Vol. AU-15, N 2. - P. 70-73.

УДК 519.642.2

И. М. МИЩУ K^1 , Ю. М. ВУВУНИКЯ H^2

¹Беларусь, Брест, БрГУ имени А. С. Пушкина ²Беларусь, Гродно, ГрГУ имени Янки Купалы

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РЕШЕНИЯ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

Рассмотрим нахождения решения интегро-дифференциального уравнения вида:

$$u'(t) = \sin(u(t)) + \int_0^t (t - s)u^2(s) \, ds. \tag{1}$$

Компьютерное моделирование данного уравнения методом конечных разностей позволяет не только получить численное решение, но и глубже понять, как ведёт себя функция на заданном отрезке. В основе метода лежит итерационный алгоритм, представляющий собой поэтапный процесс приближения к искомому значению.

Для запуска этого алгоритма требуется задать интервал [a;b], шаг h, а также точность ε . Далее по специальной рекуррентной формуле, выведенной из исходного уравнения путем аппроксимации интеграла и производной, строится цепочка приближённых значений. Итерации продолжаются до тех пор, пока результат не достигнет заранее заданной точности, гарантируя тем самым надёжность и точность решения.