УДК 517.977

М. Н. ГОНЧАРОВА

Беларусь, Гродно, ГрГУ имени Янки Купалы

О ВЛИЯНИИ ФАЗОВОГО ОГРАНИЧЕНИЯ НА ПОСТРОЕНИЕ МНОЖЕСТВА УПРАВЛЯЕМОСТИ ОДНОГО ОБЪЕКТА

Рассмотрим управляемый объект, поведение которого описывается системой дифференциальных уравнений второго порядка

$$\begin{cases} \dot{x}_1 = -bx_2 + v_1, \\ \dot{x}_2 = bx_1 + v_2, \end{cases}$$
 (1)

где управление $(v_1; v_2)$ является векторной кусочно-непрерывной функцией, принимающей значения из компакта V. Множество V назовем областью управления. Множество векторных кусочно-непрерывных функций, принимающих значения из компакта V обозначим через U. Множество U является множеством допустимых управлений.

Будем считать, что выполняется неравенство b>0, множество V является четырехугольником. Вершины четырехугольника V обозначим через C_i , $i=\overline{1,4}$, обходя контур четырехугольника против часовой стрелки. Координаты вершины C_i обозначим через C_{i1} , C_{i2} . Примем, что выполняются следующие неравенства:

$$C_{11} > 0, C_{12} > 0, C_{21} < 0, C_{22} > C_{12}, C_{31} < C_{21},$$
 $C_{32} < 0, C_{41} > 0, C_{42} < C_{32}, C_{41} < C_{11}.$

$$(2)$$

Замечание 1. В сделанных предположениях стороны четырехугольника V не параллельны осям координат и начало координат O принадлежит множеству V, но не является его вершиной.

Фазовое ограничение зададим множеством

$$X = \{(x_1; x_2) \in \mathbb{R}^2 \mid x_2 \le d, \ d > 0\}. \tag{3}$$

Множество всех точек множества (3), в которых объект (1) находится в момент времени t, в момент времени t_1 попадает в начало координат при помощи некоторого допустимого управления и выполнении фазового ограничения в каждый момент времени из отрезка $[t;t_1]$, назовем множеством управляемости в начало координат объекта (1) с ограничением (3).

Обозначим это множество через $Y(t) = Y(t, t_1)$. Момент времени t_1 считаем фиксированным. Рассмотрим задачу построения множества управляемости $Y(t) = Y(t, t_1)$ для произвольных моментов времени t.

Построим в плоскости переменных x_1, x_2 четырехугольник V. Проведем из начала координат четыре луча, направление которых совпадает с направлением внешних нормалей к сторонам четырехугольника V. Луч, перпендикулярный стороне, соединяющей вершины C_4 и C_1 , обозначим через l_1 . Луч, перпендикулярный стороне, соединяющей вершины C_i и $C_{i+1}, i = 1, 2, 3$, обозначим через l_{i+1} . Угол между лучами l_i и $l_{i+1}, i = 1, 2, 3$, обозначим через α_i . Угол между лучами l_1 и l_4 обозначим через α_4 . И через α обозначим $\min\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$.

В работе [1] построено множество $\bar{Y}(t,t_1,\{O\},V,R^2)$, где через $\{O\}$ обозначено множество, состоящее из одной точки — начала координат O для произвольных t, удовлетворяющих условию $t_1 - t \leq \frac{\alpha}{h}$.

Оценивание значений координат точек множества $\bar{Y}(t, t_1, \{O\}, V, R^2)$ зависит от свойств границы множества V.

Теорема 1. Пусть выполнено неравенство

$$\operatorname{ctg} b\alpha \ge \frac{C_{21} - C_{31}}{C_{22} - C_{32}},\tag{4}$$

 $u\ d \ge d_1$, где $d_1 = C_{21}\cos b\alpha + C_{22}\sin b\alpha - C_{21}$. Тогда при всех $\tau = t_1 - t \le \frac{\alpha}{b}$ фазовое ограничение (3) не оказывает влияния на решение задачи.

Теорема 2. Пусть неравенство (4) не выполняется $u \ d \ge d_2$, где $d_2 = C_{21} \cos b\alpha + C_{22} \sin b\alpha - C_{21}$. Тогда при всех $\tau \le \frac{\alpha}{b}$ фазовое ограничение (3) не оказывает влияния на решение задачи.

Легко видеть, что если величина τ достаточно мала, то множество $\bar{Y}(t,t_1,\{O\},V,R^2)$ полностью находится внутри множества (3). Однако значение длины τ интервала движения, при котором фазовое ограничение становится существенным, зависит от характеристик границы множества V.

Теорема 3. Пусть выполнено неравенство (4) и параметр d в формуле (3) удовлетворяет неравенству $d < d_1$. Тогда длина $\bar{\tau}$ интервала движения, при котором фазовое ограничение становится существенным, определяется равенством

$$\bar{\tau} = \frac{1}{b} \arccos \frac{C_{21}}{z_2} - \frac{1}{b} \arccos \frac{d + C_{21}}{z_2}, \quad z_2 = \sqrt{C_{21}^2 + C_{22}^2}.$$
 (5)

Определим величину θ равенством

$$\theta = \frac{1}{b} \arctan \frac{C_{31} - C_{21}}{C_{32} - C_{22}}$$

и величину d_3 равенством

$$d_3 = C_{21}\cos b\theta + C_{22}\sin b\theta - C_{21}.$$

Теорема 4. Пусть неравенство (4) не выполняется и параметр d в формуле (3) удовлетворяет неравенству $d_3 \leq d < d_2$. Тогда длина $\bar{\tau}$ интервала движения, при котором фазовое ограничение становится существенным, определяется равенством

$$\bar{\tau} = \frac{1}{b} \arccos \frac{C_{31}}{z_3} - \frac{1}{b} \arccos \frac{y}{z_3},$$

где

$$z_3 = \sqrt{C_{31}^2 + C_{32}^2}, \quad y = d + C_{21} - \sqrt{(C_{21} - C_{31})^2 + (C_{32} - C_{22})^2}.$$

Теорема 5. Пусть неравенство (4) не выполняется и параметр d в формуле (3) удовлетворяет неравенству $0 < d < d_3$. Тогда длина $\bar{\tau}$ интервала движения, при котором фазовое ограничение становится существенным, определяется равенством (5).

Таким образом, при выполнении условия $t_1 - t \leq \bar{\tau}$ поставленная задача решена. В этом случае множество управляемости $Y(t, t_1)$ есть множество $\bar{Y}(t, t_1, \{O\}, V, R^2)$.

Работа выполнена при финансовой поддержке задания 1.2.04.4 Государственной программы научных исследований «Конвергенция-2025».

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Гончарова, М. Н. О множестве управляемости для одной системы второго порядка с мнимыми собственными значениями / М. Н. Гончарова, Д. Ю. Прошкин, С. П. Самсонов // Ломоносовские чтения : общеуниверситет. науч. конф., Москва, 24 мар. – 4 апр. 2025 г. : тез. докл. – М. : МАКС Пресс, 2025. – С. 187–188.