Таким образом, с учетом вычислительной погрешности оценка погрешности неявного метода (1) запишется в виде:

$$||x - z_n|| \le ||x - x_{n,\delta}|| + ||x_{n,\delta} - z_n|| \le s^{s/2} (2n\alpha e)^{-s/2} ||z|| + 4n^{1/2}\alpha^{1/2}\delta + n\alpha\gamma, \ n \ge 1.$$

УДК 517.983.54

О. В. МАТЫСИК, С. С. ТКАЧ

Беларусь, Брест, БрГУ имени А. С. Пушкина

ЯВНЫЙ ИТЕРАЦИОННЫЙ МЕТОД РЕГУЛЯРИЗАЦИИ НЕКОРРЕКТНЫХ ЗАДАЧ В СЛУЧАЕ НЕЕДИНСТВЕННОГО РЕШЕНИЯ

В статье рассматривается некорректное уравнение первого рода

$$Ax = y \tag{1}$$

с действующим в гильбертовом пространстве H ограниченным положительным самосопряженным оператором $A:H\to H$. Для решения применим явный метод итераций

$$x_{n+1} = (E - \alpha A)^3 x_n + A^{-1} (E - (E - \alpha A)^3) y, x_0 = 0.$$
 (2)

Здесь E – единичный оператор, а оператор A^{-1} , фигурирующий в (2), не означает, что для рассматриваемой схемы (2) необходимо его знать. Нужно заметить, что после раскрытия скобок во втором слагаемом он сокращается и весь оператор в квадратных скобках является полиномом от оператора A.

Покажем, что метод (2) пригоден и тогда, когда $\lambda = 0$ – собственное значение оператора (случай неединственного решения уравнения (1)). Обозначим через $N(A) = \{x \in H \mid Ax = 0\}$ ядро оператора A, M(A) – ортогональное дополнение ядра N(A) до H. Пусть P(A)x – проекция $x \in H$ на N(A), а $\Pi(A)x$ – проекция $x \in H$ на M(A). Доказана

Теорема. Пусть $A \ge 0$, $y \in H$, $0 < \alpha < \frac{2}{\|A\|}$. Тогда для итерационного процесса (2) верны следующие утверждения:

a)
$$Ax_n \to \Pi(A)y$$
, $||Ax_n - y|| \to I(A, y) = \inf_{x \in H} ||Ax - y||$

b) последовательность x_n сходится тогда и только тогда, когда уравнение $Ax_n = \Pi(A)y$ разрешимо. В последнем случае

$$x_n \to P(A)x_0 + x^*,$$

 $rde \ x^*$ – минимальное решение уравнения (1).

Замечание. В рассматриваемом случае $x_0 = 0$, поэтому $x_n \to x^*$, m. е. процесс (2) сходится к нормальному решению, m. е. к решению с минимальной нормой.

УДК 004.942:519.218

П. А. МЕРКУШЕВИЧ, И. Ю. СВЕРБА, Л. П. МАХНИСТ, Т. И. КАРИМОВА

Беларусь, Брест, БрГТУ

ПРИМЕНЕНИЕ СТЕПЕННЫХ РЯДОВ ДЛЯ РЕШЕНИЯ ОДНОЙ ИЗ ЗАДАЧ ГИДРОЛОГИИ

Рассмотрим дифференциальное уравнение для описания колебаний речного стока, используемое в стохастической гидрологии (например, в [1] и [2]):

$$\frac{d^2\theta_1}{d\xi^2} - \xi \frac{d\theta_1}{d\xi} = -1, \frac{d\theta_1}{d\xi} \Big|_{\xi=\infty} = 0, \quad \theta_1(\xi)|_{\xi=\xi_*} = 0$$
 (1)

Уравнение (1) при решении некоторых прикладных задач, интегрировалось различными методами, например, в [3], а в работах [4], [5] исследовалась сходимость решения таких уравнений. В работах [6] и [7] для решения уравнения (1) использовалась система компьютерной алгебры.

Приведем решение этого уравнения, используя степенные ряды.

Введем обозначение $\frac{d\theta_1}{d\xi} = f_1(\xi)$. Тогда, учитывая, что $\frac{d^2\theta_1}{d\xi^2} = \frac{df_1}{d\xi}$, приходим к линейному дифференциальному уравнению первого порядка $\frac{df_1}{d\xi} - \xi f_1 = -1$, с начальным условием $f_1(\xi)|_{\xi=\infty} = 0$.