УДК 517.946

В. В. ДАЙНЯК

Беларусь, Минск, БГУ

О РАЗРЕШИМОСТИ СМЕШАННЫХ ЗАДАЧ ДЛЯ НЕКОТОРЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ЧЕТВЕРТОГО ПОРЯДКА

В данной работе рассмотрена граничная задача типа Дирихле на плоскости, для уравнений четвертого порядка определенного вида с постоянными коэффициентами в главной части. С помощью методов функционального анализа доказана теорема об энергетических неравенствах, а также с помощью операторов осреднения с переменным шагом доказана теорема о существовании и единственности обобщённого решения рассматриваемых граничных задач.

Эти дифференциальные уравнения относительно неизвестной функции u(x) переменных $x=(x_0,x_1)$ запишем в виде:

$$Lu = \frac{\partial^4 u}{\partial x_0^4} + a \frac{\partial^4 u}{\partial x_1^2 \partial x_0^2} + b \frac{\partial^4 u}{\partial x_0^4} + L_2 u = f(x), \tag{1}$$

где

$$L_2 u = a_0(x) \frac{\partial^2 u}{\partial x_0^2} + a_1(x) \frac{\partial^2 u}{\partial x_1^2} + p_0(x) \frac{\partial u}{\partial x_0} + p_1(x) \frac{\partial u}{\partial x_1} - \lambda(x) u.$$

Здесь a и b постоянные, коэффициенты полинома L_2u измеримы и ограничены.

Обозначим через Ω произвольную ограниченную область плоскости переменных x с кусочно-гладкой границей $\partial\Omega$. Пусть $n=(n_0,n_1)$ – единичный вектор нормали к поверхности $\partial\Omega$ и

$$L_0(n) = n_0^4 + an_0^2 n_1^2 + bn_1^4.$$

В области Ω рассмотрим уравнение (1) относительно u(x), которая удовлетворяет однородным граничным условиям:

$$u|_{\partial\Omega^{-}} = \frac{\partial u}{\partial n}\Big|_{\partial\Omega^{-}} = \frac{\partial^{2} u}{\partial n^{2}}\Big|_{\partial\Omega^{-}} = 0, \tag{2}$$

где $\partial\Omega^-$ – часть границы $\partial\Omega,$ в точках которой $L_0(n)<0.$

Наряду с задачей (1), (2) будем рассматривать и сопряженную задачу, т. е.

$$L^*u = \frac{\partial^4 u}{\partial x_0^4} + a \frac{\partial^4 u}{\partial x_1^2 \partial x_0^2} + b \frac{\partial^4 u}{\partial x_0^4} + L_2^* u = g(x), \tag{3}$$

$$u|_{\partial\Omega^{+}} = \frac{\partial u}{\partial n}\Big|_{\partial\Omega^{+}} = \frac{\partial^{2}u}{\partial n^{2}}\Big|_{\partial\Omega^{+}} = 0,$$
 (4)

где $\partial\Omega^+$ – часть границы $\partial\Omega$, в точках которой $L_0(n)>0, L_2^*$ – формально сопряженный к L_2 оператор.

Условие 1. Коэффициенты уравнений (1)-(4) удовлетворяют соотношениям: 1) $b>0,\ 2)\ 4b-a^2>0.$

Пусть $H_0^s(\Omega)$ ($\mathring{H}^s(\Omega)$), s=1,2,3,4 – подпространства Соболева $H^s(\Omega)$, элементы которого удовлетворяют граничным условиям (2) ((4)).

Задачу (1)-(2) будем рассматривать как решение операторного уравнения

$$\mathcal{L}u = f \tag{5}$$

с областью определения $D(\mathcal{L})=H_0^4(\Omega),$ а задачу (3)-(4) — как решение операторного уравнения

$$\mathcal{L}^* v = g \tag{6}$$

с областью определения $D(L^*) = \mathring{H}^4(\Omega)$.

Для доказательства разрешимость (5) при любых $f \in H_0^{-2}$, строим расширение L оператора $\mathcal L$ такое, что множество его значений R(L)совпадает с пространством H_0^{-2} . Аналогично для оператора $\mathcal L^*$ строим расширение L^* .

Имеет место следующая теорема.

Теорема 1. При выполнении условия 1 для любых и и v из $H_0^2(\Omega)$, при достаточно большом $\lambda(x)$ справедливы неравенства:

$$||u||_{H_0^2(\Omega)} \le C||Lu||_{H_0^{-2}}, \quad ||v||_{H_0^2(\Omega)} \le C^*||L^*v||_{H_0^{-2}},$$

где постоянные C и C^* положительны и не зависят от функций и и v.

Теорема 2. При выполнении условий 1 и достаточно большом $\lambda(x)$ для любого $f \in H_0^{-2}$ ($g \in \mathring{H}^{-2}$) существует и единственно обобщенное решение $u \in H_0^2(\Omega)$ ($v \in \mathring{H}_0^2(\Omega)$) задачи (1)-(2) ((3)-(4)).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Корзюк, В. И. Метод энергетических неравенств и операторов осреднения. Граничные задачи для дифференциальных уравнений с частными производными / В. И. Корзюк. Минск : БГУ, 2013. 368 с.
- 2. Дайняк, В. В. Задача типа Дирихле для составного уравнения третьего порядка / В. В. Дайняк, В. И. Корзюк, А. А. Протько // Вестник БГУ. Серия 1, Физика. Математика. Информатика. 2012. № 3. С. 116—121.
- 3. Дайняк, В. В. Некоторые граничные задачи для линейного дифференциального уравнения пятого порядка / В. В. Дайняк, К. В. Латушкин // Современные методы теории краевых задач. Понтрягинские чтения XXXVI: материалы междунар. конф. «Воронежская весенняя математическая школа», Воронеж, 26—30 апр. 2024 г. / Воронеж. гос. ун-т; Моск. гос. ун-т им. М. В. Ломоносова; Мат. ин-т им. В. А. Стеклова РАН. Воронеж, 2024. С. 110—112.

УДК 517.9

Д. Д. ЕЛЕЦ 1 , Т. А. ЯЦУ K^{2}

 1 Беларусь, Брест, БрГУ имени А. С. Пушкина

ПОСТРОЕНИЕ РЕШЕНИЯ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С СИНГУЛЯРНЫМ ПОТЕНЦИАЛОМ

Пусть $f \in L_2[-1;1]$, a > 0. Рассмотрим задачу нахождения решения дифференциального уравнения второго порядка с сингулярным потенциалом

$$u''(x) - a\delta(x)u(x) = f(x) \ (x \in (-1; 1))$$
 (1)

и удовлетворяющего граничным условиям

$$u(-1) = 0, \quad u(1) = 0.$$
 (2)

В формуле (1) $\delta(x)$ – δ -функция Дирака [1, с. 82].

Основной вопрос, возникающий при изучении уравнений с обобщенными коэффициентами, состоит в определении понятия решения такого уравнения. Одной из первых работ, в которой был придан строгий

²Беларусь, Брест, БрГТУ