Д. Г. НОВИКОВА, М. М. СОРОКИНА

Россия, Брянск, БГУ имени И. Г. Петровского

СВОЙСТВА КЛАССА ГРУПП, ОПРЕДЕЛЯЕМОГО \mathfrak{F}^{ω} -ИНЪЕКТОРАМИ

Рассматриваются только конечные группы. Пусть \mathfrak{F} – произвольный класс групп. Понятие \mathfrak{F} -инъектора группы было введено в рассмотрение в совместной работе Б. Фишера, В. Гашюца и Б. Хартли [1]. В настоящее время \mathfrak{F} -инъекторы в конечных группах достаточно хорошо изучены, установлены их связи с другими подгруппами в группах, описаны их свойства в зависимости от свойств класса \mathfrak{F} (например, [2; 3]). В [4] были определены \mathfrak{F}^{ω} -инъекторы групп и установлены их простейшие свойства. Пусть ω – непустое подмножество множества \mathbb{P} всех простых чисел. Подгруппа H группы G называется \mathfrak{F}^{ω} -инъектором в G, если H – \mathfrak{F} -максимальная подгруппа в G и для каждой субнормальной ω -подгруппы G пересечение $H \cap K$ является \mathfrak{F} -максимальной подгруппой в K [4]. В случае, когда $\omega = \mathbb{P}$, понятие \mathfrak{F}^{ω} -инъектора совпадает с понятием \mathfrak{F} -инъектора группы (например, [3, с. 564]). Через $\mathrm{Inj}_{\mathfrak{F}}(G)$ и $\mathrm{Inj}_{\mathfrak{F}^{\omega}}(G)$ обозначаются соответственно совокупности всех \mathfrak{F} -инъекторов и всех \mathfrak{F}^{ω} -инъекторов группы G.

В монографии [3] для класса Фиттинга \mathfrak{F} , содержащегося в универсуме \mathfrak{S} всех конечных разрешимых групп, и произвольного класса групп \mathfrak{H} был введен в рассмотрение класс групп $\mathfrak{F} \uparrow \mathfrak{H}$, состоящий из всех групп $G \in \mathfrak{S}$, удовлетворяющих условию $\mathrm{Inj}_{\mathfrak{F}}(G) \subseteq \mathfrak{H}$. Отметим, что для указанного класса групп \mathfrak{F} и любой группы $G \in \mathfrak{S}$ множество $\mathrm{Inj}_{\mathfrak{F}}(G)$ непусто (например, [3]).

Пусть \mathfrak{B} , \mathfrak{F} и \mathfrak{H} – произвольные классы групп. Следуя [3], определим класс групп $\mathfrak{F}^{\omega} \uparrow_{\mathfrak{B}} \mathfrak{H}$ следующим образом:

$$\mathfrak{F}^{\omega}\uparrow_{\mathfrak{B}}\mathfrak{H}=\{G\in\mathfrak{B}\mid\varnothing\neq\mathrm{Inj}_{\mathfrak{F}^{\omega}}(G)\subseteq\mathfrak{H}\}.$$

В теореме 1 проводится исследование свойств данного класса.

Через $\pi(G)$ обозначается совокупность всех простых делителей порядка группы G; G' – коммутант группы G. Группа G называется ω -группой, если $\pi(G) \subseteq \omega$ [5, с. 250]. Класс групп \mathfrak{F} назовем Q^{ω} -замкнутым,

если из того, что $G \in \mathfrak{F}$ и N – нормальная ω -подгруппа группы G, всегда следует, что $G/N \in \mathfrak{F}$; R_0^ω -замкнутым, если из того, что G/N_1 , $G/N_2 \in \mathfrak{F}$, где N_1 , N_2 – нормальные ω -подгруппы группы G, всегда следует, что $G/(N_1 \cap N_2) \in \mathfrak{F}$. Отметим, что всякий Q-замкнутый класс групп является Q^ω -замкнутым для любого множества ω . Всякий R_0 -замкнутый класс групп является R_0^ω -замкнутым для любого множества ω . В случае, когда $\omega = \mathbb{P}$, понятия Q-замкнутого и Q^ω -замкнутого (R_0 -замкнутого и R_0^ω -замкнутого) классов групп совпадают.

Теорема 1. Пусть \mathfrak{F} – непустой класс Фиттинга, ω – непустое множество простых чисел, $\mathfrak{B} = \{G \in \mathfrak{S} \mid \pi(G') \subseteq \omega\}$. Тогда справедливы следующие утверждения:

- 1) Если $\mathfrak{H} Q^{\omega}$ -замкнутый класс групп, то класс $\mathfrak{F}^{\omega} \uparrow_{\mathfrak{B}} \mathfrak{H}$ также является Q^{ω} -замкнутым.
- 2) Если $\mathfrak{H} R_0^{\omega}$ -замкнутый класс групп, то класс $\mathfrak{F}^{\omega} \uparrow_{\mathfrak{B}} \mathfrak{H}$ также является R_0^{ω} -замкнутым.

В случае, когда ω совпадает с множеством \mathbb{P} , из теоремы 1 вытекает следующий результат. Отметим, что при $\omega = \mathbb{P}$, наряду с обозначением $\mathfrak{F}^{\omega} \uparrow_{\mathfrak{B}} \mathfrak{H}$, используется обозначение $\mathfrak{F} \uparrow_{\mathfrak{B}} \mathfrak{H}$.

Следствие 1. Пусть \mathfrak{F} – непустой класс Фиттинга. Если класс групп \mathfrak{H} является формацией, то класс $\mathfrak{F} \uparrow_{\mathfrak{B}} \mathfrak{H}$ также является формацией.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Fischer, B. Injektoren Endlicher Auflosbarer Gruppen / B. Fischer, W. Gaschutz, B. Hartley // Mathematische Zeitschrift. 1967. Vol. 102, No 5. P. 337–339.
- 2. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L. M. Ezquerro. Dordrecht : Springer, 2006. 381 p.
- 3. Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes. Berlin ; New York : Walter de Gruyter, 1992. – 891 p.
- 4. Новикова, Д. Г. Об одном свойстве \mathfrak{F}^{ω} -инъекторов конечных групп / Д. Г. Новикова, М. М. Сорокина // Теоретические и прикладные аспекты естественно-научного образования в эпоху цифровизации : материалы III Междунар. науч.-практ. конф., Брянск, 11–12 апр. 2024 г. Брянск : РИСО БГУ, 2024. С. 148–150.
- 5. Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М. : Наука, 1978. 271 с.