УДК 517.9

М. Г. КОТ

Беларусь, Брест, БрГУ имени А. С. Пушкина

МАТРИЧНО-ЗНАЧНЫЕ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Пусть $F(\mu, \varepsilon)$ есть матрично-значная функция, разлагающаяся в ряд по степеням малого параметра ε и обратимая при $\varepsilon \neq 0$:

$$F(\mu, \varepsilon) = \sum_{k=k_0}^{\infty} F_k(\mu) \varepsilon^k,$$

где коэффициенты $F_k(\mu)$ – матрично-значные функции, аналитические в области $\Omega \subset \mathbb{C}$ и $F_{k_0} \neq 0$.

При исследовании систем уравнений [1] с дельтообразными коэффициентами возникает вопрос о поведении обратных матриц $[F(\mu, \varepsilon)]^{-1}$ при $\varepsilon \to 0$. В первую очередь это нахождение предела

$$\lim_{\varepsilon \to 0} [F(\mu, \varepsilon)]^{-1} := S(\mu)$$

и получение условий, когда этот предел ненулевой.

Если $\det F_{k_0}(\mu) \not\equiv 0$, то в матричном случае разложение $[F(\mu,\varepsilon)]^{-1}$ имеет аналогичный вид и начинается с $\frac{1}{\varepsilon_{k_0}}[F_{k_0}(\mu)]^{-1}$. Если $\det F_{k_0}(\mu) \equiv 0$, то задача о разложении обратной матрицы-функции становится более сложной, так как это разложение начинается с члена, содержащего $\frac{1}{\varepsilon^{\nu}}$, где ν отлично от k_0 . В связи с этим возникает задача о построении такого разложения и, в частности, нахождении главного члена в нем, т. е. вычислении показателя ν и коэффициента при $\frac{1}{\varepsilon^{\nu}}$.

Рассмотрим матрицы-функции, которые появляются при решении систем дифференциальных уравнений с дельта-образными коэффициентами. Рассматриваются аппроксимации формального дифференциального выражения семейством операторов L_{ε} , зависящих от малого параметра ε , и формальному выражению ставится в соответствие оператор L_0 — предел аппроксимирующего семейства в смысле резольвентной сходимости.

В выражение для резольвенты аппроксимирующего оператора L_{ε} входят матрицы-функции $[F(\mu,\varepsilon)]^{-1}$, где $F(\mu,\varepsilon)$ имеет специальный вид

$$F(\mu, \varepsilon) = R(\varepsilon) + \frac{1}{\varepsilon}B(\varepsilon\mu).$$

Размерность такой матрицы-функции равна числу уравнений системы; матрица-функция $R(\varepsilon)$ есть матрица, обратная к матрице $A(\varepsilon)$, составленной из коэффициентов уравнения; матрица-функция $B(\varepsilon\mu)$ определяется способом аппроксимации δ -функции; переменная μ связана со спектральным параметром λ равенством $\mu^2 = -\lambda$ и рассматриваемые функции определены при $\text{Re}\,\mu > 0$.

В приложениях к системам уравнений с дельтообразным коэффициентом условия резонанса позволяют найти те коэффициенты, при которых слагаемые, содержащие в качестве коэффициента δ -функцию, влияют на вид решения.

Отметим, что в случае одного уравнения содержательные результаты имеют место только при бесконечно малых коэффициентах вида

$$a(\varepsilon) = a_1 \varepsilon + a_2 \varepsilon^2 + \dots$$

Тогда скалярная функция $f(\mu, \varepsilon)$ имеет разложение

$$f(\mu,\varepsilon) = \frac{1}{a(\varepsilon)} + \frac{1}{\varepsilon}b(\varepsilon\mu) = \left[\frac{1}{a_1} + b_0\right]\frac{1}{\varepsilon} + \left[\frac{a_2}{a_1^2} + b_1\mu\right] + \dots$$

и ответ получается просто: условие резонанса есть равенство $a_1=-\frac{1}{b_0};$ при этом условии

$$S(\mu) = \lim_{\varepsilon \to 0} \frac{1}{f(\mu, \varepsilon)} = \frac{1}{\frac{a_2}{a_1^2} + b_1 \mu}.$$

Здесь функция $S(\mu)$ имеет особенность только в одной точке, откуда следует, что в скалярном случае оператор L_0 имеет только одно собственное значение.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Романчук, Т. А. Явление резонанса для матрично-значных функций / Т. А. Романчук // Весці НАН Беларусі. Серыя фізіка-матэматычных навук. — 2008. — N_2 2. — С. 8 — 16.