ПЛЕНАРНЫЕ ДОКЛАДЫ

УДК 512.542

Е. Н. БАЖАНОВА

Россия, Москва, МГПУ, МИФИ

СТРОЕНИЕ σ_{Ω} -РАССЛОЕННОГО КЛАССА ФИТТИНГА T-ГРУПП

В 2001 году В. А. Ведерниковым и М. М. Сорокиной был предложен способ построения новых видов формаций и классов Фиттинга путем рассмотрения еще одной функции-направления. В работах [1], [2] ими были построены соответственно ω -веерные и Ω -расслоенные формации и классы Фиттинга конечных групп, включающиеся в себя известные ω -локальные и Ω -композиционные формации и классы Фиттинга. В дальнейшем В. А. Ведерников и Е. Н. Бажанова распространили идею расслоенных формаций и классов Фиттинга на класс мультиоператорных T-групп, обладающих конечными композиционными рядами [3; 4].

В 2015 году А. Н. Скиба разработал σ -теорию конечных групп, где σ – произвольное разбиение множества всех простых чисел, и применил ее методы к построению σ -локальных формаций [5], явившихся естественным обобщением локальных формаций. В дальнейшем на основе σ -методов были построены классы, обобщающие ω -веерные и Ω -расслоенные классы Фиттинга конечных групп [6; 7], ω -веерные и Ω -расслоенные формации конечных групп [8; 9]. Естественным продолжением исследований стало обобщение Ω -расслоенных классов Фиттинга мультиоператорных T-групп [10].

Аддитивная группа G с нулевым элементом 0 называется *мультио-* nepamophoù T-repynnoù с системой мультиоператоров T, если в G задана еще некоторая система n-арных алгебраических операций T при некоторых n, удовлетворяющих условию n>0, причем для всех $t\in T$ выполняется условие $t(0,\ldots,0)=0$, где слева элемент 0 записан n раз, если операция t n-арна [11].

Пусть \mathfrak{C} – класс всех T-групп с конечными композиционными рядами, \mathfrak{I} – класс всех простых T-групп. Все рассматриваемые T-группы принадлежат классу \mathfrak{C} . Для любого непустого подкласса Δ класса \mathfrak{I} будем полагать: $\mathfrak{C}_{\Delta} = (G \in \mathfrak{C} \mid \mathfrak{K}(G) \subseteq \Delta)$ и $\mathfrak{C}_{\Delta'} = (G \in \mathfrak{C} \mid \mathfrak{K}(G) \cap \Delta = \varnothing)$,

где $\mathfrak{K}(G)$ — класс всех простых T-групп, изоморфных композиционным факторам T-группы G; $O^{\triangle}(G)$ — \mathfrak{C}_{\wedge} -корадикал T-группы G.

Класс T-групп, содержащийся в классе \mathfrak{C} , будем называть \mathfrak{C} -классом. Пусть \mathfrak{X} и \mathfrak{Y} — \mathfrak{C} -классы. Тогда $\mathfrak{X}\mathfrak{Y} = (G \in \mathfrak{C} \mid G \text{ имеет идеал } N \in \mathfrak{X}$ с $G/N \in \mathfrak{Y}$).

Далее Ω – непустой подкласс класса $\mathfrak{I}, \, \sigma_{\Omega}$ – произвольное разбиение класса Ω , т. е. $\sigma_{\Omega} = \{\Omega_i \mid i \in I\}$, где Ω_i – непустой подкласс класса Ω для любого $i \in I$, $\Omega = \bigcup_{i \in I} \Omega_i$ и $\Omega_i \cap \Omega_j = \varnothing$ для любых $i, j \in I, i \neq j$. Для произвольной T-группы G и произвольного класса T-групп \mathfrak{F} полагаем $\sigma_{\Omega}(G) = \{\Omega_i \in \sigma_{\Omega} \mid \Omega_i \cap \mathfrak{K}(G) \neq \varnothing\}; \, \sigma_{\Omega}(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma_{\Omega}(G).$

Функция вида $f: \sigma_{\Omega} \cup \{\sigma_{\Omega}'\} \to \{$ классы Фиттинга T-групп $\}$, где $f(\sigma_{\Omega}') \neq \varnothing$, называется $\sigma_{\Omega}R$ -функцией. Функция вида $\varphi: \sigma_{\Omega} \to \{$ непустые формации Фиттинга T-групп $\}$, удовлетворяющая условию $\mathfrak{C}_{\Omega_i'} \subseteq \varphi(\Omega_i)$ для любого $\Omega_i \in \sigma_{\Omega}$, называется $\sigma_{\Omega}FR$ -функцией.

Пусть f и φ – некоторые $\sigma_{\Omega}R$ -функция и $\sigma_{\Omega}FR$ -функция соответственно. Класс Фиттинга T-групп вида $\mathfrak{F}=(G\in\mathfrak{C}\mid O^{\Omega}(G)\in f(\sigma_{\Omega}')$ и $G^{\varphi(\Omega_i)}\in f(\Omega_i)$ для любого $\Omega_i\in\sigma_{\Omega}(G)$) называется σ_{Ω} -расслоенным классом Фиттинга T-групп и обозначается $\mathfrak{F}=\sigma_{\Omega}R(f,\varphi)$. Функция f называется cnymhukom, а функция φ – cnymhukom – cnymhukom, а функция φ – cnymhukom –

Пусть $\mathfrak{F} = \sigma_{\Omega} R(f,\varphi) - \sigma_{\Omega}$ -расслоенный класс Фиттинга T-групп. Обозначим $\sigma_{\Omega}(f) = \{\Omega_i \in \sigma_{\Omega} | f(\Omega_i) \neq \varnothing\}$. Дадим описание строения класса Фиттинга \mathfrak{F} в зависимости от подмножества $\sigma_{\Omega}(f)$ множества σ_{Ω} .

Теорема 1. Пусть $\mathfrak{F} = \sigma_{\Omega} R(f,\varphi) = (G \in \mathfrak{C} \mid O^{\Omega}(G) \in f(\sigma_{\Omega}') \ u$ $G^{\varphi(\Omega_i)} \in f(\Omega_i)$ для любого $\Omega_i \in \sigma_{\Omega}(G)$). Тогда

$$\mathfrak{F} = \begin{cases} f(\sigma_{\Omega}')\mathfrak{C}_{\Omega} \bigcap \left(\bigcap_{\Omega_{i} \in \sigma_{\Omega}(f)} f(\Omega_{i})\varphi(\Omega_{i})\right) \bigcap \left(\bigcap_{\Omega_{j} \in \sigma_{\Omega} \setminus \sigma_{\Omega}(f)} \mathfrak{C}_{\Omega_{j}'}\right), \\ \varnothing \neq \sigma_{\Omega}(f) \neq \sigma_{\Omega}, \\ f(\sigma_{\Omega}')\mathfrak{C}_{\Omega} \bigcap \left(\bigcap_{\Omega_{i} \in \sigma_{\Omega}} f(\Omega_{i})\varphi(\Omega_{i})\right), \sigma_{\Omega}(f) = \sigma_{\Omega}, \\ f(\sigma_{\Omega}')\mathfrak{C}_{\Omega} \bigcap \left(\bigcap_{\Omega_{i} \in \sigma_{\Omega}} \mathfrak{C}_{\Omega_{i}'}\right), \sigma_{\Omega}(f) = \varnothing. \end{cases}$$

Следствие 1. Пусть $\mathfrak{F} = \sigma_{\Omega} R(f,\varphi) - \sigma_{\Omega}$ -расслоенный класс Фиттинга T-групп со спутником f и направлением φ . Тогда $\mathfrak{F} \subseteq f(\sigma_{\Omega}')\mathfrak{C}_{\Omega}$ и $\mathfrak{F} \subseteq f(\Omega_i)\varphi(\Omega_i)$ для всех $\Omega_i \in \sigma_{\Omega}(f)$.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Ведерников, В. А. ω -веерные формации и классы Фиттинга конечных групп / В. А. Ведерников, М. М. Сорокина // Математические заметки. − 2002. − Т. 71, № 1. − С. 43–60.
- 2. Ведерников, В. А. Ω -расслоенные формации и классы Фиттинга конечных групп / В. А. Ведерников, М. М. Сорокина // Дискретная математика. 2001. Т. 13, № 3. С. 125–144.
- 3. Ведерников, В. А. Ω -расслоенные формации мультиоператорных T-групп / В. А. Ведерников, Е. Н. Демина // Сибирский математический журнал. − 2010. − Т. 51, № 5. − С. 990–1009.
- 4. Ведерников, В. А. Ω -расслоенные классы Фиттинга T-групп / В. А. Ведерников, Е. Н. Бажанова // Сибирские электронные математические известия. 2017. Т. 14. С. 629–639.
- 5. Skiba, A. N. On one generalization of the local formations / A. N. Skiba // Problems of Physics, Mathematics and Technics. 2018. Vol 1, \mathbb{N}^{0} 34. P. 79–82.
- 6. Камозина, О. В. $\omega\sigma$ -веерные классы Фиттинга / О. В. Камозина // Чебышевский сборник. 2020. Т. 21, № 4. С. 107—116.
- 7. Камозина, О. В. $\Omega\zeta$ -расслоенные классы Фиттинга / О. В. Камозина // Известия Саратовского университета. Нов. сер. Серия: Математика. Механика. Информатика. 2020. Т. 20, № 4. С. 424—433.
- 8. Сорокина, М. М. $\bar{\omega}$ -Веерные формации конечных групп / М. М. Сорокина, А. А. Горепекина // Чебышевский сборник. 2021. Т. 22, № 3. С. 232–244.
- 9. Сорокина, М. М. Построение $\bar{\Omega}$ -расслоенных формаций конечных групп / М. М. Сорокина, А. С. Нестеров // Ученые записки Брянского государственного университета. 2023. Т. 2. С. 7—12.
- 10. Бажанова, Е. Н. σ_{Ω} -расслоенные классы Фиттинга мультиоператорных T-групп и их спутники / Е. Н. Бажанова // Чебышевский сборник. 2024. Т. 25, № 5. С. 2–17.
- 11. Общая алгебра : в 2 т. / В. А. Артамонов, Л. А. Скорняков, В. Н. Салий [и др.] ; под общ. ред. Л. А. Скорнякова. М. : Наука, 1991. Т. 1. 480 с.