СЕКЦИЯ 2

МАТЕМАТИЧЕСКИЙ АНАЛИЗ, ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ЧИСЛЕННЫЕ МЕТОДЫ

УДК 517.9

А. Б. АНТОНЕВИЧ, В. А. БОРБУТ

Беларусь, Минск, БГУ

АБСОЛЮТНАЯ ЧАСТЬ СУЩЕСТВЕННОГО СПЕКТРА ОПЕРАТОРА ВЗВЕШЕННОГО СДВИГА

Обратимое непрерывное отображение $\alpha: X \to X$ компактного метрического пространства X задает динамическую систему с дискретным временем и задает операторы, действующие в заданном пространстве F(X) функций на X по формуле

$$Bu(x) = a_0(x)u(\alpha(x)), \tag{1}$$

где a_0 — заданная функция. Такие операторы называют операторами взвешенного сдвига, или операторами композиции с весом.

Операторы рассматриваемого вида и порожденные ими функциональные уравнения исследовались в работах многих авторов, поскольку они естественнно возникают в теории динамических систем, в теории функционально-дифференциальных уравнений, теории аналитических функций, теории случайных блужданий и ряде других направлений.

В данной работе исследуется зависимость спектральных свойств операторов взвешенного сдвига от динамики отображения $\alpha: X \to X$ в случае отображений следующего вида. Непрерывное обратимое отображение $\alpha: X \to X$ компактного метрического пространства X называется отображением типа Mopca-Cмейла, если оно имеет конечное число неподвижных точек F_k ; $k=1,2,\ldots,N+1$, и для любой точки τ , не являющейся неподвижной, траектория $\alpha^n(\tau)$ при $n \to +\infty$ стремится к неподвижной точке, которую обозначим τ^+ , а при $n \to -\infty$ стремится к неподвижной точке, которую обозначим τ^- .

В пространствах Лебега $L_2(X,\mu)$ при условии согласования меры μ с отображением существует функция γ такая, что оператор $T_{\alpha}u(x) = \gamma(x)u(\alpha(x))$ является унитарным в пространстве $L_2(X,\mu)$ [1]. Поэтому

оператор (1) представляется в виде $B = aT_{\alpha}$, где $a(x) = \frac{1}{\gamma(x)}a_0(x)$ есть так называемый приведенный коэффициент.

Вид спектра такого оператора aT_{α} известен и задается через значения приведенного коэффициента [1]. При условии, что a есть непрерывная функция на X и $a(x) \neq 0$ для всех x спектром является кольцо

$$\Sigma(B) = \{\lambda : m \le |\lambda| \le M\},\$$

где $m = \min |a(F_k)|$, $M = \max |a(F_k)|$.

При спектральном значении λ оператор $B - \lambda I$ необратим, но необратимые операторы могут обладать «хорошими» свойствами. Одним из таких свойств является односторонняя обратимость оператора.

 $Cущественным \ cnekmpom \ \Sigma_{es}(B)$ будем назвать множество λ , при которых оператор $B-\lambda I$ не имеет правого обратного и не имеет левого обратного.

Односторонняя обратимость оператора $B - \lambda I$ существенно связана с динамикой отображения α , которая описывается $\mathit{гра}\phi\mathit{om}$ Смейла. Это ориентированный граф, вершинами которого являются являются неподвижные точки F_k , ориентированное ребро $F_k \to F_j$ входит в граф, если существует точка $\tau \in X$ такая, что $\tau^+ = F_j$, $\tau^- = F_k$.

Если $|\lambda| \neq |a(F_k)|$ для всех k, то при заданной функции a число λ задает $pasbuenue\ rpa \phi a$ на два подмножества

$$G^{+}(\alpha, \lambda; a) = \{F_k : |\lambda| > |a(F_k)|\};$$

$$G^{-}(\alpha, \lambda; a) = \{F_i : |\lambda| < |a(F_i)|\}.$$

$$(2)$$

Разбиение графа называется ориентированным вправо (ориентированным влево), если любая дуга, соединяющая точку $F_k \in G^-(\alpha, \lambda; a)$ с точкой $F_j \in G^+(\alpha, \lambda; a)$, имеет ориентацию $(F_k \to F_j)$ (имеет ориентацию $(F_j \to F_k)$.

Теорема 1. [2] Оператор $B - \lambda I$ обратим справа (слева) тогда и только тогда, когда $|\lambda| \neq |a(F_k)|$ для всех k и разбиение (2) графа $G(\alpha)$ ориентировано вправо (влево).

Из теоремы 1 следует, что спектр оператора B разбивается окружностями $|\lambda| = |a(F_k)|$ на N колец, часть из которых входит в существенный спектр. При этом в ряде примеров оказывается, что в существенный спектр всегда входит некоторый набор таких колец.

Пусть S есть подмножество множества неподвижных точек (вершин графа) и

$$m_S = \min\{|a(F_k)| : F_k \in S\}, \quad M_S = \max\{|a(F_k)| : F_k \in S\}.$$

Множество S будем называть *абсолютно спектральным*, если при любом коэффициенте a кольцо

$$K(a;S) = \{\lambda : m_S \le |\lambda| \le M_S\} \tag{3}$$

принадлежит существенному спектру и является максимальным в следующем смысле – существует коэффициент a_1 такой, что $a(F_k) = a_1(F_k)$, если $F_k \in S$, и при этом кольцо K(a;S) является компонентой связности существенного спектра оператора a_1T_α , т. е. нет более широкого кольца, принадлежащего существенному спектру.

Объединение колец (3), соответствующих всем абсолютно спектральным множествам, будем называть абсолютной частью существенного спектра.

Вопрос заключается в получении описания абсолютно спектральных множеств, использующего только динамику отображения. Сформулируем основной результат в этом направлении.

Последовательность вершин графа $\{F_{k_1}, F_{k_2}, \ldots\}$ называется *ориентированным циклом*, если она периодическая $(F_{k_{j+P}} = F_{k_j}$ при некотором P > 0) и соседние члены связаны соотношением $F_{k_i} \to F_{k_{i+1}}$.

Будем говорить, что вершина F_k эквивалентна вершине F_j , если существует ориентированный цикл, содержащий эти вершины.

Компонентой графа будем называть класс эквивалентных вершин.

Теорема 2. Множество вершин графа является абсолютно спектральным тогда и только тогда, когда оно является компонентой графа Смейла.

Следствие. Абсолютная часть существенного спектра есть объединение колец $K(a; S_{\nu})$, соответствующих компонентам S_{ν} графа Смейла.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Антоневич, А. Б. Линейные функциональные уравнения. Операторный подход / А. Б. Антоневич. – Минск : Университетское, $1988.-232~{\rm c}.$

2. Antonevich, A. On spectral properties of weighted shift operators generated by mappings with saddle points / A. Antonevich, Ju. Makowska // Complex Analysis and Operator Theory. – 2008. – Vol. 2. – P. 215–240.

УДК 517.956

А. И. БАСИК 1 , Е. В. ГРИЦУК 2 , О. В. БОЛТРУШКО 1

¹Беларусь, Брест, БрГУ имени А. С. Пушкина

ИНДЕКС КРАЕВОЙ ЗАДАЧИ РИМАНА – ГИЛЬБЕРТА ДЛЯ НЕКОТОРЫХ ЭЛЛИПТИЧЕСКИХ СИСТЕМ В \mathbb{R}^3

В ограниченной односвязной области $\Omega \subset \mathbb{R}^3$, гомеоморфной шару, с достаточно гладкой границей $\partial\Omega$ рассмотрим систему четырех дифференциальных уравнений вида

$$\frac{\partial U}{\partial x_1} + \begin{pmatrix} 0 & a_2 & b_2 & 0 \\ -a_2 & 0 & 0 & -b_2 \\ -b_2 & 0 & 0 & a_2 \\ 0 & b_2 & -a_2 & 0 \end{pmatrix} \frac{\partial U}{\partial x_2} + \begin{pmatrix} 0 & a_3 & b_3 & 0 \\ -a_3 & 0 & 0 & -b_3 \\ -b_3 & 0 & 0 & a_3 \\ 0 & b_3 & -a_3 & 0 \end{pmatrix} \frac{\partial U}{\partial x_3} = 0, (1)$$

где $U=(U_1(x),U_2(x),U_3(x),U_4(x))^T$ – неизвестная вектор-функция, T означает транспонирование, $x=(x_1,x_2,x_3)\in\mathbb{R}^3,\ a_2,\ a_3,\ b_2,\ b_3\in\mathbb{R}.$ Характеристическая матрица системы (1) имеет вид

$$\mathfrak{A}(\xi) = \begin{pmatrix} \xi_1 & a_2\xi_2 + a_3\xi_3 & b_2\xi_2 + b_3\xi_3 & 0 \\ -a_2\xi_2 - a_3\xi_3 & \xi_1 & 0 & -b_2\xi_2 - b_3\xi_3 \\ -b_2\xi_2 - b_3\xi_3 & 0 & \xi_1 & a_2\xi_2 + a_3\xi_3 \\ 0 & b_2\xi_2 + b_3\xi_3 & -a_2\xi_2 - a_3\xi_3 & \xi_1 \end{pmatrix}.$$

Поскольку

$$\det \mathfrak{A}(\xi) = \left(\xi_1^2 + (a_2\xi_2 + a_3\xi_3)^2 + (b_2\xi_2 + b_3\xi_3)^2\right)^2,$$

то, как нетрудно видеть, система (1) является эллиптической тогда и только тогда, когда выполняется условие $a_2b_3 - a_3b_2 \neq 0$, которое в дальнейшем предполагаем выполненным.

²Беларусь, Брест, БрГТУ