- 4. Хуан, Ц. Конечные группы со слабо субнормальными и частично субнормальными подгруппами / Ц. Хуан, Б. Ху, А. Н. Скиба // Сибирский математический журнал. 2021. Т. 62, № 1. С. 210–220.
- 5. 5. Asaad, M. On the supersolubility of finite groups / M. Asaad, A. Shaalan // Archiv der Mathematik 1989. No 53. P. 318–326.
- 6. Guo, W. Criterions of supersolubility for products of supersoluble groups / W. Guo, P. Shum, A. N. Skiba // Publicationes Mathematicae Debrecen. 2006. T. 68, No 3–4. P. 433–449.

УДК 512.542

А. С. НЕСТЕРОВ, М. М. СОРОКИНА

Россия, Брянск, БГУ имени И. Г. Петровского

О МИНИМАЛЬНЫХ σ_{Ω} -КАНОНИЧЕСКИХ ФОРМАЦИЯХ КОНЕЧНЫХ ГРУПП

Рассматриваются только конечные группы. В теории классов конечных групп важную роль играют функциональные методы, с помощью которых были построены локальные (В. Гашюц, 1963), композиционные $(\Pi. A. \text{ Шеметков}, 1978), \omega$ -локальные $(\Pi. A. \text{ Шеметков}, 1984),$ 2-композиционные (А. Н. Скиба, Л. А. Шеметков, 1999) формации, где ω — непустое подмножество множества $\mathbb P$ всех простых чисел, $\mathfrak L$ — непустой подкласс класса Э всех простых групп (например, [1]). Серии ω -веерных и Ω -расслоенных формаций (В. А. Ведерников, 1999) включают ω -локальные и \mathfrak{L} -композиционные (при $\Omega = \mathfrak{L}$) формации соответственно. Важное место в современной алгебре занимает разработанная А. Н. Скибой σ -теория конечных групп, с помощью методов которой были построены σ -локальные (А. Н. Скиба, 2017), Бэра σ -локальные (В. Г. Сафонов, И. Н. Сафонова, А. Н. Скиба, 2019), $\bar{\omega}$ -веерные (М. М. Сорокина, А. А. Горепекина, 2021) формации конечных групп, σ -локальные (В. Го, Ли Чжан, Н. Т. Воробьев, 2020), $\omega \sigma$ -веерные и $\Omega \zeta$ -расслоенные (О. В. Камозина, 2020) классы Фиттинга конечных групп, σ_{Ω} -расслоенные классы Фиттинга мультиоператорных T-групп (Е. Н. Бажанова, 2023). С помощью развития понятия Ω -расслоенной формации конечных групп в работе [3] были построены σ_{Ω} -расслоенные формации конечных групп, где $\sigma_{\scriptscriptstyle \Omega}$ – произвольное разбиение класса Ω . Одним из видов

 σ_{Ω} -расслоенных формаций являются σ_{Ω} -канонические формации. В теореме 1 изучаются минимальные σ_{Ω} -канонические формации, т. е. такие неединичные σ_{Ω} -канонические формации, которые не содержат нетривиальных σ_{Ω} -канонических подформаций.

Используемые обозначения и определения стандартны (например, [1]). Класс групп $\mathfrak F$ называется формацией (классом Фиттинга), если $\mathfrak F$ замкнут относительно гомоморфных образов и подпрямых произведений (относительно нормальных подгрупп и произведений нормальных $\mathfrak F$ -подгрупп). Для непустого класса Фиттинга $\mathfrak F$ через $G_{\mathfrak F}$ обозначается $\mathfrak F$ -радикал группы G, т. е. наибольшая нормальная $\mathfrak F$ -подгруппа группы G. Пусть $\mathfrak G$ – класс всех конечных групп, $\mathfrak I$ – класс всех простых групп, $\mathfrak E$ – класс всех единичных групп; ($\mathfrak X$) – класс групп, порожденный множеством групп $\mathfrak X$. Через K(G) обозначается класс всех групп, изоморфных композиционным факторам группы G; $K(\mathfrak X) = \bigcup_{G \in \mathfrak X} K(G)$. Пусть $\mathfrak F_1$, $\mathfrak F_2$ – классы групп. Произведением классов $\mathfrak F_1$ и $\mathfrak F_2$ называется класс групп $\mathfrak F_1\mathfrak F_2 = (G \in \mathfrak G \mid \text{существует } N \triangleleft G$, где $N \in \mathfrak F_1$ и $G/N \in \mathfrak F_2$).

Следуя [4], для любого непустого подкласса Δ класса $\mathfrak I$ будем полагать: $\mathfrak G_\Delta=(G\in\mathfrak G\mid K(G)\subseteq\Delta);\ \mathfrak G_{\Delta'}=(G\in\mathfrak G\mid K(G)\cap\Delta=\varnothing);\ O_\Delta(G)$ – $\mathfrak G_\Delta$ -радикал группы G.

Пусть Ω – произвольный непустой подкласс класса $\mathfrak{I},\ \sigma_{\Omega}$ – произвольное разбиение класса Ω , т. е. $\sigma_{\Omega}=\{\Omega_i\mid i\in I\}$, где Ω_i – непустой класс групп для любого $i\in I,\ \Omega=\cup_{i\in I}\Omega_i$ и $\Omega_i\cap\Omega_j=\varnothing$ для любых $i,j\in I,i\neq j$. Для произвольной группы G полагаем

$$\sigma_{\Omega}(G) = \{ \Omega_i \in \sigma_{\Omega} \mid \Omega_i \cap K(G) \neq \emptyset \}.$$

Функция вида

$$\varphi:\sigma_{\Omega}\to\{$$
непустые формации Фиттинга групп $\},$

удовлетворяющая условию $\mathfrak{G}_{\Omega_i'}\subseteq \varphi(\Omega_i)$ для любого $\Omega_i\in\sigma_{\Omega}$, называется формационно-радикальной σ_{Ω} -функцией или коротко $\sigma_{\Omega}FR$ -функцией. Функция вида

$$f: \sigma_{\Omega} \cup \{{\sigma_{\Omega}}'\} \to \{$$
формации групп $\},$

где $f(\sigma_{_{\Omega}}{'}) \neq \varnothing$, называется формационной $\sigma_{_{\Omega}}$ -функцией или коротко $\sigma_{_{\Omega}}F$ -функцией.

Пусть φ и f – некоторые $\sigma_{\Omega}FR$ -функция и $\sigma_{\Omega}F$ -функция соответственно. Формация вида $\mathfrak{F} = (G \in \mathfrak{G} \mid G/O_{\Omega}(G) \in f(\sigma_{\Omega}')$ и $G/G_{\varphi(\Omega_i)} \in f(\Omega_i)$ для любого $\Omega_i \in \sigma_{\Omega}(G)$) называется σ_{Ω} -расслоенной формацией и обозначается $\mathfrak{F} = \sigma_{\Omega}F(f,\varphi)$. Функция f называется спутником, а функция φ – направлением σ_{Ω} -расслоенной формации \mathfrak{F} [3].

Неединичная σ_{Ω} -расслоенная формация \mathfrak{F} с направлением φ называется *минимальной* σ_{Ω} -расслоенной формацией с направлением φ , если она не содержит собственных σ_{Ω} -расслоенных подформаций с направлением φ , отличных от \mathfrak{E} .

 σ_{Ω} -расслоенная формация $\mathfrak{F} = \sigma_{\Omega} F(f,\varphi)$ называется σ_{Ω} -канонической, если $\varphi(\Omega_i) = \mathfrak{G}_{\Omega_i} \mathfrak{G}_{\Omega_i}$ для любого $\Omega_i \in \sigma_{\Omega}$. Через $\sigma_{\Omega} KF(G)$ обозначается σ_{Ω} -каноническая формация, порожденная группой G, т. е. пересечение всех σ_{Ω} -канонических формаций, содержащих группу G.

Теорема 1. Пусть $\mathfrak{F} = \sigma_{\Omega} KF(G)$, где G – простая группа такая, что $K(G) \subseteq \Omega$. Тогда \mathfrak{F} является минимальной σ_{Ω} -канонической формацией.

В случае, когда σ_{Ω} — такое разбиение класса Ω , что для любого $\Omega_i \in \sigma_{\Omega}$ имеет место равенство $\Omega_i = (A)$ для некоторой группы $A \in \mathfrak{I}$, из теоремы 1 вытекает известный результат для Ω -канонических формаций ([5], с. 48).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М. : Наука, 1978. 272 с.
- 2. Skiba, A. N. On σ -subnormal and σ -permutable Subgroups of Finite Groups / A. N. Skiba // Journal of Algebra. 2015. Vol. 436. P. 79–82.
- 3. Сорокина, М. М. О спутниках σ_{Ω} -расслоенных формаций / М. М. Сорокина, А. С. Нестеров // Дискретная математика. 2023. Т. 36, № 1. С. 103–115.
- 4. Ведерников, В. А. Ω -Расслоенные формации и классы Фиттинга конечных групп / В. А. Ведерников, М. М. Сорокина // Дискретная математика. 2001. Т. 13, N 3. С. 125–144.
- 5. Коптюх, Д. Г. Ω-Расслоенные формации и классы Фиттинга конечных групп / Д. Г. Коптюх, О. А. Хомякова // Вестник Брянского государственного университета. 2008. № 4. С. 46–49.