\mathbb{P} всех простых чисел, понятие \mathfrak{F}^{ω} -субнормальной подгруппы совпадает с понятием \mathfrak{F} -субнормальной подгруппы.

Группа G называется ω -примитивной, если в G существует максимальная подгруппа M такая, что $Core_G(M) \cap O_{\omega}(G) = 1$, при этом подгруппа M называется ω -примитиватором группы G [4]. Формация $\mathfrak F$ называется ω -насыщенной, если ей принадлежит всякая группа G, удовлетворяющая условию $G/L \in \mathfrak F$, где $L \subseteq \Phi(G) \cap O_{\omega}(G)$ [5].

Теорема 1. Пусть \mathfrak{F} – наследственная ω -насыщенная формация u G – разрешимая группа, $O_{\omega}(G) \neq 1$, $\Phi(G) \cap O_{\omega}(G) = 1$. Группа G является минимальной не \mathfrak{F} -группой в том u только в том случае, когда G – ω -примитивная группа с \mathfrak{F}^{ω} -абнормальным ω -примитиватором M u любая собственная подгруппа из M является \mathfrak{F}^{ω} -субнормальной в G.

В случае, когда $\omega = \mathbb{P}$, из теоремы 1 вытекает теорема 2.2 из [2].

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Шеметков, Л. А. Формации конечных групп / Л. А. Шеметков. М. : Наука, 1978. 272 с.
- 2. Семенчук, В. Н. О конечных группах с обобщенно субнормальными подгруппами / В. Н. Семенчук, М. В. Селькин, В. М. Селькин // Проблемы физики, математики и техники. − 2017. − № 2 (31). − С. 66–68.

УДК 512.542

И. Л. СОХОР

Беларусь, Брест, БрГУ имени А. С. Пушкина

КОНЕЧНЫЕ ГРУППЫ С МОДУЛЯРНЫМИ СР-ПОДГРУППАМИ

Рассматриваются только конечные группы.

Одним их обобщений нормальности является модулярность. Напомним, что подгруппа H группы G называется модулярной в G подгруппой [1], если H является модулярным элементом решетки подгрупп группы G, т. е.

- 1) $\langle X, H \rangle \cap Y = \langle X, H \cap Y \rangle$ для всех $X, Y \leq G$ таких, что $X \leq Y;$
- 2) $\langle H, X \rangle \cap Y = \langle H, X \cap Y \rangle$ для всех $X, Y \leq G$ таких, что $H \leq Y$.

Подгруппа, порожденная модулярными в группе G подгруппами, модулярна в G. Поэтому множество всех модулярных подгрупп группы G образует верхнюю полурешетку относительно частичного упорядочения включения. В то же время пересечение модулярных в группе G подгрупп может быть немодулярной в G подгруппой, например, группа $G = C_2^2 \rtimes C_8$ [2, SmallGroup(32,5)]. Поэтому множество модулярных подгрупп не образует решетку относительно частичного упорядочения включения. Модулярность не транзитивна. Так, например, подгруппа C_2 модулярна в подгруппе C_2^2 , которая в свою очередь модулярна в A_4 , но C_2 не модулярна в A_4 . Группы, в которых модулярность транзитивна, называют MT-группами. Разрешимая группа G является MT-группой тогда и только тогда, когда решетка подгрупп группы G модулярна [3]. В общем случае MT-группы и их обобщения описаны в работах [4], [5].

Понятно, что группа, в которой каждая CP-подгруппа модулярна, имеет модулярную решетку подгрупп, в частности, такая группа является MT-группой. Строение групп с модулярной решеткой подгрупп описано в работах [1], [6], [7]. Вполне естественно возникает задача исследования групп, в которых не все CP-подгруппы модулярны.

Доказана

Теорема. Пусть в группе G каждая CP-подгруппа модулярна или самонормализуема, тогда либо группа G имеет модулярную решетку подгрупп, либо $G = G' \rtimes \langle x \rangle$, где $\langle x \rangle$ – силовская подгруппа и подгруппа G и коммутант G' группы G нильпотентен.

Заметим, что утверждение теоремы необратимо. Так, например, знакопеременная группа A_4 степени 4 представима в виде $A_4=C_2^2\rtimes C_3$, но при этом содержит немодулярную подгруппу C_2 .

Работа выполнена при финансовой поддержке Министерства образования Республики Беларусь (ГПНИ «Конвергенция-2025», № государственной регистрации 20211467).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Schmidt, R. Subgroup Lattices of Groups / R. Schmidt. Berlin ; New York : De Gruyter, 1994. 572 p.
- 2. A system for computational discrete algebra GAP 4.13.1. URL: https://www.gap-system.org (date of access: 11.01.2025).
- 3. Zimmermann, I. Submodular subgroups in finite groups / I. Zimmermann // Mathematische Zeitschrift. 1989. Vol. 202. P. 545–557.

- 4. Finite groups in which modularity is a transitive relation / A. M. Liu, W. Guo, I. N. Safonova, A. N. Skiba // Archiv der Mathematik. 2023. Vol. 121. P. 111–121.
- 5. Finite groups in which σ -quasinormality is a transitive relation / A. M. Liu, W. Guo, V. G. Safonov, A. N. Skiba // Journal of Algebra. 2024. Vol. 658. P. 869–887.
- 6. Iwasawa, K. Über die endlichen Gruppen und die Verbände ihrer Untergruppen / K. Iwasawa // Journal of the Faculty of Science, University of Tokyo. Section I. 1941. Vol. 4. P. 171–199.
- 7. A criterion for modularity of the subgroup lattice of a finite soluble group / A. M. Liu, S. Wang, V. G. Safonov, A. N. Skiba // Journal of Algebra and Its Applications. 2024. Vol. 23, No 3. 23 p. DOI: 10.1142/S0219498 825503785.

УДК 517.977

О. Б. ЦЕХАН

Беларусь, Гродно, ГрГУ имени Янки Купалы

О ДЕКОМПОЗИЦИОННОМ ПОДХОДЕ К АНАЛИЗУ СТРУКТУРНЫХ СВОЙСТВ И УПРАВЛЕНИЮ СИНГУЛЯРНО ВОЗМУЩЕННЫМИ СИСТЕМАМИ С ЗАПАЗДЫВАНИЕМ

Введение. Сингулярно возмущенные системы (далее – СВС) являются математическими моделями динамических систем, в которых реализуются одновременно несколько взаимосвязанных подпроцессов с существенно различающимися темпами. Примерами являются электрические сети с очень маленькими индуктивностями или емкостями, химические реакции или биологические системы с очень разными скоростями процессов, механические системы с очень легкими или жесткими компонентами. Динамика многотемповых систем может быть описана в стандартной форме системами дифференциальных уравнений с малым параметром при части производных. Наличие запаздывания отражает инерционность процессов или пространственную распределенность в реальных системах и приводит к моделям, описываемым функционально-