УДК 517.983.54

О. В. МАТЫСИК, И. В. КОВАЛЬЧУК

Беларусь, Брест, БрГУ имени А. С. Пушкина

ВЫБОР МОМЕНТА ОСТАНОВА ДЛЯ ТРЕХСЛОЙНОГО ЯВНОГО ИТЕРАЦИОННОГО ПРОЦЕССА В ПОЛУНОРМЕ ГИЛЬБЕРТОВА ПРОСТРАНСТВА

В действительном гильбертовом пространстве H решается линейное некорректное уравнение

$$Ax = y, (1)$$

где $A: H \to H$ — положительный, ограниченный, самосопряженный оператор $(0 \in SpA, u, c$ ледовательно, рассматриваемая задача неустойчива). Решать данную задачу будем при помощи трехслойного явного итерационного процесса

$$x_n = 2(E - \alpha A)x_{n-1} - (E - \alpha A)^2x_{n-2} + \alpha^2 Ay, x_0 = x_1 = 0,$$

который при возмущениях ($\|y-y_\delta\| \leqslant \delta$) в правой части уравнения (1) примет вид:

$$x_{n,\delta} = 2(E - \alpha A)x_{n-1,\delta} - (E - \alpha A)^2 x_{n-2,\delta} + \alpha^2 A y_{\delta}, x_{0,\delta} = x_{1,\delta} = 0.$$
 (2)

Изучим сходимость метода (2) в полунорме гильбертова пространства $\|x\|_A = \sqrt{(Ax,x)}$, где $x \in H$, в случае единственного решения уравнения (1) при возмущениях в правой части. При этом число итераций n нужно выбирать в зависимости от уровня погрешности δ .

Теорема. При условии $\alpha \in (0, \frac{5}{4\|A\|}]$ метод (2) сходится в полунорме гильбертова пространства, если число итераций п выбирать из условия $\sqrt{n-1}\delta \to 0, n \to \infty, \delta \to 0$. Для метода (2) справедлива оценка погрешности:

$$||x - x_{n,\delta}||_A \le (e+1)^{1/2} (e+4)^{1/2} e^{-3/2} [(n-1)\alpha]^{-1/2} ||x|| + 3^{1/2} (n-1)^{1/2} \alpha^{1/2} \delta, n \ge 1.$$

Для минимизации оценки погрешности метода (2) вычислим ее правую часть в точке, в которой производная от нее равна нулю; в результате получим

$$||x - x_{n,\delta}||_A^{\text{OHT}} \le 2 \cdot 3^{1/4} (e+1)^{1/4} (e+4)^{1/4} e^{-3/4} \delta^{1/2} ||x||^{1/2}$$

И

$$n_{\text{OHT}} = 1 + 3^{-1/2} (\alpha \delta)^{-1} (e+1)^{1/2} (e+4)^{1/2} e^{-3/2} ||x||.$$

Отметим тот факт, что для сходимости метода (2) в полунорме достаточно выбирать число итераций $n=n(\delta)$ так, чтобы $\sqrt{n-1}\delta\to 0$, $n\to\infty,\delta\to 0$. Однако $n_{\rm ont}=O(\delta^{-1})$, т. е. $n_{\rm ont}$ относительно δ имеет порядок δ^{-1} , и такой порядок обеспечивает сходимость (регуляризующие свойства) трехслойного явного итерационного процесса (2).

Замечание. Оптимальная оценка погрешности не зависит от α , но от α зависит n_{onm} . Поэтому для уменьшения n_{onm} , т. е. объема вычислительной работы, следует брать α возможно большим из условия $\alpha \in (0, \frac{5}{4\|A\|}]$, и чтобы n_{onm} было целым.

УДК 517.983.54

О. В. МАТЫСИК, И. В. КОСТЕНКОВ

Беларусь, Брест, БрГУ имени А. С. Пушкина

ПОЛУЧЕНИЕ АПРИОРНЫХ ОЦЕНОК ПОГРЕШНОСТИ ДЛЯ ИТЕРАЦИОННОЙ ПРОЦЕДУРЫ РЕШЕНИЯ НЕУСТОЙЧИВЫХ ЗАДАЧ

В действительном гильбертовом пространстве H решается операторное уравнение первого рода $Ax = y_{\delta}$, где A – ограниченный, линейный, самосопряженный оператор. Здесь $||y - y_{\delta}|| \leq \delta$ и $0 \in SpA$ (но нуль не является собственным значением A), поэтому рассматриваемая задача некорректна (неустойчива). Предположим, что при точной правой части y существует единственное решение x операторного уравнения. Для его отыскания применим неявную итерационную процедуру с $\alpha > 0$:

$$(E + \alpha A^2) x_{n+1,\delta} = (E - \alpha A^2) x_{n,\delta} + 2\alpha A y_{\delta}, \quad x_{0,\delta} = 0.$$
 (1)