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ПЛЕНАРНЫЕ ДОКЛАДЫ

УДК 512.542

Е. Н. БАЖАНОВА
Россия, Москва, МГПУ, МИФИ

СТРОЕНИЕ σ
Ω
-РАССЛОЕННОГО

КЛАССА ФИТТИНГА T -ГРУПП

В 2001 году В. А. Ведерниковым и М. М. Сорокиной был предложен
способ построения новых видов формаций и классов Фиттинга путем
рассмотрения еще одной функции-направления. В работах [1], [2] ими
были построены соответственно ω-веерные и Ω-расслоенные формации
и классы Фиттинга конечных групп, включающиеся в себя известные
ω-локальные и Ω-композиционные формации и классы Фиттинга. В даль-
нейшем В. А. Ведерников и Е. Н. Бажанова распространили идею рас-
слоенных формаций и классов Фиттинга на класс мультиоператорных
T -групп, обладающих конечными композиционными рядами [3; 4].

В 2015 году А. Н. Скиба разработал σ-теорию конечных групп, где
σ – произвольное разбиение множества всех простых чисел, и применил
ее методы к построению σ-локальных формаций [5], явившихся есте-
ственным обобщением локальных формаций. В дальнейшем на основе
σ-методов были построены классы, обобщающие ω-веерные и Ω-расслоен-
ные классы Фиттинга конечных групп [6; 7], ω-веерные и Ω-расслоенные
формации конечных групп [8; 9]. Естественным продолжением исследо-
ваний стало обобщение Ω-расслоенных классов Фиттинга мультиопера-
торных T -групп [10].

Аддитивная группа G с нулевым элементом 0 называется мультио-
ператорной T -группой с системой мультиоператоров T , если в G задана
еще некоторая система n-арных алгебраических операций T при некото-
рых n, удовлетворяющих условию n > 0, причем для всех t ∈ T выпол-
няется условие t(0, . . . , 0) = 0, где слева элемент 0 записан n раз, если
операция t n-арна [11].

Пусть C – класс всех T -групп с конечными композиционными ря-
дами, I – класс всех простых T -групп. Все рассматриваемые T -группы
принадлежат классу C. Для любого непустого подкласса ∆ класса I бу-
дем полагать: C

∆
= (G ∈ C | K(G) ⊆ ∆) и C

∆′ = (G ∈ C | K(G)∩∆ = ∅),
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где K(G) — класс всех простых T -групп, изоморфных композиционным
факторам T -группы G; O∆(G) – C

∆
-корадикал T -группы G.

Класс T -групп, содержащийся в классе C, будем называть C-классом.
Пусть X и Y – C-классы. Тогда XY = (G ∈ C | G имеет идеал N ∈ X

с G/N ∈ Y).
Далее Ω – непустой подкласс класса I, σ

Ω
– произвольное разбиение

класса Ω, т. е. σ
Ω
= {Ωi | i ∈ I}, где Ωi – непустой подкласс класса Ω для

любого i ∈ I, Ω = ∪
i∈I
Ωi и Ωi ∩ Ωj = ∅ для любых i, j ∈ I, i ̸= j. Для

произвольной T -группы G и произвольного класса T -групп F полагаем
σ

Ω
(G) = {Ωi ∈ σ

Ω
| Ωi ∩ K(G) ̸= ∅}; σ

Ω
(F) = ∪

G∈F
σ

Ω
(G).

Функция вида f : σ
Ω
∪ {σ

Ω

′} → {классы Фиттинга T -групп}, где
f(σ

Ω

′) ̸= ∅, называется σ
Ω
R-функцией. Функция вида φ : σ

Ω
→ {непустые

формации Фиттинга T -групп}, удовлетворяющая условию C
Ωi

′ ⊆ φ(Ωi)
для любого Ωi ∈ σ

Ω
, называется σ

Ω
FR-функцией.

Пусть f и φ – некоторые σ
Ω
R-функция и σ

Ω
FR-функция соответ-

ственно. Класс Фиттинга T -групп вида F = (G ∈ C | OΩ(G) ∈ f(σ
Ω

′)
и Gφ(Ωi) ∈ f(Ωi) для любого Ωi ∈ σ

Ω
(G)) называется σ

Ω
-расслоенным

классом Фиттинга T -групп и обозначается F = σ
Ω
R(f, φ). Функция f

называется спутником, а функция φ – направлением σ
Ω
-расслоенного

класса Фиттинга F.
Пусть F = σ

Ω
R(f, φ) – σ

Ω
-расслоенный класс Фиттинга T -групп. Обо-

значим σ
Ω
(f) = {Ωi ∈ σ

Ω
|f(Ωi) ̸= ∅}. Дадим описание строения класса

Фиттинга F в зависимости от подмножества σ
Ω
(f) множества σ

Ω
.

Теорема 1. Пусть F = σ
Ω
R(f, φ) = (G ∈ C | OΩ(G) ∈ f(σ

Ω

′) и
Gφ(Ωi) ∈ f(Ωi) для любого Ωi ∈ σ

Ω
(G)). Тогда

F =



f(σ
Ω

′)CΩ

∩( ∩
Ωi∈σΩ

(f)

f(Ωi)φ(Ωi)

)∩( ∩
Ωj∈σΩ

\σ
Ω
(f)

CΩj
′

)
,

∅ ̸= σ
Ω
(f) ̸= σ

Ω
,

f(σ
Ω

′)CΩ

∩( ∩
Ωi∈σΩ

f(Ωi)φ(Ωi)

)
, σ

Ω
(f) = σ

Ω
,

f(σ
Ω

′)CΩ

∩( ∩
Ωi∈σΩ

CΩi
′

)
, σ

Ω
(f) = ∅.

.
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Следствие 1. Пусть F = σ
Ω
R(f, φ) – σ

Ω
-расслоенный класс Фит-

тинга T -групп со спутником f и направлением φ. Тогда F ⊆ f(σ
Ω

′)CΩ

и F ⊆ f(Ωi)φ(Ωi) для всех Ωi ∈ σ
Ω
(f).
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УДК 519.63

В. М. ВОЛКОВ, Ц. ДУН
Беларусь, Минск, БГУ

СПЕКТРАЛЬНЫЙ МЕТОД ЧЕБЫШЕВА
ДЛЯ 2D-ЗАДАЧ КОНВЕКЦИИ – ДИФФУЗИИ

Введение. Численные особенности задач конвекции-диффузии
преимущественно связаны с наличием малого параметра при старших
производных [1]. С одной стороны, это порождает характерное поведе-
ние решения в виде пограничного слоя, требующее адекватной форму-
лировки дискретной модели для численного анализа [2]. С другой сто-
роны, преобладание конвективных слагаемых приводит к существенно-
му доминированию кососимметричной составляющей пространственного
оператора дискретной модели, что негативно сказывается на сходимости
итерационных методов при решении стационарных задач [1].

В настоящей работе предлагаются и исследуются эффективные ал-
горитмы реализации спектральных методов на основе полиномов Че-
бышева [3] с использованием стабилизированного итерационного метода
бисопряженных градиентов [4]. Основное внимание уделяется вопросам
выбора переобусловливателя и техники их обработки [5]. Представле-
ны результаты численных экспериментов, демонстрирующие эффектив-
ность предложенных алгоритмов.

Постановка задачи и численный метод. Рассмотрим краевую
задачу для стационарного уравнения конвекции–диффузии в прямоуголь-
ной области Ω с границей ∂Ω

vx
∂u

∂x
+ vy

∂u

∂y
+

1

Pe

(
∂2u

∂x2
+
∂2u

∂y2

)
= f, (x, y) ∈ Ω = [0, 1]× [0, 1], (1)

u(x, y) = 0, (x, y), (x, y) ∈ ∂Ω (2)

vx = vx(x, y), vy = vy(x, y), div v⃗ = 0. (3)

Поле скоростей может быть задано с помощью некоторой гармонической
функции Ψ = Ψ(x, y):

vx =
∂Ψ

∂x
, vy =

∂Ψ

∂y
. (4)



7

Проведен сравнительный анализ спектрального метода Чебышева и
разностного метода второго порядка точности с центральной формулой
аппроксимации первых производных для решения задачи (1)–(3).

Реализация дискретных моделей проводилась на основе стабилизиро-
ванного итерационного метода бисопряженных градиентов с различными
типами переобусловливателей: на основе неполной LU - факторизации c
регулируемым порогом заполнения [6] (iLU) и симметричной части дис-
кретного (разностного) аналога оператора конвекции – диффузии с по-
стоянными коэффициентами, реализуемого с помощью алгоритма Бар-
телса – Стюарта (B-S).

Результаты численных экспериментов. В качестве тестовой за-
дачи (1)–(4) использовано поле скоростей Ψ(x, y) = sin(2πx) sin(2πy)
и правая часть, обеспечивающая точное решение, имеющего признаки
особенностей типа пограничного слоя. На рисунке 1 представлены ре-
зультаты численных экспериментов, демонстрирующих эффективность
используемых переобусловливателей при решении задачи (1)–(3), Pe =
1000, на сетке размером n× n.

100 150 200 250 300 350

n

0

20
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80

100

120

140

160 B-S
iLU

100 150 200 250 300 350

n

0

0.5

1

1.5

2

2.5

3

3.5

2 ]

10-4

B-S
iLU

Рисунок 1 – Зависимости количества итераций и удельного времени
вычислений от количества узлов сетки

Заметим, что количество итераций практически не возрастает при
увеличении размерности сетки. Время решения задачи при использова-
нии переобусловливателя iLU при этом возрастает быстрее в силу боль-
ших вычислительных затрат на построение данного переобусловливате-
ля.
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Сравнение эффективности спектрального и разностного методов, как
и в случае других эллиптических задач [7], при достаточной гладкости
решения показывает существенное преимущество спектрального метода
(рисунок 2).

Рисунок 2 – Вид решения задачи и время вычислений для достижения
заданной точности для спектрального (SCh) и разностного (FD)

методов
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УДК 371.24+371.212

В. И. ГОРБАЧЕВ, Н. В. ТРОШИНА
Россия, Брянск, БрГУ имени И. Г. Петровского

СОДЕРЖАНИЕ ОБЩЕГО МАТЕМАТИЧЕСКОГО
ОБРАЗОВАНИЯ В СИСТЕМЕ
ДИСЦИПЛИНАРНЫХ ОНТОЛОГИЙ

В содержании общего математического образования исследуются
закономерности его спектральной и уровневой систематизации. В миро-
воззренческом плане выделяется спектр математических пространств,
структурирующих «общеобразовательный слой» современного матема-
тического знания. В методологии пространственно-теоретического
подхода представление каждого из математических пространств фор-
мируется на последовательных уровнях деятельности содержательного
абстрагирования.

Введение. Идея традиционности общего математического образо-
вания, выраженная приверженностью к геометрии Евклида, арифмети-
ке Пифагора и Ф. Виета, алгебре И. Ньютона, созерцательному мыш-
лению Р. Декарта, несомненно, наследует достижения общей культуры,
но только ее ограниченной части, выраженной в эмпирической форме,
на уровне обыденного сознания. За алгоритмической деятельностью ис-
следования свойств базовых математических объектов (числа, фигуры,
векторы, функции, уравнения, события), имеющих наглядно-конструктив-
ную форму, не прослеживается методология модельно-абстрактного пред-
ставления соответствующих математических пространств, их дисципли-
нарная систематизация.

Проектирование содержания общего математического образования,
направленного на формирование абстрактного математического мышле-
ния, предполагает формирование модельных представлений целостного
спектра математических пространств, отражающих различные свойства
реального мира, последующее конструирование дедуктивных теорий
абстрактных математических пространств с аналитико-синтетическим
методом исследования, обоснования их закономерностей в методологии
пространственно-теоретического подхода [1].
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Результаты исследования. Общее математическое образование,
отражающее содержание математики в ее более чем двухтысячелетней
истории следует гуманитарной идее развития субъекта деятельности уче-
ния, направленности обучения математике на формирование адекватно-
го образовательной области абстрактного мышления. Абстрактное мате-
матическое мышление выступает одной из предметных проекций кате-
гории абстрактного мышления, как и проекцией имеющих общеучебный
характер типов мышления (логического, алгоритмического).

Дисциплинарный анализ структуры абстрактного математического
мышления развивается в содержании его уровневой и спектральной
систематизации. Уровневая систематизация абстрактного математиче-
ского мышления отражает объективные закономерности деятельности
содержательного абстрагирования. Направленная на формирование
абстрактного математического мышления и исходящая из математиче-
ского отражения реального мира деятельность содержательного абстра-
гирования характеризуется последовательными уровнями математиче-
ского абстрагирования: «от предметов реального мира», в системе созда-
ваемых на уровне обыденного сознания разноплановых образов объектов
математических пространств; «от образных представлений объектов»,
в системе создаваемых в содержательной логической форме определяе-
мых понятий учебных теорий абстрактных математических пространств;
«от содержания понятий», в модельно-теоретическом и понятийно-кате-
гориальном анализе учебных математических теорий в их интеграции.

Деятельность абстрагирования «от предметов реального мира» име-
ет философскую форму «математического отражения реального мира»,
направлена на создание образных представлений базовых и производных
математических пространств [2].

Числовое пространство задается в математическом отражении свойств
счета, измерения, упорядочения и оперирования числами и величина-
ми человеческой практики. Различные образы числа (точка на коорди-
натной прямой или окружности, систематическая запись числа, класс
эквивалентности упорядоченных пар или последовательностей) создают
представление числового пространства в системе расширяющихся гео-
метрических, арифметических, алгебраических моделей.

Геометрическое пространство создается в математическом отра-
жении формы, меры, пространственной расположенности, субъектной
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ориентации реального физического пространства. Различные образы объ-
ектов геометрического пространства (наглядно-образные, векторные,
аналитические) вместе с преобразованиями, отношениями приводят
к его представлению наглядно-образной, векторной и арифметической
моделями с модельно-специфическими методами исследования. Евкли-
дово пространство, формируемое на базе субъектных представлений
геометрического пространства, определяется в математическом отраже-
нии свойств размерности, пространственной ориентации, метрической
характеризации реального физического пространства. Различные
образы векторов, векторных операций (векторные, координатные,
аналитические) определяют модельную структуру евклидова простран-
ства с адекватными методами исследования соответствующих моделей
геометрических фигур.

Функциональное пространство, опосредованное модельным представ-
лением числового, геометрического, евклидова пространств, задается
в математическом отражении свойства функциональной зависимости.
Система векторных, геометрических, числовых (дискретная, непрерыв-
ная) моделей функционального пространства, свойства которых опосре-
дованы свойствами объектов каждого из математических пространств,
задает интегральное модельное представление пространства числовых и
нечисловых функций.

Предикатное пространство, опосредованное представлениями число-
вого и функционального пространств, создается в математическом от-
ражении свойств равновесия, сравнения на множестве числовых харак-
теристик реального мира. Модели пространства числовых элементар-
ных функций (алгебраические, трансцендентные) определяют систему
моделей пространства числовых предикатов, характеризуемых как об-
щим для моделей функционально-графическим представлением, так и
функционально-аналитическим методом исследования на базе соответ-
ствующих равносильных преобразований.

Стохастическое пространство, интегрирующее представления
пространств случайных событий, дискретных и непрерывных случай-
ных величин, статистических совокупностей, описываемых значениями
функции вероятности, задается в математическом отражении процессов
реального мира, характеризуемых свойством случайности (субъектной
непредсказуемости). Представление стохастического пространства опре-
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деляется системой конечных, счетно-конечных, счетных, непрерывных
моделей пространства случайных событий, расширяемых в соответству-
ющие модели пространства случайных величин и используемых в иссле-
довании пространства статистических совокупностей.

В структуре представления каждого из математических пространств
объективно выделяются абстрактно-алгоритмический и системно-струк-
турный виды деятельности. Составляющими абстрактно-алгоритмичес-
кий вид обобщенными учебными действиями выступают: создание
наглядных образов объектов, операций, преобразований каждого из ма-
тематических пространств в системе конструктивных, знаковых средств;
анализ операторных действий на множестве объектов с целью выявления
их наглядно воспринимаемых свойств; оперирование объектами, класса-
ми объектов в системе свойств математического пространства. Системно-
структурный вид представления характеризуется модельным представ-
лением математического пространства, действиями систематизации
и классификации объектов, созданием алгоритмических схем оперирова-
ния для исследования фундаментальных свойств математического про-
странства.

Дальнейшее развитие наглядно-образных представлений математи-
ческих пространств востребует новый уровень математического абстра-
гирования – абстрагирование «от образных представлений объектов
математического пространства». Задачей деятельности содержательно-
го абстрагирования данного уровня выступает создание во внутреннем
плане субъекта нового конструкта – учебной теории математического
пространства. В содержании учебной теории модельные представления
математического пространства субъектным сознанием отклоняются, ма-
тематические пространства становятся абстрактными. При этом в проце-
дуре математического абстрагирования общие моделям свойства сохра-
няются либо в содержании аксиом (числовое, геометрическое, евклидо-
во пространства), либо в содержании абстрактных определений понятий
(функциональное, предикатное, стохастическое пространства) абстракт-
ного математического пространства.

В отличие от деятельности представления теоретико-пространствен-
ная деятельностьструктурируется дедуктивным конструированиемучеб-
ной теории, аналитико-синтетическим исследованием свойств абстракт-
ного математического пространства, методологическим (модельно-теоре-
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тическим, понятийно-категориальным) анализом учебной теории. Дета-
лизируемые обобщенными учебными действиями виды теоретико-
пространственной деятельности позволяют сформировать теоретико-
пространственный тип мышления в составе абстрактно-дедуктивного,
аналитико-синтетического и методологического уровней. Интеграция
формируемых в деятельности содержательного абстрагирования
пространственно-математического и теоретико-пространственного типов
мышления характеризует содержание пространственно-теоретического
подхода, определяющего уровневую систематизацию абстрактного
математического мышления [3].
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ОБ АРИФМЕТИЧЕСКИХ ХАРАКТЕРИЗАЦИЯХ
КОНЕЧНЫХ ГРУПП

Спектром ω(G) конечной группы G называется множество всех
порядков ее элементов. Граф Грюнберга – Кегеля (или граф простых
чисел) Γ(G) определяется следующим образом: вершинами графа Γ(G)
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являются все простые делители порядка группы G, и две вершины p и q
смежны в Γ(G) тогда и только тогда, когда pq ∈ ω(G).

Вопрос характеризации конечной группы ее спектром изучается с се-
редины 80-х годов XX века, и в этом направлении получены сильные и
интересные результаты; подробный обзор этих результатов можно найти
в [3] с обновлениями в [5, Section 2]. Легко понять, что любая группа,
которая может быть определена однозначно с точностью до изоморфиз-
ма по графу Грюнберга – Кегеля, также однозначно с точностью до изо-
морфизма определяется своим спектром; обратное не верно. При этом
граф Грюнберга – Кегеля конечной группы гораздо проще, чем спектр,
восстановить из «видимых» свойств объекта, на котором действует та-
кая группа, но, как было показано в [1], вопрос характеризации по гра-
фу Грюнберга – Кегеля имеет смысл рассматривать только для почти
простых групп. Тем не менее конечная простая группа может однознач-
но с точностью до изоморфизма быть определена не только ее графом
Грюнберга – Кегеля, но даже изоморфным типом ее графа Грюнберга –
Кегеля. Примеры таких групп были недавно построены в [1], [2] и [4].
Обзор известных результатов о характеризации конечной группы гра-
фом Грюнберга – Кегеля можно найти в [1], [5] и [6].

В этом докладе будут обсуждаться недавние результаты автора
о характеризации конечных простых групп по графу Грюнберга – Кегеля
и по изоморфному типу графа Грюнберга – Кегеля. Доклад основан на
совместных работах в В. В. Паньшиным и с M. Chen и М. Р. Зиновьевой.

Результаты о характеризации конечных групп графом Грюнберга –
Кегеля (например, групп F4(q) для нечетных q) получены за счет Россий-
ского научного фонда, проект 24-11-00119, https://rscf.ru/en/project/24-
11-00119/. Работа о характеризации конечных групп изоморфным типом
графа Грюнберга – Кегеля выполнена в рамках исследований, прово-
димых в Уральском математическом центре при финансовой поддерж-
ке Министерства науки и высшего образования Российской Федерации
(номер соглашения 075-02-2025-1549).
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НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА
ГРАНИЦЫ ОБЛАСТИ
НА КОМПЛЕКСНОЙ ПЛОСКОСТИ

Конформные отображения, переводящие заданную область D ⊂ C
в единичный круг S = {w ∈ C : |w| < 1 }, играют ключевую роль
в комплексном анализе, математической физике и прикладных задачах.

Хорошо известно что, если D – односвязная область, то существует
единственная конформная функция φ : D → S, нормированная услови-
ями: f(a) = 0, f ′(a) > 0, a ∈ D, реализующая конформный изоморфизм
между D и S.

При этом ставятся следующие вопросы: «Как оценить |φ(z)| и |φ′(z)|
в зависимости от геометрии D?», «Какие явные формулы или прибли-
жения существуют для конкретных областей?», «Где применяются такие
оценки?».
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Теорема Кёбе об искажении – один из классических результатов,
дающих ответ на первый вопрос в терминах расстояния до границы од-
носвязной области D (см. [1]):

1

4

d(φ(z), ∂D)

1− |z|
≤ |φ′(z)| ≤ 4

d(φ(z), ∂D)

1− |z|
.

Конформное отображение φ, переводящее область D в единичный
круг S, сильно зависит от гладкости и геометрических свойств границы
∂D. Различные классы кривых (гладкие, кусочно-гладкие, жордановы,
фрактальные) приводят к разным оценкам φ и её производных.

В случае гладкой границы ∂D (класса Ck, аналитической) конформ-
ное отображение φ продолжается аналитически через границу, при этом
eсли ∂D ∈ Ck, k ≥ 2, то справедливы оценки вида

|φ′(z)| ≤ c1d(z, ∂D)−1/2, z → ∂D, c1 = const > 0.

В случае границы ∂D из класса Ляпунова C1,α φ′ имеет степенную
особенность:

|φ′(z)| ∼ d(z, ∂D)α−1.

В случае кусочно-гладкой границы ∂D (с внутренними углами παj,

0 < αj < 2) вблизи угла zj отображение ведёт себя как

φ(z) ∼ (z − zj)
1/αj .

В частности, для многоугольника φ выражается через интеграл:

φ(z) = C

∫ n∏
j=1

(z − zj)
αj−1 dz.

Производную φ′ в областях с кусочно-гладкой границей можно
оценить следующим образом:

|φ′(z)| ∼ d(z, ∂D)
1
αj

−1
.
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Области с асимптотически конформными границами ∂D представля-
ют собой класс областей, промежуточных между областями с гладкими
и произвольными жордановыми границами:

sup
z1, z2 ∈ ∂D
|z1 − z2| ≤ δ

sup
z∈Γ

(
|z1 − z|+ |z2 − z|

|z2 − z1|
− 1

)
→ 0, δ → 0,

где Γ – кратчайшая дуга на границе ∂D, соединяющая точки z1 и z2 [2].
В данных областях оценки конформно отображающей функции прини-
мают вид:

(1− |z|)
∣∣∣∣φ′′(z)

φ′(z)

∣∣∣∣→ 0, |z| → 1− 0.

В случае областей с границами класса Лаврентьева – класса неглад-
ких жордановых кривых, для которых конформное отображение сохра-
няет ряд полезных аналитических свойств, несмотря на отсутствие
гладкости: ∃C > 0 : ∀z1, z2 ∈ ∂D:

diam(γ(z1, z2)) ≤ C|z1 − z2|,

где γ(z1, z2) – меньшая из двух дуг, соединяющих z1, z2 на ∂D, – можно
говорить об интегральных оценках производной конформно отображаю-
щей функции.

Используя результаты работ [3] и [4], получаем:
Теорема 1. Пусть D – область с границей ∂D класса Лаврентьева,

φ : D → S, φ(0) = a, a ∈ D, ζ, z ∈ S. Тогда∫
S

|φ′(z)|β+2 (1− |z|)β∣∣1− ζz
∣∣η+2 dm2(z) ≤

c2 |φ′(ζ)|β+2 (1− |ζ|)β

(1− |ζ|)η
,

при β > −1, η > β + 1, c2 = const > 0.
Теорема 2. Пусть D – область с границей ∂D класса Лаврентьева,

φ : D → S, φ(0) = a, a ∈ D, ζ, z ∈ S. Тогда при 1 < p < +∞ справедливо
неравенство:∫
S

|φ′(z)|β+2 (1− |z|)βχp
γ(z)∣∣1− ζz

∣∣η+2 |1− wz|σ
dm2(z) ≤

c3 |φ′(ζ)|β+2 (1− |ζ|)βχγ(ζ)χ
p
q
γ (w)

(1− |ζ|)η+2− 2
p (1− |ζ|)σ−

2
q

,
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где χγ(ζ) = (1−|ζ|)−
γ
pq ; 1

p+
1
q = 1, β > −1, 0 < γ

q < βp+1, η ≥ β−2+3
p−

γ
pq ;

σ > 2− γ
q2 , c3 = const > 0.

Подобные оценки производной конформно отображающей функции
применяются при решении различного рода задач в комплексном
и гармоническом анализе: теории операторов, теории приближении,
описании функционалов и построении базисов в различных простран-
ствах функций.
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типа Лаврентьева / Н. М. Махина // Научные ведомости Белгородского
государственного университета. Серия: Математика. Физика. – 2019. –
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УДК 512.542

В. И. МУРАШКО
Беларусь, Гомель, ГГУ имени Ф. Скорины

ПЕРСПЕКТИВЫ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ
ТЕОРИИ КЛАССОВ КОНЕЧНЫХ ГРУПП

Все рассматриваемые группы конечны. Теория групп находит
применения как внутри самой математики (геометрия, топология, тео-
рия чисел, дифференциальные уравнения и др.), так и за ее пределами
в информатике, химии, физике, финансах и эпидемиологии [1].
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Основной задачей любой содержательной математической теории
является изучение структуры ее объектов для последующей их клас-
сификации. В рамках теории групп существуют несколько методов ре-
шения данной задачи. Одним из них является метод классов групп.
Его суть заключается в построении классов групп, изучении свойств
групп в данном классе, распознавании принадлежности группы данному
классу и выделении в каждой группе подгрупп, несущих информацию,
связанную с данным классом групп. Результаты данного метода пред-
ставлены в ряде монографий (Л. А. Шеметкова, А. Н. Скибы, К. Дёрка
и Т. Хоукса, Го Вэнбиня, А. Баллестера-Болиншеса и Л. Эсквейро и др.).
Отметим, что в настоящее время данный метод продолжает свое актив-
ное развитие.

Возникающие в приложениях группы могут иметь достаточно боль-
шой порядок. Например, группа преобразований кубика Рубика имеет
порядок 43252003274489856000. Поэтому актуальным является вопрос
построения эффективных алгоритмов изучения строения группы.

В настоящее время имеется достаточное число эффективных алго-
ритмов, позволяющих находить классические характеристики и подгруп-
пы группы [2]. Однако до недавнего времени вычислительной теории
классов групп уделялось мало внимания. Так, в работе [3] предложены
алгоритмы вычисления F-нормализаторов, F-проекторов и F-корадика-
лов для разрешимой группы и насыщенной формации F. В работе [4]
предложены алгоритмы вычисления F-проекторов, F-инъекторов,
F-радикалов и F-корадикалов для разрешимых групп. Однако даже ав-
тором этой работы отмечалось, что данные алгоритмы могут быть улуч-
шены при использовании свойств F.

Из вышеизложенного следует, что вычислительная теория классов
конечных групп требует дальнейшего развития. Первым шагом является
переход от разрешимых групп к произвольным. Одним из классических
способов задания формаций групп F является их определение с помощью
действия F-группы на ее главном ряде. Таким образом определяются
формации нильпотентных, разрешимых, сверхразрешимых и квазиниль-
потентных групп, локальные, Бэр-локальные и ступенчатые формации.

Определение ([5; 6]). Пусть f – функция, присваивающая 0 или 1
каждой группе G и ее главному фактору H/K такая, что
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1. f(H/K,G) = f(M/N,G), если H/K и M/N являются G-изоморф-
ными главными факторами G;

2. f(H/K,G) = f((H/N)/(K/N), G/N) для любой N E G такой, что
N ≤ K. Такие функции f будем называть функциями главных факторов.
Обозначим через C(f) класс групп (G | G ≃ 1 или f(H/K,G) = 1 для
любого главного фактора H/K группы G).

3. Через Z(G, f) будем обозначать наибольшую нормальную подгруп-
пу группы G, что f(H/K,G) = 1 для любого главного фактора H/K
группы G ниже ее.

Подгруппа Z(G, f) совпадает с X-гиперцентром ZX(G) группыG, если
f проверяет главный фактор на X-центральность.

Пусть f1 проверяют абелевость H/K и f2 проверяют разрешимость
G/CG(H/K). Тогда

C(f1) = C(f2) = S,

Z(G, f1) и Z(G, f2) – разрешимые радикал и гиперцентр G. Полупрямое
произведение знакопеременной группы A5 степени 5 и ее точного непри-
водимого модуля над F5 является примером группы, для которой данные
подгруппы различны. Нами доказана

Теорема ([5; 6]). Предположим, что f(H/K,G) можно вычислить
за полиномиальное время от n для любой группы перестановок
G степени n и любого n. Тогда F-корадикал и F-гиперцентр группы
G/K можно вычислить за полиномиальное время для любых

K E G ≤ Sn.

Следствие ([5; 6]). Пусть F – локальная формация, определяемая
функцией f . Предположим, что (G/K)f(p) может быть вычислен за
полиномиальное время для любых K E G ≤ Sn и простого p. Тогда
за полиномиальное время можно вычислить ZF(G/K) и (G/K)F для
любых KE G ≤ Sn.

Алгоритмы, построенные при доказательстве теоремы и ее следствия,
являются теоретическими. Они сводятся к известным алгоритмам в груп-
пах перестановок. Отметим, что не все из них в полной мере имплемен-
тированы в системы компьютерной алгебры. Поэтому важной перспек-
тивой вычислительной теории классов конечных групп является импле-
ментация данных алгоритмов.
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Вычисления в группах зависят от того, как группа задана. Построен-
ные при доказательстве теоремы алгоритмы верны для любого задания
группы, но их эффективность доказана только для групп перестановок.
Поэтому еще одной перспективой вычислительной теории классов групп
является нахождение эффективных алгоритмов для каждого из способов
задания группы. В докладе будут также обсуждаться и иные результаты
и перспективы развития вычислительной теории классов групп.

Работа выполнена при финансовой поддержке БРФФИ-РНФ
(проект Ф23PHФ-237).
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В. А. ПЛЕТЮХОВ, О. А. СЕМЕНЮК
Беларусь, Брест, БрГУ имени А. С. Пушкина

ТЕНЗОРНАЯ МАССА И АНИЗОТРОПНЫЙ ХАРАКТЕР
ИНЕРТНЫХ СВОЙСТВ РЕЛЯТИВИСТСКИХ ТЕЛ

Понятие инертности тела (не путать с инерцией!) является одним из
важнейших понятий динамики. В классической (нерелятивистской) ме-
ханике смысл инертности раскрывается при рассмотрении второго
закона Ньютона

d

dt
(mυ⃗) = F⃗ , (1)

где положительный параметр m обладает следующими свойствами:
а) для данного телаm является константой, не зависящей от времени,

модуля скорости тела и действующей на него силы (свойство инвариант-
ности);

б) m является скалярной по отношению к преобразованиям поворо-
тов величиной, т. е. не зависит от направления скорости тела и действу-
ющей на него силы (свойство изотропности).

Параметр m называется массой тела, иногда его называют класси-
ческой массой.

В силу свойства (а) уравнение (1) можно переписать в виде

m
dυ⃗

dt
= F⃗ или ma⃗ = F⃗ , (2)

где a⃗ = dυ⃗
dt – ускорение тела.

Под инертностью тела понимается его способность приобретать опре-
деленное ускорение (изменять скорость) под действием данной силы.
В качестве естественной количественной меры инертности в уравнени-
ях (1) и (2) выступает масса m, которую по указанной причине называ-
ют еще инертной массой. В силу свойства массы (б) инертность тела
носит изотропный характер, т. е. ускорение тела не зависит от угла меж-
ду направлениями скорости тела и действующей на него силы, причем
в каждый момент времени a⃗ � F⃗ .

В специальной теории относительности (далее – СТО) второй закон
Ньютона (1) трансформируется и приобретает вид
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d

dt

(
mυ⃗√
1− β2

)
= F⃗

(
β =

υ

c

)
. (3)

Уравнение (3) называется трехмерным релятивистским уравнением
движения.

Очевидно, что (3) не может быть представлено в форме (2), где
явно фигурирует ускорение. Отсюда следует, что скалярный параметр
m при больших скоростях не является коэффициентом пропорциональ-
ности между силой и ускорением, т. е. не может служить количествен-
ной мерой инертности в классическом смысле. Поэтому возникает во-
прос, можно ли в СТО найти подходящую замену понятию классиче-
ской инертной массы. Другими словами, можно ли ввести в (3) такую
математическую конструкцию, которая выступала бы в качестве «коэф-
фициента пропорциональности» между силой и ускорением и давала бы
наглядное представление об инертных свойствах быстро движущегося
тела без решения сложных дифференциальных уравнений.

Для ответа на поставленный вопрос раскроем левую часть уравне-
ния (3), выполнив в ней операцию дифференцирования по времени.
Получим:

d

dt

(
mυ⃗√
1− β2

)
=

m√
1− β2

dυ⃗

dt
+

mυ⃗
(
υ⃗, dυ⃗dt

)
c2 (1− β2)3/2

=

=
m√
1− β2

(
1 +

υ⃗ · υ⃗
c2 (1− β2)

)
a⃗ =

m√
1− β2

(
1 +

β⃗ · β⃗
(1− β2)

)
a⃗. (4)

Здесь β⃗ = υ⃗
c , (υ⃗,

dυ⃗
dt ) = (υ⃗, a⃗) – скалярное произведение; υ⃗ · υ⃗, β⃗ · β⃗ –

прямое (диадное) произведение векторов. Если представить векторы F⃗
и a⃗ в виде столбцов

F⃗ =

F1

F2

F3

 , a⃗ =

a1a2
a3

 , (5)

то диада β⃗ · β⃗ представляет собой матрицу

β⃗ · β⃗ =

 β2
1 β1β2 β1β3

β2β1 β2
2 β2β3

β3β1 β3β2 β2
3

 . (6)
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В преобразованиях (4) использовано свойство диады(
a⃗ · b⃗

)
c⃗ = a⃗

(⃗
b, c⃗
)
. (7)

С учетом (4) уравнение (3) принимает вид

F⃗ = µa⃗, (8)

где F⃗ и a⃗ – трехмерные вектор-столбцы (5), µ – матрица 3× 3 вида

µ =
m√
1− β2

(
1 +

β⃗ · β⃗
1− β2

)
. (9)

В индексных обозначениях будем соответственно иметь:

Fi =
3∑

j=1

µijaj, (10)

где

µij =
m√
1− β2

(
δij +

βiβj
1− β2

)
(11)

и по повторяющимся индексам подразумевается суммирование.
Уравнения (8), (10) можно обратить:

a⃗ = µ−1F⃗ , ai =
3∑

j=1

µ−1
ij Fj, (12)

где обратная матрица µ−1 имеет вид

µ−1 =

√
1− β2

m

(
1− β⃗ · β⃗

)
, µ−1

ij =

√
1− β2

m
(δij − βiβj) . (13)

Очевидно, что именно тензор-матрица µ, выступающая в качестве
«коэффициента пропорциональности» между векторами силы и ускоре-
ния, адекватно отражает смысл понятия «мера инертности» в реляти-
вистской динамике. Тензорный характер этой величины означает, что
инертность релятивистского тела не является изотропным свойством.

В случае покоящегося или медленно движущегося тела тензорная
масса µij предельным образом переходит в классическую скалярную



25

инвариантную массу m (она же масса покоя), являющуюся мерой инерт-
ности тела в нерелятивистском приближении.

Тензорные соотношения (10)–(13) можно переписать в более доступ-
ной для учащихся и студентов векторной форме, не вводя явно в рас-
смотрение тензорную массу, а именно [1]:

F⃗ =
m√
1− β2

(
a⃗+ |⃗a| β2

1− β2
υ⃗0 cosα

)
, (14)

a⃗ =

√
1− β2

m

(
F⃗ − |F⃗ |β2υ⃗0 cosφ

)
, (15)

где υ⃗0 – единичный вектор, задающий направление скорости тела
в момент действия силы, α – угол между направлениями ускорения и
скорости, φ – угол между направлениями силы и скорости.

Из формул (14), (15) можно извлечь важную информацию об инерт-
ных свойствах релятивистского тела, не прибегая к решению дифферен-
циального уравнения (3). В частности:

– модуль ускорения зависит не только от модуля силы, но и от ско-
рости, которой обладает тело в момент действия силы;

– модуль ускорения зависит от угла между направлениями силы
и скорости;

– направления ускорения и силы не совпадают, исключение состав-
ляют лишь два случая, когда F⃗ � υ⃗ и F⃗ ⊥ υ⃗.

В первом случае тензорные уравнения (10) – (13) и эквивалентные
им векторные уравнения (14), (15) принимают вид:

F⃗ =
m

(1− β2)3/2
a⃗, a⃗ =

(
1− β2

)3/2
m

F⃗ . (16)

Здесь в качестве меры инертности тела выступает скалярная величина

m∥ =
m

(1− β2)3/2
, (17)

называемая продольной массой [2, c. 45–48].
Во втором случае, когда F⃗ ⊥ υ⃗, из (14), (15) следует:

F⃗ =
m√
1− β2

a⃗, a⃗ =

√
1− β2

m
F⃗ . (18)
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Коэффициент пропорциональности между a⃗ и F⃗ в (18)

m⊥ =
m√
1− β2

(19)

естественно назвать поперечной массой [2, c. 45–48]. Данный случай
реализуется, когда тело движется по дуге окружности, например при
движении заряженных частиц в магнитном поле.

Отметим также, что с учетом обозначения (19) знаменитая эйнштей-
новская формула для полной релятивистской энергии тела

E =
mc2√
1− β2

(20)

может быть переписана в виде

E = m⊥c
2. (21)

Эта формула устанавливает связь между полной энергией и инертностью
тела, соответствующей его движению по окружности (связь между энер-
гией и поперечной массой). Обычно приводимая в современной научной
и учебно-методической литературе формула

E0 = mc2 (22)

является нерелятивистским пределом (20), (21).
Подведем краткий итог. В релятивистской механике количествен-

ная мера инертности тел является тензорной величиной (тензорная мас-
са). Тензорный характер релятивистской массы означает, что инертность
не является изотропным свойством. Указанная неизотропность обуслов-
лена тем, что движущееся тело создает в пространстве выделенное на-
правление, совпадающее с направлением скорости тела в данный момент
времени. В то же время адекватное и достаточно полное представление
об инертных свойствах релятивистских тел можно получить и без явного
введения тензорной массы, используя векторные формулы (14), (15).
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НЕКОТОРЫЕ АСПЕКТЫ ПОДГОТОВКИ
СПЕЦИАЛИСТА В УНИВЕРСИТЕТЕ

В последнее время проблеме качества во всех отраслях уделяется
все большее внимание. Предыдущий год в нашей стране был объявлен
годом качества. Конечно, эта проблема актуальна и для образования, в
том числе и высшего.

Качество образования определяется многими факторами, среди
которых:

а) качество подготовки поступающих абитуриентов,
б) качество содержания образования,
в) качество технологии обучения,
г) уровень взаимодействия студентов и преподавателей в образова-

тельном процессе,
д) уровень квалификации педагогов и ряд других факторов.
От качества подготовки студентов зависит:
1) конкурентоспособность выпускников как профессионалов, их

способность к саморазвитию,
2) развитие науки, воспроизводство научных кадров,
3) стратегическое развитие страны.
Конечно, качество подготовки поступающих абитуриентов, особенно

на педагогические специальности, является определяющим при подго-
товке специалистов на выходе.

На ряде специальностей у выпускников школ высокий уровень
подготовки, и, соответственно, проходные баллы по этим специально-
стям высокие. Но по ряду специальностей (в основном это педагогиче-
ские специальности физико-математического профиля) проходные бал-
лы невысокие и с трудом удается набрать студентов на бюджетные места.
Вместе с тем именно учителя физики и математики очень востребованы
на рынке труда.

Содержание образования – важнейшая составляющая подготовки
педагога-профессионала, владеющего профессиональными компетенци-
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ями. Содержание образования, закрепленное в современных образова-
тельных программах и стандартах, значительно урезано по сравнению с
тем, каким оно было несколько лет назад, что говорит о сложности реа-
лизации фундаментальной подготовки будущего специалиста совместно
с профессиональной направленностью обучения.

Одним из решений данной проблемы является формирование мето-
дологических знаний студентов, способов учебной деятельности, чтобы
обучающийся с позиции знающего переходил в позицию познающего,
формирование у них умений рефлексивно-оценочной деятельности.

Неумение работать с литературой, информацией, ее анализировать,
сравнивать, делать выводы говорит о невладении многими студентами
логическими операциями. Многие студенты не владеют элементарными
математическими, физическими, философскими, педагогическими поня-
тиями. Отвечая на экзаменах на вопросы о законах Ньютона, Кулона,
студенты не могут дать ответ на вопрос «Что такое закон?», «Что такое
величина?», «Что такое геометрическая фигура?» и т. д. Вместе с тем
освоение базовых понятий – основа мышления человека, о формирова-
нии их идет речь уже в начальной школе. Поэтому будущий педагог дол-
жен уметь ответить на самые, казалось бы, простые вопросы учащихся.
А значит, студент должен владеть различными мыслительными умени-
ями, рациональными приемами и способами умственной деятельности.

Современные информационные технологии (например, Интернет)
имеют определенную пользу в организации образовательного процесса.
Но постоянное обращение к Интернету не развивает мыслительные на-
выки. «Погружение в информационный поток не приводит к автома-
тическому превращению знаний, а значит, не усложняет когнитивную
сферу субъекта, находящегося в этом потоке. Человека делают умнее
работа с информацией, ее преобразования, переструктурирование, схе-
матизация, дополнение и т. д.» [1].

Следовательно, один из показателей качественного образования –
единство формирования предметных и методологических знаний [2].

От уровня взаимодействия преподавателей и студентов зависит
результативность образовательного процесса. Это взаимодействие долж-
но быть построено на основе сотрудничества, т. е. совместной деятель-
ности студента и преподавателя, объединенных взаимопониманием, на-
целенностью на результат, личностным принятием друг друга.
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Именно при такой деятельности у студентов формируется положи-
тельная мотивация к обучению, происходит не только передача инфор-
мации от преподавателя студентам, но и преобразование полученных при
этом знаний в ценности, значимые для будущей профессии.

Процесс сотрудничества преподавателя и студентов строится
на основе общения, предполагающего владение участниками образова-
тельного процесса коммуникативными умениями и управление общением
со стороны педагога. Такое отношение партнерства в процессе обучения
создает условие для познавательной активности студентов, эмоционально-
продуктивной атмосферы во время занятий, обеспечивая тем самым «пе-
дагогический резонанс» (Ю. К. Бабанский).

Как было сказано выше, важным показателем качественного обра-
зования является развитие науки и воспроизводство научных кадров.
В настоящее время в Беларуси 513 докторов наук и 2687 кандидатов наук
(население нашей страны 9 млн 156 тыс. человек). Для сравнения в Рос-
сии 79 тыс. докторов наук (население 146 млн человек). Если говорить
о соотношении ученых в рамках Союзного государства, то в Беларуси
должно быть около 5 тыс. докторов наук.

Подготовка кандидатов и докторов наук – сложная и многоаспект-
ная задача, требующая временных, материальных и интеллектуальных
ресурсов. Вместе с тем в настоящее время как в аспирантуру, так и в
докторантуру желающих поступать немного. А значит, вопрос воспроиз-
водства научных кадров – серьезная проблема, решение которой связано
в том числе и с социальным статусом ученого. В рамках университет-
ского образования решение этой проблемы необходимо начинать с при-
влечения студентов к научно-исследовательской деятельности, создания
ведущими учеными научно-педагогических школ.

Таким образом, овладение студентами предметными и методологи-
ческими знаниями позволит им в будущем решать теоретические и при-
кладные профессиональные задачи. Привлечение студентов к научной
деятельности позволяет развивать у них умения ставить задачи, видеть
способы их решения, что так необходимо исследователю.

Научная деятельность, рассматриваемая на уровне университета и
на уровне общества в целом, представляет собой сложный феномен, пер-
спективы и результат которого, обеспечивают наряду с другими видами
профессиональной деятельности инновационное развитие страны.
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О ГРУППАХ С ОБОБЩЕННО СУБНОРМАЛЬНЫМИ
ПОДГРУППАМИ

Рассматриваются только конечные группы. Пусть F – класс групп.
Минимальной не F-группой называется группа, не принадлежащая
классу F, все собственные подгруппы которой принадлежат F [1]. В ра-
боте [2] для насыщенной наследственной формации F установлены усло-
вия, при которых разрешимая группа с единичной подгруппой Фраттини
является минимальной не F-группой. В теореме 1 получено обобщение
данного результата для случая ω-насыщенной формации F, где ω – непу-
стое множество простых чисел.

Пусть F – непустая формация, G – группа, GF — F-корадикал
группы G, т. е. наименьшая нормальная подгруппа группы G, фактор-
группа по которой принадлежит F; Oω(G) – наибольшая нормальная
ω-подгруппа группы G. Максимальная подгруппа H группы G назы-
вается Fω-нормальной (Fω-абнормальной) в G, если GF ⊆ M ∩ Oω(G)
(соответственно, GF ̸⊆M ∩Oω(G)). Подгруппа H группы G называется
Fω-субнормальной в G, если либо H = G и GF – ω-группа, либо суще-
ствует максимальная (G−H)-цепь вида

G = H0 ⊃ H1 ⊃ ... ⊃ Hk = H

такая, что Hi – Fω-нормальная подгруппа в Hi−1, i = 1, k [3]. Очевидно,
что Fω-субнормальная подгруппа группы G является F-субнормальной
в G (например, [1, с. 90]). В случае, когда ω совпадает с множеством
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P всех простых чисел, понятие Fω-субнормальной подгруппы совпадает
с понятием F-субнормальной подгруппы.

Группа G называется ω-примитивной, если в G существует мак-
симальная подгруппа M такая, что CoreG(M) ∩ Oω(G) = 1, при этом
подгруппа M называется ω-примитиватором группы G [4]. Формация
F называется ω-насыщенной, если ей принадлежит всякая группа G,
удовлетворяющая условию G/L ∈ F, где L ⊆ Φ(G) ∩Oω(G) [5].

Теорема 1. Пусть F – наследственная ω-насыщенная формация и
G – разрешимая группа, Oω(G) ̸= 1, Φ(G)∩Oω(G) = 1. Группа G явля-
ется минимальной не F-группой в том и только в том случае, когда
G – ω-примитивная группа с Fω-абнормальным ω-примитиватором M
и любая собственная подгруппа из M является Fω-субнормальной в G.

В случае, когда ω = P, из теоремы 1 вытекает теорема 2.2 из [2].
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КОНЕЧНЫЕ ГРУППЫ С МОДУЛЯРНЫМИ
CP -ПОДГРУППАМИ

Рассматриваются только конечные группы.
Одним их обобщений нормальности является модулярность. Напом-

ним, что подгруппа H группы G называется модулярной в G подгруп-
пой [1], если H является модулярным элементом решетки подгрупп груп-
пы G, т. е.

1) ⟨X,H⟩ ∩ Y = ⟨X,H ∩ Y ⟩ для всех X, Y ≤ G таких, что X ≤ Y ;
2) ⟨H,X⟩ ∩ Y = ⟨H,X ∩ Y ⟩ для всех X, Y ≤ G таких, что H ≤ Y .
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Подгруппа, порожденная модулярными в группе G подгруппами, мо-
дулярна в G. Поэтому множество всех модулярных подгрупп группы
G образует верхнюю полурешетку относительно частичного упорядоче-
ния включения. В то же время пересечение модулярных в группе G
подгрупп может быть немодулярной в G подгруппой, например, груп-
па G = C2

2 o C8 [2, SmallGroup(32,5)]. Поэтому множество модулярных
подгрупп не образует решетку относительно частичного упорядочения
включения. Модулярность не транзитивна. Так, например, подгруппа C2

модулярна в подгруппе C2
2 , которая в свою очередь модулярна в A4, но

C2 не модулярна в A4. Группы, в которых модулярность транзитивна,
называют MT -группами. Разрешимая группа G является MT -группой
тогда и только тогда, когда решетка подгрупп группы G модулярна [3].
В общем случае MT -группы и их обобщения описаны в работах [4], [5].

Понятно, что группа, в которой каждая CP -подгруппа модулярна,
имеет модулярную решетку подгрупп, в частности, такая группа яв-
ляется MT -группой. Строение групп с модулярной решеткой подгрупп
описано в работах [1], [6], [7]. Вполне естественно возникает задача ис-
следования групп, в которых не все CP -подгруппы модулярны.

Доказана
Теорема. Пусть в группе G каждая CP -подгруппа модулярна

или самонормализуема, тогда либо группа G имеет модулярную ре-
шетку подгрупп, либо G = G′o⟨x⟩, где ⟨x⟩ – силовская подгруппа и под-
группа Картера группы G и коммутант G′ группы G нильпотентен.

Заметим, что утверждение теоремы необратимо. Так, например, зна-
копеременная группа A4 степени 4 представима в виде A4 = C2

2 o C3,
но при этом содержит немодулярную подгруппу C2.

Работа выполнена при финансовой поддержке Министерства обра-
зования Республики Беларусь (ГПНИ «Конвергенция-2025», № государ-
ственной регистрации 20211467).
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О ДЕКОМПОЗИЦИОННОМ ПОДХОДЕ К АНАЛИЗУ
СТРУКТУРНЫХ СВОЙСТВ И УПРАВЛЕНИЮ
СИНГУЛЯРНО ВОЗМУЩЕННЫМИ СИСТЕМАМИ
С ЗАПАЗДЫВАНИЕМ

Введение. Сингулярно возмущенные системы (далее – СВС) явля-
ются математическими моделями динамических систем, в которых
реализуются одновременно несколько взаимосвязанных подпроцессов
с существенно различающимися темпами. Примерами являются элек-
трические сети с очень маленькими индуктивностями или емкостями,
химические реакции или биологические системы с очень разными ско-
ростями процессов, механические системы с очень легкими или жестки-
ми компонентами. Динамика многотемповых систем может быть описана
в стандартной форме системами дифференциальных уравнений с малым
параметром при части производных. Наличие запаздывания отражает
инерционность процессов или пространственную распределенность в ре-
альных системах и приводит к моделям, описываемым функционально-
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дифференциальными уравнениями. Примеры СВС с запаздыванием (да-
лее – СВСЗ) – модель нейросистемы, уравнение подсолнечника, модель
динамики ядерного реактора, модель следования за автомобилем [1].

При решении задач теории управления для СВС возникают пробле-
мы: высокая размерность, нерегулярная зависимость от параметра усло-
вий структурных свойств, законов управления и наблюдения. Значения
малого параметра могут быть неизвестны, поэтому стремятся получать
условия наличия у СВС тех или иных свойств не только при некото-
ром фиксированном значении малого параметра, а для всех достаточно
малых его значений и важно, чтобы условия не зависели от параметра.

Применение асимптотических методов и методов разделения движе-
ний позволяет решить эти проблемы и свести исследование СВС к анали-
зу регулярно возмущенных независимых подсистем в разных масштабах
времени, описывающих движения с различными скоростями. Декомпо-
зиция СВС по темпам изменения переменных позволяет решать задачи
управления отдельно для медленных и быстрых переменных [2].

Один из подходов к декомпозиции СВС основан на использовании
замены переменных [3]. Порожденный такой заменой оператор преоб-
разует оператор СВС без запаздывания к блочно-диагональному виду,
что соответствует расщеплению СВС на разделенные по темпам систе-
мы меньшей размерности, чем исходная, при этом в отличие от исходной
эти подсистемы регулярным образом зависят от малого параметра.

Наличие запаздывания в СВС вносит принципиальные сложности
в разработку методов декомпозиционных преобразований, что связано
с бесконечномерностью пространства состояний систем с запаздыванием.
Для СВС с «немалым» запаздыванием возникают следующие проблемы:
1) конечномерное преобразование [2; 3], примененное к СВСЗ, приводит
лишь к частичной декомпозиции системы, что обусловлено нелокаль-
ным действием оператора системы с запаздыванием; 2) в общем случае
невозможно преобразовать СВСЗ с пространством состояний кусочно-
непрерывных функций на отрезке длины запаздывания в систему с раз-
деленными движениями в том же функциональном пространстве.

Постановка задачи. Описание подхода к декомпозиции.
В работе рассматривается линейная нестационарная сингулярно возму-
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щенная система управления с наблюдаемым выходом и запаздыванием
по состоянию (далее – ЛНСВСЗ) вида (T ∆

= [t0, t1])

ẋ(t)=A10(t)x(t) + A11(t)x(t−h) + A20(t)y(t) + A21(t)y(t−h) +B1(t)u(t),

µẏ(t) = A30(t)x(t) + A31(t)x(t−h) + A4(t)y(t) +B2(t)u(t), t ∈ T,

v(t) = C10(t)x(t) + C11(t)x(t−h) + C20(t)y(t) + C21(t)y(t−h), t ∈ T, (1)

(x(θ), y(θ)) = (ϕ(θ), ψ(θ)), θ ∈ Th
∆
= [t0 − h, t0] .

Здесь x ∈ Rn1 – медленная переменная, y ∈ Rn2 – быстрая перемен-
ная, µ – параметр, µ ∈ (0, µ0], µ0 ≪ 1, h = const > 0 – запаздывание,
Aij (t), i = 1, 3, j = 0, 1, A4 (t), Bi (t), Cij (t), i = 1, 2, j = 0, 1, t ∈ T, –
непрерывные на T матричные функции подходящих размеров, u (t) –
функция управления, u (·) ∈ L2 [T ;Rr], ϕ(θ), ψ(θ), θ ∈ Th – заданные
кусочно-непрерывные на Th функции, v(t) – выходная функция.

Ставится задача построения эквивалентного преобразования, обоб-
щающего расщепляющее преобразование [3] на ЛНСВСЗ (1). При этом
надо, чтобы декомпозиционное преобразование сохраняло структурные
свойства системы с запаздыванием и было обратимым. Эта задача впер-
вые решена автором на основе операторного подхода, представления
оператора правой части системы в кольце полиномов от оператора запаз-
дывания и использования нелокальных операторов пребразования [4].

Для корректного применения метода преобразований к декомпози-
ции ЛНСВСЗ обосновано вложение ЛНСВСЗ в семейство систем с запаз-
дыванием в расширенном пространстве состояний с оператором в коль-
це степенных рядов. Это позволяет расширить класс допустимых замен
переменных и построить нелокальное обратимое расщепляющее преобра-
зование ЛНСВСЗ. При этом разделенная по темпам изменения перемен-
ных система оказывается системой с бесконечным запаздыванием с исче-
зающей памятью. На основе асимптотических методов построено семей-
ство обратимых аппроксимаций расщепляющего преобразования, приво-
дящих ЛНСВСЗ к эквивалентным разделенным по временным шкалам
подсистемам с конечным запаздыванием.

Эквивалентные преобразования. Представим правую часть
ЛНСВСЗ (1) в операторной форме, введя оператор дифференцирова-
ния p

∆
= d

dt и оператор чистого запаздывания e−ph: e−phx(t) = x(t − h).
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Обозначим M = diag{En1
, µEn2

},

A
(
t, e−ph

)
= A0 (t) + A1 (t) e

−ph ∈ A,

C
(
t, e−ph

)
= C0 (t) + C1 (t) e

−ph ∈ C,

C0 (t) = (C10 (t) , C20 (t)) , C1 (t) = (C11 (t) , C21 (t)) ,

B =

(
B1

B2

)
∈ B, A0 =

(
A10 A20

A30 A4

)
, A1 =

(
A11 A21

A31 0

)
,

и определим множества Aµ, Bµ и C непрерывных на T операторов Aµ

правой части свободной системы, Bµ управляющей части и C выхода (1):

Aµ
∆
= A

(
t, µ, e−ph

)
= M−1A

(
t, e−ph

)
∈ Aµ,

Bµ
∆
= B (t, µ) = M−1B (t) ∈ Bµ.

Здесь и далее для любого оператора P будем обозначать Pµ = M−1P .
Тогда ЛНСВСЗ (1) можно записать в виде:

ż(t) = A
(
t, µ, e−ph

)
z(t) +B (t, µ)u(t),

v(t) = C
(
t, e−ph

)
z(t), z(t) = col(x, y),

и отождествить с тройкой операторов (Aµ, Bµ,C) ∈ (Aµ,Bµ,C).
Погрузим систему (Aµ, Bµ,C) (1) в семейство систем. Для этого про-

должим с T на (−∞, t1] матричные функции системы (1) так, что Aij (t),
i = 1, 3, j = 0, 1, A4 (t) ограничены, непрерывно дифференцируемы.
Функции φ(θ), ψ(θ) доопределим влево тождественно нулями.

Обозначим Tkh
∆
= [t0 − (k + 1)h, t0], k = 0, 1, . . .. Пусть Mm

j (t),
m, j = 0, k, – n×n-матричные функции с элементами из кольца кусочно-
непрерывных на Tkh ∪ T функций. Погрузим классы операторов A, Aµ

в семейства классов Ok, Oµk, k = 0, 1, . . . операторов

Ok

(
t, µ, e−ph

)
=

k+1∑
j=0

k∑
m=0

µmMm
j (t) e−jph ∈ Ok и Oµk ∈ Oµk.

Введем также группу O∞ операторов

O∞
(
t, µ, e−ph

)
=

∞∑
j=0

∞∑
m=0

µmMm
j (t) e−jph
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c элементами из кольца PC((−∞, t1] ;R)[[µ, e−ph]] формальных степен-
ных рядов от µ, e−ph над кольцом кусочно-непрерывных ограниченных на
(−∞, t1] функций и класс Oµ∞. В классах Ok, Oµk, k = 0, 1, . . . , Oµ∞, O∞
выделим подклассы Ak, Aµk, k = 0, 1, . . . , Aµ∞, A∞ операторов, для ко-
торых M 0

0 (t),M
0
1 (t) имеют вид A0(t) A1(t) и все остальные Mm

j (t) ≡ 0,
t ∈ T . Таким образом на расширенном пространстве состояний
PC ((−∞, t];Rn) определены вложенные классы операторов такие, что

Aµk ⊂ Aµ(k+1) ⊂ Oµ(k+1) ⊂ Oµ∞,Aµk ⊂ Aµ∞ ⊂ Oµ∞, k = 0, 1, . . . .

Аналогично введем вложенные системы операторов управляющей части
и выхода ЛНСВСЗ (1) таким образом, что определено погружение ЛНС-
ВСЗ (1) (Aµ, Bµ,C) ∈ (Aµ,Bµ,C) ⊂ (Aµk,Bµk,Cµk) ⊂ (Oµk,Vµk,Wµk)
⊂ (Oµ∞,Vµ∞,Wµ∞) , k = 0, 1, . . . .

Теорема 1. Пусть элементы функций Aij (t), i = 1, 3, j = 0, 1,
A4 (t), определены, ограничены и непрерывно дифференцируемы с огра-
ниченными производными на (−∞, t1];

Reλ (A4 (t)) ≤ −a < 0; ∥A4 (t)∥ ≤ b;
∥∥∥Ȧ4 (t)

∥∥∥ ≤ c ∀t ∈ (−∞, t1].

Тогда для достаточно малых µ > 0 существует унимодулярный
оператор нелокального преобразования Ляпунова [5]

K
(
t, µ, e−ph

)
: (Oµ∞,Vµ∞,Wµ∞) → (Oµ∞,Vµ∞,Wµ∞) ,

действующий на (Aµ, Bµ,C) по правилу

K ∗ (Aµ, Bµ,C) =
(
K−1AµK−K−1K̇,K−1Bµ, CK)

и преобразующий ЛНСВСЗ (1) к системе с блочно-диагональным
оператором Aξη = K ∗Aµ = diag

{
Aξ

(
t, µ, e−ph

)
, µ−1Aη

(
t, µ, e−ph

)}
.

Компоненты оператора K могут быть представлены в виде асимпто-
тических рядов по µ, выраженных через матрицы ЛНСВСЗ (1).

Теорема 2. В условиях теоремы 1 для достаточно малых µ > 0 в
результате замены переменных

z (t) = K
(
t, µ, e−ph

)
col (ξ (t), η (t)) , ξ (t) ∈ Rn1, η (t) ∈ Rn2, t ∈ (−∞, t1],

при φ(θ) ≡ 0, ψ(θ) ≡ 0 ЛНСВСЗ (1) преобразуется в алгебраически и
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асимптотически эквивалентную систему с разделенными движения-
ми с бесконечным запаздыванием

Σξη

ξ̇ (t) = Aξ

(
t, µ, e−ph

)
ξ (t) +Bξ

(
t, µ, e−ph

)
u (t) ,

µη̇ (t) = Aη

(
t, µ, e−ph

)
η (t) +Bη

(
t, µ, e−ph

)
u (t) , t ∈ T,

v (t) = Cξ

(
t, µ, e−ph

)
ξ (t) +Cη

(
t, µ, e−ph

)
η (t) , t ∈ T,

(2)

где Aξ,Bξ,Cξ,Aη,Bη,Cη выражаются через матрицы ЛНСВСЗ (1) и
представимы в виде асимптотических рядов по µ.

Наряду с расщепляющим преобразованием K
(
t, µ, e−ph

)
определяем

семейство невырожденных при каждом t ∈ T n × n-матричных унимо-
дулярных операторов K[k](t, µ, e−ph) : (Oµk,Vµk,Wµk) → (Oµk,Vµk,Wµk) ,
k = 1, 2, . . . , которые аппроксимируют K(t, µ, e−ph) и компоненты ко-
торых выражаются через матрицы ЛНСВСЗ в виде конечных сумм (по
µ, e−ph). Применяя преобразования K[k] к ЛНСВСЗ (1) как системе клас-
са (Oµk,Vµk,Wµk), получаем подсистемы с конечным запаздыванием,
операторы которых аппроксимируют операторы расщепленной системы
(2) с точностью O(µk). В частности, при k = 0 эти системы совпадают
с независящими от параметра µ вырожденной системой (далее – ВС)
и присоединенной системой (далее – ПС), которые формально получа-
ются из СВС, если рассмотреть ее отдельно в «быстрой» и «медленной»
временных шкалах при µ = 0. При det A4 (t) ̸= 0, t ∈ T ВС имеет вид n1-
мерной нестационарной системой с запаздыванием в состоянии, управле-
нии и выходе, а ПС является стационарной n2-системой без запаздывания
[6]. Эквивалентные преобразования ЛНСВСЗ (1) с помощью операторов
семейства K[k], k = 0, 1, 2, . . . сохраняют структурные свойства и позво-
ляют получить последовательность уточняющих достаточных условий
структурных свойств ЛНСВСЗ, аппроксимации любых порядков ее ре-
шений, строить регуляторы и наблюдатели с требуемой точностью.

Заключение. Впервые построено эквивалентное декомпозиционное
преобразование, полностью разделяющее медленные и быстрые динами-
ки ЛНСВСЗ. Установлено, что разделенная по темпам изменения пере-
менных система является системой с бесконечным запаздыванием
с исчезающей памятью. Введено семейство обратимых операторов,
аппроксимирующих декомпозиционное преобразование, применение ко-
торых к ЛНСВСЗ позволяет выводить свойства исходной ЛНСВСЗ (1) из
аналогичных свойств регулярно возмущенных систем с конечным
запаздыванием меньшей размерности в разных масштабах времени. По-
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лучены условия на параметры ЛНСВСЗ, при которых структурные свой-
ства ЛНСВСЗ (1) (устойчивости, стабилизируемости, управляемости, на-
блюдаемости) следуют из аналогичных стуктурных свойств разделенных
по темпам изменения переменных подсистем. Доказаны независящие от
малого параметра достаточные условия структурных свойств ЛССВСЗ.
Их выполнение гарантирует наличие изучаемых свойств у ЛССВСЗ для
всех достаточно малых значений параметра. Построены аппроксимации
решений ЛНСВСЗ через решения аппроксимаций расщепленной систе-
мы (2), композитные регуляторы и наблюдатели, компоненты которых
можно рассчитывать отдельно и параллельно для ВС и ПС.

Работа выполнена при поддержке Министерства образования Рес-
публики Беларусь в рамках ГПНИ «Конвергенция-2025», 1.2.04.
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SPIN 1 PARTICLE WITH ANOMALOUS MAGNETIC
MOMENT AND POLARISABILITY IN PRESENCE
OF UNIFORM MAGNETIC AND ELECTRIC FIELDS

In the paper we study a generalized Duffin–Kemmer equation for spin 1
particle with two characteristics, anomalous magnetic moment and polariza-
bility in presence of external uniform magnetic and electric fields.

After separating the variables, we get the system of ten first order partial
differential equations for 10 functions fi(r, z) . To describe the r-dependence
of 10 functions fA(r, z), A = 1, ..., 10, we apply the method by Fedorov –
Gronskiy; so the complete 10-component wave function is decomposed into
the sum of three projective constituents, dependence of each component on
the polar coordinate r is determined by only one corresponding function,
Fi(r), i = 1, 2, 3; these three basic functions are constructed in terms of the
confluent hypergeometric functions, at this there arises the quantization rule
due to the presence of magnetic field.

After that we derive a system of 10 ordinary differential equations for
10 functions fA(z). This system is solved by using the elimination method
and with the help of special linear combining of the involved functions.
As the result, we find three separated second order differential equations,
their solutions are constructed in the terms of the confluent hypergeometric
functions. The numerical studied of the obtained analytical results is done.
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Thus, in this paper, the three types of solutions for a vector particle with
two additional electromagnetic characteristics in presence of external uniform
magnetic and electric fields are found.

These results are extended to presence of uniform electric field, and into
presence of both magnetic and electricfields. In the last case, the problem
for solving reduce to the system of 10 partial differential equations in two
cylindrical coordinates (r, z).
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СЕКЦИЯ 1
АЛГЕБРА, ГЕОМЕТРИЯ И ИХ СОВРЕМЕННЫЕ

ПРИЛОЖЕНИЯ

УДК 512.542

Е. В. ЗУБЕЙ
Беларусь, Брест, БрГУ имени А. С. Пушкина

РАЗРЕШИМОСТЬ КОНЕЧНОЙ ГРУППЫ
С OS-ПРОПЕРЕСТАНОВОЧНЫМИ СИЛОВСКИМИ
ПОДГРУППАМИ

Рассматриваются только конечные группы.
Подгруппа A группы G называется OS-проперестановочной в G,

если существует подгруппа B такая, что G = NG(A)B, AB является
подгруппой группы G и подгруппа A перестановочна со всеми подгруп-
пами Шмидта из B. Напомним, что группой Шмидта называется ко-
нечная ненильпотентная группа, у которой все собственные подгруппы
нильпотентны. Подробный обзор результатов о свойствах групп Шмид-
та, существовании подгрупп Шмидта в конечных группах и их некото-
рых приложениях в теории классов конечных групп приведен в статье
В. С. Монахова [1].

Понятие OS-проперестановочной подгруппы было введено в работе
[2], там же указаны основные свойства этих подгрупп, и установлена для
простого числа p ≥ 7 p-разрешимость группы, в которой силовская p-
подгруппа OS-проперестановочна.

В работе [3] для p < 7 перечислены все неабелевы композиционные
факторы группы, в которой силовская p-подгруппа OS-проперестано-
вочна. Из этой работы вытекает разрешимость группы с OS-пропереста-
новочными силовскими 2- и 3-подгруппами.

Лемма 1. Если в группе G силовские 2- и 3-подгруппы OS-пропере-
становочны, то группа G разрешима.

Лемма 2. Если в группе G силовские 2- и 7-подгруппы OS-пропере-
становочны, то группа G разрешима.

Работа выполнена при финансовой поддержке Министерства обра-
зования Республика Беларусь (ГПНИ «Конвергенция-2025», номер госу-
дарственной регистрации – 20211467).
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ВЫЧИСЛЕНИЕ НЕБИПРИМАРНОГО ГРАФА
КОНЕЧНОЙ ГРУППЫ

Рассматриваются только конечные группы. Изучение графов, опре-
деляемых с помощью классов групп, является довольно актуальным на-
правлением исследований [1; 2]. Он позволяет изучать структуру груп-
пы по свойствам сопоставляемого ей графа. Среди таких графов выде-
ляются коммутативные [3] и некоммутативные [4], нильпотентные [5] и
ненильпотентные [6], разрешимые [7] и неразрешимые, сверхразрешимые
[1] и несверхразрешимые, циклические [8] и нециклические [9], бипримар-
ные и небипримарные [10] графы, а также их обобщения.

В данной работе мы подробней остановимся на изучении
небипримарного графа. Для этого рассмотрим класс всех таких групп,
порядки которых имеют не более двух различных простых делителей.
Обозначим его через B.

Определение 1. Небипримарным графом конечной группы G
называется простой граф, вершинами которого является множество
G \ IB(G), где

IB(G) = {y ∈ G | ∀x ∈ G(⟨x, y⟩ ∈ B)}
и две вершины x и y соединены ребром ⇔ ⟨x, y⟩ /∈ B.
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Согласно [10], в общем случае IB(G) не является подгруппой G.
Анализируя литературу, нетрудно заметить, что о небипримарном

графе известно довольно мало. В связи с этим для более подробного изу-
чения данного графа на языке программирования GAP были написаны
функции, позволяющие вычислять данный граф.

1. Функция Vertices(G) возвращает множество вершин небипримар-
ного графа. Кроме того, с помощью данной функции можно найти
количество вершин рассматриваемого нами графа.

2. Функция Edges(G) возвращает список ребер небипримарного
графа. Кроме того, с помощью данной функции можно найти количе-
ство ребер рассматриваемого нами графа.

Для демонстрации практической применимости данных функций в
таблице приведем результаты по времени их выполнения (в секундах).
Все результаты, представленные в таблице, были получены с использова-
нием GAP 4.13.1 на ноутбуке с процессором Intel(R) Core(TM) i7-4702MQ
CPU @ 2.20GHz 2.20 GHz с 2 ГБ оперативной памяти.

Таблица – Результаты выполнения функций

Группа Порядок Функция Число Функция Число
Vertices вершин Edges ребер

C49 : C6 2 · 3 · 72 0,219 293 4,531 28224
C20 × (C7 : C9) 22 · 32 · 5 · 7 0,172 1260 104,469 780282
C125 : C16 24 · 53 0,00001 0 0,00001 0

Работа выполнена при финансовой поддержке Белорусского респуб-
ликанского фонда фундаментальных исследований (БРФФИ-РНФ М,
проект Ф23РНФМ-63).
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С. И. ЛЕНДЕНКОВА
Беларусь, Гомель, ГГУ имени Ф. Скорины

О КОРАДИКАЛЕ ГРУППЫ, ФАКТОРИЗУЕМОЙ
СЛАБО tcc-ПЕРЕСТАНОВОЧНЫМИ ПОДГРУППАМИ

В работе рассматриваются только конечные группы. Все обозначения
и терминология соответствуют [1].

Пусть F – формация и G – группа. Пересечение всех нормальных
подгрупп группы G, фактор-группы по которым принадлежат F, обозна-
чается через GF и называется F-корадикалом группы G. В случае, когда
F = N или F = U, F-корадикал называют нильпотентным или сверхраз-
решимым соответственно. Напомним, что группа G метанильпотентна
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(мета-p-нильпотентна), если существует нильпотентная (p-нильпотент-
ная) нормальная подгруппа, фактор-группа по которой нильпотентна
(соответственно p-нильпотентна).

Развитие тотально и взаимно перестановочных подгрупп привело,
в частности, к такому понятию, как tcc-перестановочные подгруппы.

Подгруппы A и B группы G называются tcc-перестановочными [2],
если для любой подгруппы X из A и для любой подгруппы Y из B

существует элемент u ∈ ⟨X,Y ⟩ такой, что XY u ≤ G. Здесь и далее
запись H = ⟨H1, H2⟩ означает, что подгруппа H порождается своими
подгруппами H1 и H2.

В монографии А. А. Трофимука [3] отражены известные результаты
этой тематики.

В работе Ц. Хуана, Б. Ху и А. Н. Скибы [4] введено новое понятие
слабо субнормальной подгруппы, связанное с порождением двух под-
групп, одна из которых субнормальна, а вторая обладает определенными
свойствами.

Используя их идею, введем
Определение. Подгруппы A и B группы G будем называть

слабо tcc-перестановочными, если A = ⟨A1, A2⟩, B = ⟨B1, B2⟩, где A1,
B1 субнормальны в G, а A2, B2 tcc-перестановочны.

На основе результатов работ [5] и [6] доказана следующая
Теорема. Пусть G = AB, A и B — слабо tcc-перестановочные

подгруппы группы G.
(1) Если A и B сверхразрешимы, то сверхразрешимый корадикал

группы G метанильпотентен.
(2) Если A и B p-сверхразрешимы, то p-сверхразрешимый корадикал

группы G мета-p-нильпотентен.
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О МИНИМАЛЬНЫХ σ
Ω
-КАНОНИЧЕСКИХ

ФОРМАЦИЯХ КОНЕЧНЫХ ГРУПП

Рассматриваются только конечные группы. В теории классов конеч-
ных групп важную роль играют функциональные методы, с помощью
которых были построены локальные (В. Гашюц, 1963), композиционные
(Л. А. Шеметков, 1978), ω-локальные (Л. А. Шеметков, 1984),
L-композиционные (А. Н. Скиба, Л. А. Шеметков, 1999) формации, где
ω – непустое подмножество множества P всех простых чисел, L – непу-
стой подкласс класса I всех простых групп (например, [1]). Серии
ω-веерных и Ω-расслоенных формаций (В. А. Ведерников, 1999) вклю-
чают ω-локальные и L-композиционные (при Ω = L) формации соот-
ветственно. Важное место в современной алгебре занимает разработан-
ная А. Н. Скибой σ-теория конечных групп, с помощью методов кото-
рой были построены σ-локальные (А. Н. Скиба, 2017), Бэра σ-локальные
(В. Г. Сафонов, И. Н. Сафонова, А. Н. Скиба, 2019), ω̄-веерные (М. М. Со-
рокина, А. А. Горепекина, 2021) формации конечных групп, σ-локальные
(В. Го, Ли Чжан, Н. Т. Воробьев, 2020), ωσ-веерные и Ωζ-расслоенные
(О. В. Камозина, 2020) классы Фиттинга конечных групп, σ

Ω
-расслоен-

ные классы Фиттинга мультиоператорных T -групп (Е. Н. Бажанова,
2023). С помощью развития понятия Ω-расслоенной формации конеч-
ных групп в работе [3] были построены σ

Ω
-расслоенные формации конеч-

ных групп, где σ
Ω

– произвольное разбиение класса Ω. Одним из видов
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σ
Ω
-расслоенных формаций являются σ

Ω
-канонические формации. В тео-

реме 1 изучаются минимальные σ
Ω
-канонические формации, т. е. такие

неединичные σ
Ω
-канонические формации, которые не содержат нетриви-

альных σ
Ω
-канонических подформаций.

Используемые обозначения и определения стандартны (например, [1]).
Класс групп F называется формацией (классом Фиттинга), если F за-
мкнут относительно гомоморфных образов и подпрямых произведений
(относительно нормальных подгрупп и произведений нормальных
F-подгрупп). Для непустого класса Фиттинга F через GF обозначается
F-радикал группы G, т. е. наибольшая нормальная F-подгруппа груп-
пы G. Пусть G – класс всех конечных групп, I – класс всех простых
групп, E – класс всех единичных групп; (X) – класс групп, порожден-
ный множеством групп X. Через K(G) обозначается класс всех групп,
изоморфных композиционным факторам группы G; K(X) = ∪

G∈X
K(G).

Пусть F1, F2 – классы групп. Произведением классов F1 и F2 называется
класс групп F1F2 = (G ∈ G | существует N ▹G, где N ∈ F1 и G/N ∈ F2).

Следуя [4], для любого непустого подкласса ∆ класса I будем пола-
гать: G

∆
= (G ∈ G | K(G) ⊆ ∆); G

∆′ = (G ∈ G | K(G) ∩ ∆ = ∅);
O

∆
(G) – G

∆
-радикал группы G.

Пусть Ω – произвольный непустой подкласс класса I, σ
Ω

– произ-
вольное разбиение класса Ω, т. е. σ

Ω
= {Ωi | i ∈ I}, где Ωi – непустой

класс групп для любого i ∈ I, Ω = ∪
i∈I
Ωi и Ωi ∩ Ωj = ∅ для любых

i, j ∈ I, i ̸= j. Для произвольной группы G полагаем

σ
Ω
(G) = {Ωi ∈ σ

Ω
| Ωi ∩K(G) ̸= ∅}.

Функция вида

φ : σ
Ω
→ {непустые формации Фиттинга групп},

удовлетворяющая условию G
Ωi

′ ⊆ φ(Ωi) для любого Ωi ∈ σ
Ω
, называет-

ся формационно-радикальной σ
Ω
-функцией или коротко σ

Ω
FR-функцией.

Функция вида

f : σ
Ω
∪ {σ

Ω

′} → {формации групп},

где f(σ
Ω

′) ̸= ∅, называется формационной σ
Ω
-функцией или коротко

σ
Ω
F -функцией.
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Пусть φ и f – некоторые σ
Ω
FR-функция и σ

Ω
F -функция соответ-

ственно. Формация вида F = (G ∈ G | G/O
Ω
(G) ∈ f(σ

Ω

′) и G/Gφ(Ωi) ∈
∈ f(Ωi) для любого Ωi ∈ σ

Ω
(G)) называется σ

Ω
-расслоенной формацией

и обозначается F = σ
Ω
F (f, φ). Функция f называется спутником,

а функция φ – направлением σ
Ω
-расслоенной формации F [3].

Неединичная σ
Ω
-расслоенная формация F с направлением φ называ-

ется минимальной σ
Ω
-расслоенной формацией с направлением φ, если

она не содержит собственных σ
Ω
-расслоенных подформаций с направле-

нием φ, отличных от E.
σ

Ω
-расслоенная формация F = σ

Ω
F (f, φ) называется σ

Ω
-каноничес-

кой, если φ(Ωi) = G
Ωi

′GΩi
для любого Ωi ∈ σ

Ω
. Через σ

Ω
KF (G) обозна-

чается σ
Ω
-каноническая формация, порожденная группой G, т. е. пере-

сечение всех σ
Ω
-канонических формаций, содержащих группу G.

Теорема 1. Пусть F = σ
Ω
KF (G), где G – простая группа та-

кая, что K(G) ⊆ Ω. Тогда F является минимальной σ
Ω
-канонической

формацией.
В случае, когда σ

Ω
– такое разбиение класса Ω, что для любого

Ωi ∈ σ
Ω

имеет место равенство Ωi = (A) для некоторой группы A ∈ I, из
теоремы 1 вытекает известный результат для Ω-канонических формаций
([5], с. 48).
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СВОЙСТВА КЛАССА ГРУПП, ОПРЕДЕЛЯЕМОГО
Fω-ИНЪЕКТОРАМИ

Рассматриваются только конечные группы. Пусть F – произволь-
ный класс групп. Понятие F-инъектора группы было введено в рас-
смотрение в совместной работе Б. Фишера, В. Гашюца и Б. Хартли [1].
В настоящее время F-инъекторы в конечных группах достаточно хо-
рошо изучены, установлены их связи с другими подгруппами в груп-
пах, описаны их свойства в зависимости от свойств класса F (например,
[2; 3]). В [4] были определены Fω-инъекторы групп и установлены их про-
стейшие свойства. Пусть ω – непустое подмножество множества P всех
простых чисел. Подгруппа H группы G называется Fω-инъектором в G,
если H – F-максимальная подгруппа в G и для каждой субнормальной
ω-подгруппы K группы G пересечение H ∩K является F-максимальной
подгруппой в K [4]. В случае, когда ω = P, понятие Fω-инъектора совпа-
дает с понятием F-инъектора группы (например, [3, с. 564]).
Через InjF(G) и InjFω(G) обозначаются соответственно совокупности всех
F-инъекторов и всех Fω-инъекторов группы G.

В монографии [3] для класса Фиттинга F, содержащегося в универсу-
ме S всех конечных разрешимых групп, и произвольного класса групп
H был введен в рассмотрение класс групп F ↑ H, состоящий из всех
групп G ∈ S, удовлетворяющих условию InjF(G) ⊆ H. Отметим, что
для указанного класса групп F и любой группыG ∈ S множество InjF(G)
непусто (например, [3]).

Пусть B, F и H – произвольные классы групп. Следуя [3], определим
класс групп Fω ↑B H следующим образом:

Fω ↑B H = {G ∈ B | ∅ ̸= InjFω(G) ⊆ H}.

В теореме 1 проводится исследование свойств данного класса.
Через π(G) обозначается совокупность всех простых делителей

порядка группы G; G′ – коммутант группы G. Группа G называется ω-
группой, если π(G) ⊆ ω [5, с. 250]. Класс групп F назовемQω-замкнутым,
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если из того, что G ∈ F и N – нормальная ω-подгруппа группы G, всегда
следует, что G/N ∈ F; Rω

0
-замкнутым, если из того, что G/N1, G/N2 ∈

F, где N1, N2 – нормальные ω-подгруппы группы G, всегда следует,
что G/(N1 ∩ N2) ∈ F. Отметим, что всякий Q-замкнутый класс групп
является Qω-замкнутым для любого множества ω. Всякий R

0
-замкнутый

класс групп является Rω
0
-замкнутым для любого множества ω. В случае,

когда ω = P, понятия Q-замкнутого и Qω-замкнутого (R
0
-замкнутого

и Rω
0
-замкнутого) классов групп совпадают.

Теорема 1. Пусть F – непустой класс Фиттинга, ω – непустое
множество простых чисел, B = {G ∈ S | π(G′) ⊆ ω}. Тогда справед-
ливы следующие утверждения:

1) Если H – Qω-замкнутый класс групп, то класс Fω ↑B H также
является Qω-замкнутым.

2) Если H – Rω
0
-замкнутый класс групп, то класс Fω ↑B H также

является Rω
0
-замкнутым.

В случае, когда ω совпадает с множеством P, из теоремы 1 вытекает
следующий результат. Отметим, что при ω = P, наряду с обозначением
Fω ↑B H, используется обозначение F ↑B H.

Следствие 1. Пусть F – непустой класс Фиттинга. Если класс
групп H является формацией, то класс F ↑B H также является
формацией.
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ОБ ОДНОМ ОБОБЩЕНИИ tcc-ПОДГРУПП

Рассматриваются только конечные группы. Подгруппы A и B груп-
пы G называются cc-перестановочными в G (условно перестановочны-
ми) [1], если A перестановочна с Bg для некоторого элемента g ∈ ⟨A,B⟩.

В последнее десятилетие активно развивается направление, связан-
ное с изучением строения групп с заданными системами условно пере-
становочных подгрупп. Очевидно, что если в группе подгруппа пере-
становочна со всеми подгруппами группы, то она перестановочна и со
всеми подгруппами из добавления к ней. Так, в работе [2] введено по-
нятие tcc-подгруппы (подгруппа A группы G называется tcc-подгруппой
в группе G, если в G существует подгруппа Y такая, что G = AY и
каждая подгруппа из A cc-перестановочна с каждой подгруппой из Y .
В [2] также получен целый ряд признаков сверхразрешимости группы
с заданными системами tcc-подгрупп.

Cузив множество перестановочных подгрупп из подгруппы и добав-
ления к ней, введем следующее

Определение. Подгруппа A группы G называется слабой
tcc-подгруппой в G, если она удовлетворяет следующим условиям:

1) в G существует подгруппа T такая, что G = AT ;
2) каждая нормальная подгруппа из A cc-перестановочна с каждой

подгруппой из T .
Очевидно, что каждая tcc-подгруппа группы G является слабой

tcc-подгруппой группы G, но обратное не всегда выполняется. Напри-
мер, в симметрической группе S4 знакопеременная подгруппа A4 явля-
ется слабой tcc-подгруппой в G, но не является tcc-подгруппой.

Доказана следующая теорема.
Теорема 1. 1. Пусть A и B – слабые tcc-подгруппы группы G

и G = AB. Если A и B сверхразрешимы, то G сверхразрешима.
2. Пусть G = AB – произведение подгрупп A и B. Если все силов-

ские подгруппы из A и из B являются слабыми tcc-подгруппами в G,
то G сверхразрешима.
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Следствие 1.1. Пусть A и B – слабые tcc-подгруппы группы G
и G = AB. Если A и B p-сверхразрешимы, то G p-сверхразрешима.

Из теоремы 1 и следствия 1.1 вытекают результаты работ [1–4], пред-
ставленных в следствии 1.2.

Следствие 1.2. 1. Пусть G = AB – тотально перестановочное
произведение сверхразрешимых подгрупп A и B. Тогда G сверхразреши-
ма, [3, теорема 3.1].

2. Пусть G = AB – tcc-перестановочное произведение сверхразре-
шимых подгрупп A и B. Тогда G сверхразрешима, [1, теорема A].

3. Пусть G = AB – произведение сверхразрешимых tcc-подгрупп A

и B. Тогда G сверхразрешима, [2, теорема 4.1].
4. Пусть G = AB – тотально перестановочное произведение p-

сверхразрешимых подгрупп A и B. Тогда G p-сверхразрешима, [4, лем-
ма *].

5. Пусть G = AB – tcc-перестановочное произведение p-сверхраз-
решимых подгрупп A и B. Тогда G p-сверхразрешима, [3, теорема 4.1].

6. Пусть G = AB – произведение p-сверхразрешимых tcc-подгрупп
A и B. Тогда G p-сверхразрешима, [2, теорема 4.1].

7. Если все силовские подгруппы из A и из B являются tcc-подгруп-
пами в G = AB, то G сверхразрешима, [2, теорема 4.2].

Группы, у которых 2-максимальные подгруппы, максимальные под-
группы из силовских подгрупп, минимальные подгруппы удовлетворяют
некоторому типу перестановочности, исследовались многими авторами,
(см., например, литературу в [5; 6]).

В теореме 2 изучено строение конечной группы, у которой 2-макси-
мальные подгруппы, максимальные подгруппы из силовских подгрупп
или все минимальные подгруппы являются слабыми tcc-подгруппами.

Теорема 2. 1. Если каждая максимальная (силовская) подгруппа
из G является слабой tcc-подгруппой в G, то группа G сверхразрешима.

2. Если каждая циклическая подгруппа простого порядка или поряд-
ка 4 из G является слабой tcc-подгруппой в G, то группа G сверхраз-
решима.
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3. Если каждая 2-максимальная подгруппа из G является слабой
tcc-подгруппой в G, то группа G сверхразрешима.

4. Если каждая максимальная подгруппа из каждой нециклической
силовской подгруппы разрешимой группы G является слабой tcc-под-
группой в G, то группа G сверхразрешима.

Работа выполнена при финансовой поддержке Министерства обра-
зования Республика Беларусь (ГПНИ «Конвергенция-2025», номер госу-
дарственной регистрации 20211467).
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КОНЕЧНЫЕ ГРУППЫ С ЗАДАННЫМИ СИСТЕМАМИ
УСЛОВНО ПОЛУНОРМАЛЬНЫХ ПОДГРУПП

Рассматриваются только конечные группы. Подгруппы A и B груп-
пы G называются перестановочными, если AB = BA. Более слабое
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условие перестановочности было приведено в работе [1]: подгруппы A
и B группы G называются cc-перестановочными в G, если A перестано-
вочна с Bg для некоторого элемента g ∈ ⟨A,B⟩. Подгруппа A группы G

называется cc-перестановочной в G, если A cc-перестановочна с каждой
подгруппой группы G.

Напомним, что подгруппа A называется полунормальной в группе G,
если в G существует подгруппа T такая, что G = AT и A перестановочна
с каждой подгруппой из T . В [2] исследованы группы c полунормальны-
ми подгруппами. Вполне естественно рассмотреть следующее

Определение ([3]). Подгруппа A группы G называется условно по-
лунормальной подгруппой в G, если в G существует подгруппа T такая,
что G = AT и A cc-перестановочна с каждой подгруппой из T .

В работе [4] установлена принадлежность группы G с заданными
системами условно полунормальных подгрупп к произвольной насыщен-
ной формации F такой, что U ⊆ F. Здесь U – формация всех сверхразре-
шимых групп.

Теорема 1 ([4]). 1. Пусть F – насыщенная формация такая, что
U ⊆ F и H – нормальная подгруппа группы G такая, что G/H ∈ F.
Тогда G ∈ F в каждом из следующих случаев:

1.1) каждая циклическая подгруппа простого порядка или порядка
4 из H является условно полунормальной подгруппой в G;

1.2) все максимальные подгруппы из каждой силовской подгруппы
из H являются условно полунормальными подгруппами в G;

1.3) если H разрешима и все максимальные подгруппы из каждой
силовской подгруппы из F (H) являются условно полунормальными под-
группами в G.

2. Пусть F – насыщенная формация, содержащая формацию всех
p-нильпотентных групп, и H – нормальная подгруппа группы G
такая, что G/H ∈ F. Если все максимальные подгруппы из силовской
p-подгруппы P из H являются условно полунормальными подгруппами
в G и NG(P ) p-нильпотентна, то G ∈ F.

Следствие 1.1. [3] Пусть G – группа. Тогда G сверхразрешима в
каждом из следующих случаев:

1) в группе G все максимальные (силовские, 2-максимальные) под-
группы являются условно полунормальными;

2) каждая циклическая подгруппа простого порядка или порядка 4 из
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нормальной подгруппы H группы G является условно полунормальной
в G и G/H сверхразрешима;

3) в разрешимой группе G все максимальные подгруппы из произ-
вольной нециклической силовской подгруппы являются условно полу-
нормальными.

Следствие 1.2. [1] Пусть G – группа. Тогда группа G сверхразре-
шима в каждом из следующих случаев:

1) в группе G все 2-максимальные подгруппы cc-перестановочны;
2) каждая циклическая подгруппа простого порядка или порядка 4

из G является cc-перестановочной в G.
Разработанные в теореме 1 методы позволили установить строение

группы, представимой в виде произведения условно полунормальных
подгрупп.

Теорема 2. [4] Пусть A и B – условно полунормальные подгруппы
группы G и G = AB.

1. Пусть F – насыщенная формация такая, что U ⊆ F. Если A,B ∈ F

и коммутант G′ нильпотентен, то G ∈ F.
2. Пусть F – насыщенная формация такая, что U ⊆ F ⊆ D. Если

A,B ∈ F и (|A|, |B|) = 1, то G ∈ F. Здесь D – формация всех групп,
имеющих силовскую башню сверхразрешимого типа.

Следствие 2.1. [5] Предположим, что G = AB, где A,B ∈ U.
Пусть коммутант G′ нильпотентен. Если подгруппа A cc-перестано-
вочна с каждой подгруппой из подгруппы B и подгруппа B
cc-перестановочна с каждой подгруппой из подгруппы A, то G сверх-
разрешима.

Понятие p-силовайзера было введено Гашюцем [6]. Подгруппа S груп-
пы G называется p-силовайзером p-подгруппы R в G, если S – макси-
мальная подгруппа в G, в которой R является силовской p-подгруппой.
Гашюц [6] показал, что p-силовайзеры данной p-подгруппы в разреши-
мой группе не всегда сопряжены, а также привел некоторые достаточные
условия, при которых p-подгруппа имеет сопряженные p-силовайзеры.

В настоящей работе исследованы группы, у которых каждая макси-
мальная подгруппа из силовской p-подгруппы P имеет условно полунор-
мальный силовайзер. Доказана следующая теорема.
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Теорема 3. 1. Пусть P – силовская p-подгруппа группы G и G
p-разрешима. Если каждая максимальная подгруппа из P имеет услов-
но полунормальный силовайзер, то G p-сверхразрешима.

2. Пусть P – силовская p-подгруппа группы G. Если каждая макси-
мальная подгруппа из P имеет силовайзер, который является условно
полунормальной подгруппой в G, то каждый неабелевый композици-
онный pd-фактор группы G изоморфен одной из следующих подгрупп:
PSL (2, 7) и p = 7; PSL (2, 11) и p = 11, M11 и p = 11; M23 и p = 23;
PSL (2, 2t) и p = 2t + 1 > 3 – простое число Ферма; PSL (n, q) , n ≥ 3 –
простое, (n; q − 1) = 1 и p = qn−1

q−1 ; Ap и p ≥ 5.
Работа выполнена при финансовой поддержке БРФФИ (грант

№ Ф23РНФ-237).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Guo, W. Conditionally Permutable Subgroups and Supersolubility of

Finite Groups / W. Guo, K. P. Shum, A. N. Skiba // Southeast Asian Bulletin
of Mathematics. – 2005. – Vol. 29. – P. 493–510.

2. Монахов, В. С. О сверхразрешимости группы с полунормальными
подгруппами / В. С. Монахов, А. А. Трофимук // Сибирский математи-
ческий журнал. – 2020. – Т. 61, № 1. – C. 148–159.

3. Трофимук, А. А. О сверхразрешимости группы с заданными
системами условно полунормальных подгрупп / А. А. Трофимук // Тру-
ды Института математики. – 2023. – Т. 31, № 2. – С. 81–90.

4. Trofimuk, A. A. Finite groups with given systems of conditionally
seminormal subgroups / A. A. Trofimuk // Lobachevskii Journal of Mathe-
matics. – 2024. – Vol. 45, No 12. – P. 6624–6632.

5. Guo, W. Criterions of supersolubility for products of supersoluble
groups / W. Guo, K. P. Shum, A. N. Skiba // Publicationes Mathematicae
Debrecen. – 2006. – Vol. 68, No 3–4. – P. 433–449.
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АБСОЛЮТНАЯ ЧАСТЬ СУЩЕСТВЕННОГО СПЕКТРА
ОПЕРАТОРА ВЗВЕШЕННОГО СДВИГА

Обратимое непрерывное отображение α : X → X компактного
метрического пространства X задает динамическую систему с дискрет-
ным временем и задает операторы, действующие в заданном простран-
стве F (X) функций на X по формуле

Bu(x) = a0(x)u(α(x)), (1)

где a0 – заданная функция. Такие операторы называют операторами
взвешенного сдвига, или операторами композиции с весом.

Операторы рассматриваемого вида и порожденные ими функцио-
нальные уравнения исследовались в работах многих авторов, поскольку
они естественнно возникают в теории динамических систем, в теории
функционально-дифференциальных уравнений, теории аналитических
функций, теории случайных блужданий и ряде других направлений.

В данной работе исследуется зависимость спектральных свойств
операторов взвешенного сдвига от динамики отображения α : X → X
в случае отображений следующего вида. Непрерывное обратимое отоб-
ражение α : X → X компактного метрического пространства X на-
зывается отображением типа Морса-Смейла, если оно имеет конечное
число неподвижных точек Fk; k = 1, 2, . . . , N + 1, и для любой точки τ ,
не являющейся неподвижной, траектория αn(τ) при n→ +∞ стремится
к неподвижной точке, которую обозначим τ+, а при n→ −∞ стремится
к неподвижной точке, которую обозначим τ−.

В пространствах Лебега L2(X,µ) при условии согласования меры µ
с отображением существует функция γ такая, что оператор Tαu(x) =
= γ(x)u(α(x)) является унитарным в пространстве L2(X,µ) [1]. Поэтому
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оператор (1) представляется в виде B = aTα, где a(x) = 1
γ(x)a0(x) есть

так называемый приведенный коэффициент.
Вид спектра такого оператора aTα известен и задается через значения

приведенного коэффициента [1]. При условии, что a есть непрерывная
функция на X и a(x) ̸= 0 для всех x спектром является кольцо

Σ(B) = {λ : m ≤ |λ| ≤M},

где m = min |a(Fk)|, M = max |a(Fk)|.
При спектральном значении λ оператор B − λI необратим, но необ-

ратимые операторы могут обладать «хорошими» свойствами. Одним из
таких свойств является односторонняя обратимость оператора.

Существенным спектром Σes(B) будем назвать множество λ, при
которых оператор B − λI не имеет правого обратного и не имеет левого
обратного.

Односторонняя обратимость оператора B − λI существенно связана
с динамикой отображения α, которая описывается графом Смейла. Это
ориентированный граф, вершинами которого являются являются непо-
движные точки Fk, ориентированное ребро Fk → Fj входит в граф, если
существует точка τ ∈ X такая, что τ+ = Fj, τ− = Fk.

Если |λ| ̸= |a(Fk)| для всех k, то при заданной функции a число λ
задает разбиение графа на два подмножества

G+(α, λ; a) = {Fk : |λ| > |a(Fk)|}; (2)

G−(α, λ; a) = {Fj : |λ| < |a(Fj)|}.

Разбиение графа называется ориентированным вправо (ориентирован-
ным влево), если любая дуга, соединяющая точку Fk ∈ G−(α, λ; a) с
точкой Fj ∈ G+(α, λ; a), имеет ориентацию (Fk → Fj) (имеет ориента-
цию (Fj → Fk).

Теорема 1. [2] Оператор B − λI обратим справа (слева) тогда
и только тогда, когда |λ| ̸= |a(Fk)| для всех k и разбиение (2) графа
G(α) ориентировано вправо (влево).

Из теоремы 1 следует, что спектр оператора B разбивается окруж-
ностями |λ| = |a(Fk)| на N колец, часть из которых входит в существен-
ный спектр. При этом в ряде примеров оказывается, что в существенный
спектр всегда входит некоторый набор таких колец.
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Пусть S есть подмножество множества неподвижных точек (вершин
графа) и

mS = min{|a(Fk)| : Fk ∈ S}, MS = max{|a(Fk)| : Fk ∈ S}.

Множество S будем называть абсолютно спектральным, если при любом
коэффициенте a кольцо

K(a;S) = {λ : mS ≤ |λ| ≤MS} (3)

принадлежит существенному спектру и является максимальным в сле-
дующем смысле – существует коэффициент a1 такой, что a(Fk) = a1(Fk),
если Fk ∈ S, и при этом кольцо K(a;S) является компонентой связности
существенного спектра оператора a1Tα, т. е. нет более широкого кольца,
принадлежащего существенному спектру.

Объединение колец (3), соответствующих всем абсолютно спектраль-
ным множествам, будем называть абсолютной частью существенного
спектра.

Вопрос заключается в получении описания абсолютно спектральных
множеств, использующего только динамику отображения. Сформулиру-
ем основной результат в этом направлении.

Последовательность вершин графа {Fk1, Fk2, . . .} называется ориен-
тированным циклом, если она периодическая (Fkj+P

= Fkj при некото-
ром P > 0) и соседние члены связаны соотношением Fki → Fki+1

.

Будем говорить, что вершина Fk эквивалентна вершине Fj, если
существует ориентированный цикл, содержащий эти вершины.

Компонентой графа будем называть класс эквивалентных вершин.
Теорема 2. Множество вершин графа является абсолютно спек-

тральным тогда и только тогда, когда оно является компонентой
графа Смейла.

Следствие. Абсолютная часть существенного спектра есть
объединение колец K(a;Sν), соответствующих компонентам Sν графа
Смейла.
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ИНДЕКС КРАЕВОЙ ЗАДАЧИ РИМАНА – ГИЛЬБЕРТА
ДЛЯ НЕКОТОРЫХ ЭЛЛИПТИЧЕСКИХ СИСТЕМ В R3

В ограниченной односвязной области Ω ⊂ R3, гомеоморфной шару,
с достаточно гладкой границей ∂Ω рассмотрим систему четырех диффе-
ренциальных уравнений вида

∂U

∂x1
+


0 a2 b2 0

−a2 0 0 −b2
−b2 0 0 a2
0 b2 −a2 0

 ∂U

∂x2
+


0 a3 b3 0

−a3 0 0 −b3
−b3 0 0 a3
0 b3 −a3 0

 ∂U

∂x3
= 0, (1)

где U = (U1(x), U2(x), U3(x), U4(x))
T – неизвестная вектор-функция,

T означает транспонирование, x = (x1, x2, x3) ∈ R3, a2, a3, b2, b3 ∈ R.
Характеристическая матрица системы (1) имеет вид

A(ξ) =


ξ1 a2ξ2 + a3ξ3 b2ξ2 + b3ξ3 0

−a2ξ2 − a3ξ3 ξ1 0 −b2ξ2 − b3ξ3
−b2ξ2 − b3ξ3 0 ξ1 a2ξ2 + a3ξ3

0 b2ξ2 + b3ξ3 −a2ξ2 − a3ξ3 ξ1

 .

Поскольку

detA(ξ) =
(
ξ21 + (a2ξ2 + a3ξ3)

2 + (b2ξ2 + b3ξ3)
2
)2
,

то, как нетрудно видеть, система (1) является эллиптической тогда
и только тогда, когда выполняется условие a2b3 − a3b2 ̸= 0, которое в
дальнейшем предполагаем выполненным.
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Задача Римана – Гильберта для системы (1) состоит в нахождении
решения этой системы, непрерывно дифференцируемого в области Ω
и непрерывного по Гельдеру на Ω = Ω ∪ ∂Ω, удовлетворяющего на ∂Ω
граничным условиям

B(y)U(y) = f(y) (y ∈ ∂Ω) , (2)

где B – заданная матрица-функция размера 2× 4, а f – заданная двух-
компонентная вектор-функция, непрерывная по Гельдеру на поверхно-
сти ∂Ω.

Существование и единственность решения краевой задачи
для эллиптической системы при произвольной правой части оказывает-
ся достаточно редким явлением. В этом случае рассматривается вопрос
о разрешимости задачи с точностью до конечномерного пространства,
т. е. вопрос о том, когда решение существует при наложении конечного
числа условий на правую часть задачи и при этом решение зависит от
конечного числа произвольных постоянных. Классическим примером та-
кой ситуации является задача Неймана для уравнения Лапласа в ограни-
ченной области Ω, рассматриваемая в учебной дисциплине «Уравнения
математической физики»:

∆u = 0 (x ∈ Ω),
∂u

∂ν

∣∣∣∣
∂Ω

= g(y) (y ∈ ∂Ω).

Для существования решения задачи Неймана необходимо и достаточно,
чтобы для функции g было выполнено условие∫

∂Ω

g(x)dS(x) = 0,

при выполнении этого условия решение определено с точностью
до одного постоянного слагаемого.

Для эллиптических систем Я. Б. Лопатинским было получено усло-
вие, обеспечивающее разрешимость краевой задачи с точностью
до конечномерного пространства [1]. Это условие известно как условие
Я. Б. Лопатинского (условие регуляризуемости краевой задачи) и пред-
ставляет собой дополнительное ограничение на матрицу граничного опе-
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ратора. Применительно к задаче (1), (2), условие регуляризуемости со-
стоит в том, что ранг матрицы

B(y) ·
∫
γ

A−1 (λν(y) + τ(y)) dλ (3)

равен двум в каждой точке y ∈ ∂Ω и при каждом ненулевом касатель-
ном к ∂Ω в точке y векторе τ = τ(y). Здесь через ν = ν(y) обозначен
единичный вектор внутренней нормали к ∂Ω в точке y, и интегрирование
в (3) ведется по простому замкнутому контуру γ, лежащему в верхней
комплексной λ-полуплоскости и охватывающему корень α + iβ (β > 0)
уравнения

detA (λν(y) + τ(y)) = 0.

На поверхности ∂Ω рассмотрим векторное поле

L(y) = (L1(y), L2(y), L3(y)),

где

L1(y) = Λ14 + Λ23, L2(y) = a2 (−Λ13 + Λ24) + b2 (Λ12 + Λ34) ,

L3(y) = a3 (−Λ13 + Λ24) + b3 (Λ12 + Λ34) ,

Λjk – минор матрицы граничного оператора B(y), составленный из ее
j-го и k-го столбцов (j, k = 1, 2, 3, 4).

Теорема 1. [2] Задача (1), (2) регуляризуема тогда и только то-
гда, когда в каждой точке y ∈ ∂Ω векторное поле L(y) не является
касательным к поверхности ∂Ω.

Из теоремы 1, например, следует, что в случае постоянной матри-
цы граничного условия (2) рассматриваемая задача Римана – Гильберта
является нерегуляризуемой.

Условие регуляризуемости краевой задачи Римана – Гильберта
в виде, сформулированном в теореме 1, было ранее получено для систе-
мы Моисила – Теодореску [3], для трехмерных аналогов системы Коши –
Римана [4], для эллиптических систем ортогонального типа в R3 [5].

При выполнении условия регуляризуемости однородная задача
Римана – Гильберта (1), (2) имеет конечное число n линейно незави-
симых решений, а неоднородная задача (1), (2) имеет решение тогда и
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только тогда, когда правая часть (2) удовлетворяет конечному числу m
линейно независимых условий разрешимости. Разность n−m называется
индексом краевой задачи (1), (2).

Отметим также, что метод В. И. Шевченко, примененный им для вы-
числения индекса регуляризуемой задачи Римана – Гильберта
для голоморфного вектора [3], был с успехом применен к вычислению
индекса регуляризуемой задачи для других классов систем [4–6].

Теорема 2. [2] Индекс произвольной регуляризуемой задачи Рима-
на – Гильберта (1), (2) равен минус единице.
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О ВЛИЯНИИ ФАЗОВОГО ОГРАНИЧЕНИЯ
НА ПОСТРОЕНИЕ МНОЖЕСТВА УПРАВЛЯЕМОСТИ
ОДНОГО ОБЪЕКТА

Рассмотрим управляемый объект, поведение которого описывается
системой дифференциальных уравнений второго порядка{

ẋ1 = −bx2 + v1,
ẋ2 = bx1 + v2,

(1)

где управление (v1; v2) является векторной кусочно-непрерывной функ-
цией, принимающей значения из компакта V . Множество V назовем
областью управления. Mножество векторных кусочно-непрерывных функ-
ций, принимающих значения из компакта V обозначим через U . Множе-
ство U является множеством допустимых управлений.

Будем считать, что выполняется неравенство b > 0, множество V
является четырехугольником. Вершины четырехугольника V обозначим
через Ci, i = 1, 4, обходя контур четырехугольника против часовой стрел-
ки. Координаты вершины Ci обозначим через Ci1, Ci2. Примем, что
выполняются следующие неравенства:

C11 > 0, C12 > 0, C21 < 0, C22 > C12, C31 < C21,

C32 < 0, C41 > 0, C42 < C32, C41 < C11.
(2)

Замечание 1. В сделанных предположениях стороны четырехуголь-
ника V не параллельны осям координат и начало координат O принад-
лежит множеству V , но не является его вершиной.

Фазовое ограничение зададим множеством

X = {(x1;x2) ∈ R2 | x2 ≤ d, d > 0}. (3)

Множество всех точек множества (3), в которых объект (1) находит-
ся в момент времени t, в момент времени t1 попадает в начало координат
при помощи некоторого допустимого управления и выполнении фазового
ограничения в каждый момент времени из отрезка [t; t1], назовем множе-
ством управляемости в начало координат объекта (1) с ограничением (3).



66

Обозначим это множество через Y (t) = Y (t, t1). Момент времени t1
считаем фиксированным. Рассмотрим задачу построения множества
управляемости Y (t) = Y (t, t1) для произвольных моментов времени t.

Построим в плоскости переменных x1, x2 четырехугольник V .
Проведем из начала координат четыре луча, направление которых сов-
падает с направлением внешних нормалей к сторонам четырехугольни-
ка V . Луч, перпендикулярный стороне, соединяющей вершины C4 и C1,
обозначим через l1. Луч, перпендикулярный стороне, соединяющей вер-
шины Ci и Ci+1, i = 1, 2, 3, обозначим через li+1. Угол между лучами li и
li+1, i = 1, 2, 3, обозначим через αi. Угол между лучами l1 и l4 обозначим
через α4. И через α обозначим min{α1, α2, α3, α4}.

В работе [1] построено множество Ȳ (t, t1, {O}, V, R2), где через {O}
обозначено множество, состоящее из одной точки — начала координат O
для произвольных t, удовлетворяющих условию t1 − t ≤ α

b .
Оценивание значений координат точек множества Ȳ (t, t1, {O}, V, R2)

зависит от свойств границы множества V .
Теорема 1. Пусть выполнено неравенство

ctg bα ≥ C21 − C31

C22 − C32
, (4)

и d ≥ d1, где d1 = C21 cos bα+C22 sin bα−C21. Тогда при всех τ = t1−t ≤
α
b фазовое ограничение (3) не оказывает влияния на решение задачи.

Теорема 2. Пусть неравенство (4) не выполняется и d ≥ d2, где
d2 = C21 cos bα + C22 sin bα − C21. Тогда при всех τ ≤ α

b фазовое ограни-
чение (3) не оказывает влияния на решение задачи.

Легко видеть, что если величина τ достаточно мала, то множество
Ȳ (t, t1, {O}, V, R2) полностью находится внутри множества (3). Одна-
ко значение длины τ интервала движения, при котором фазовое огра-
ничение становится существенным, зависит от характеристик границы
множества V .

Теорема 3. Пусть выполнено неравенство (4) и параметр d в фор-
муле (3) удовлетворяет неравенству d < d1. Тогда длина τ̄ интервала
движения, при котором фазовое ограничение становится существен-
ным, определяется равенством

τ̄ =
1

b
arccos

C21

z2
− 1

b
arccos

d+ C21

z2
, z2 =

√
C2

21 + C2
22. (5)
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Определим величину θ равенством

θ =
1

b
arcctg

C31 − C21

C32 − C22

и величину d3 равенством

d3 = C21 cos bθ + C22 sin bθ − C21.

Теорема 4. Пусть неравенство (4) не выполняется и параметр d
в формуле (3) удовлетворяет неравенству d3 ≤ d < d2. Тогда длина
τ̄ интервала движения, при котором фазовое ограничение становится
существенным, определяется равенством

τ̄ =
1

b
arccos

C31

z3
− 1

b
arccos

y

z3
,

где

z3 =
√
C2

31 + C2
32, y = d+ C21 −

√
(C21 − C31)2 + (C32 − C22)2.

Теорема 5. Пусть неравенство (4) не выполняется и параметр d
в формуле (3) удовлетворяет неравенству 0 < d < d3. Тогда длина τ̄
интервала движения, при котором фазовое ограничение становится
существенным, определяется равенством (5).

Таким образом, при выполнении условия t1 − t ≤ τ̄ поставленная
задача решена. В этом случае множество управляемости Y (t, t1) есть
множество Ȳ (t, t1, {O}, V, R2).

Работа выполнена при финансовой поддержке задания 1.2.04.4 Госу-
дарственной программы научных исследований «Конвергенция-2025».
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О РАЗРЕШИМОСТИ СМЕШАННЫХ ЗАДАЧ ДЛЯ
НЕКОТОРЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
ЧЕТВЕРТОГО ПОРЯДКА

В данной работе рассмотрена граничная задача типа Дирихле на
плоскости, для уравнений четвертого порядка определенного вида
с постоянными коэффициентами в главной части. С помощью методов
функционального анализа доказана теорема об энергетических неравен-
ствах, а также с помощью операторов осреднения с переменным шагом
доказана теорема о существовании и единственности обобщённого реше-
ния рассматриваемых граничных задач.

Эти дифференциальные уравнения относительно неизвестной функ-
ции u(x) переменных x = (x0, x1) запишем в виде:

Lu =
∂4u

∂x40
+ a

∂4u

∂x21∂x
2
0

+ b
∂4u

∂x40
+ L2u = f(x), (1)

где

L2u = a0(x)
∂2u

∂x20
+ a1(x)

∂2u

∂x21
+ p0(x)

∂u

∂x0
+ p1(x)

∂u

∂x1
− λ(x)u.

Здесь a и b постоянные, коэффициенты полинома L2u измеримы
и ограничены.

Обозначим через Ω произвольную ограниченную область плоскости
переменных x с кусочно-гладкой границей ∂Ω. Пусть n = (n0, n1) –
единичный вектор нормали к поверхности ∂Ω и

L0(n) = n40 + an20n
2
1 + bn41.

В области Ω рассмотрим уравнение (1) относительно u(x), которая удо-
влетворяет однородным граничным условиям:

u|∂Ω− =
∂u

∂n

∣∣∣
∂Ω−

=
∂2u

∂n2

∣∣∣
∂Ω−

= 0, (2)

где ∂Ω− – часть границы ∂Ω, в точках которой L0(n) < 0.
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Наряду с задачей (1), (2) будем рассматривать и сопряженную
задачу, т. е.

L∗u =
∂4u

∂x40
+ a

∂4u

∂x21∂x
2
0

+ b
∂4u

∂x40
+ L∗

2u = g(x), (3)

u|∂Ω+ =
∂u

∂n

∣∣∣
∂Ω+

=
∂2u

∂n2

∣∣∣
∂Ω+

= 0, (4)

где ∂Ω+ – часть границы ∂Ω, в точках которой L0(n) > 0, L∗
2 – формально

сопряженный к L2 оператор.
Условие 1. Коэффициенты уравнений (1)-(4) удовлетворяют соот-

ношениям: 1) b > 0, 2) 4b− a2 > 0.
ПустьHs

0(Ω) (H̊s(Ω)), s = 1, 2, 3, 4 – подпространства СоболеваHs(Ω),
элементы которого удовлетворяют граничным условиям (2) ((4)).

Задачу (1)-(2) будем рассматривать как решение операторного урав-
нения

Lu = f (5)

с областью определения D(L) = H4
0(Ω), а задачу (3)-(4) – как решение

операторного уравнения

L∗v = g (6)

с областью определения D(L∗) = H̊4(Ω).
Для доказательства разрешимость (5) при любых f ∈ H−2

0 , стро-
им расширение L оператора L такое, что множество его значений R(L)
совпадает с пространством H−2

0 . Аналогично для оператора L∗ строим
расширение L∗.

Имеет место следующая теорема.
Теорема 1. При выполнении условия 1 для любых u и v из H2

0(Ω),
при достаточно большом λ(x) справедливы неравенства:

||u||H2
0 (Ω)

≤ C||Lu||H−2
0
, ||v||H2

0 (Ω)
≤ C∗||L∗v||H−2

0
,

где постоянные C и C∗ положительны и не зависят от функций u и v.
Теорема 2. При выполнении условий 1 и достаточно большом λ(x)

для любого f ∈ H−2
0 (g ∈ H̊−2) существует и единственно обобщенное

решение u ∈ H2
0(Ω) (v ∈ H̊2

0(Ω)) задачи (1)-(2) ((3)-(4)).
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ПОСТРОЕНИЕ РЕШЕНИЯ УРАВНЕНИЯ ВТОРОГО
ПОРЯДКА С СИНГУЛЯРНЫМ ПОТЕНЦИАЛОМ

Пусть f ∈ L2[−1; 1], a > 0. Рассмотрим задачу нахождения решения
дифференциального уравнения второго порядка с сингулярным потен-
циалом

u′′(x)− aδ(x)u(x) = f(x) (x ∈ (−1; 1)) (1)

и удовлетворяющего граничным условиям

u(−1) = 0, u(1) = 0. (2)

В формуле (1) δ(x) – δ-функция Дирака [1, с. 82].
Основной вопрос, возникающий при изучении уравнений с обобщен-

ными коэффициентами, состоит в определении понятия решения тако-
го уравнения. Одной из первых работ, в которой был придан строгий
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математический смысл понятию решения уравнения с дельтообразным
коэффициентом, была статья Ф. А. Березина и Л. Д. Фаддеева [2]. В этой
работе рассматривался оператор Шредингера с сингулярным потенциа-
лом в трехмерном пространстве.

Заметим, что если u(x) гладкое решение (1), (2), то для любой
основной функции φ ∈ D(−1; 1) имеет место равенство [1, c. 101]:

⟨δ(x)u(x), φ(x)⟩ = ⟨δ(x)u(0), φ(x)⟩.

А поэтому левая часть (1) запишется как

u′′(x)− aδ(x)u(0). (3)

Однако, если u(0) ̸= 0, то левая часть (1) не принадлежит L2[−1, 1].
Таким образом, u(x) не может быть гладкой функцией.

Далее для простоты рассуждений будем считать, что f ∈ C[−1; 1].
Пусть также 0 < ε < 1. Рассмотрим семейство уравнений

u′′(x)− aδε(x)u(x) = f(x) (x ∈ (−1; 1)), (4)

где δε(x) = 1
ε · χ(0;ε)(x) (χA(x) – характеристическая функция множе-

ства A). Нетрудно видеть, что δε(x) → δ(x) при ε → 0 в пространстве
обобщенных функций D ′(−1; 1).

На каждом из промежутков [−1; 0], (0; ε) и [ε; 1] уравнение (4) пред-
ставляет собой линейное неоднородное дифференциальное уравнение вто-
рого порядка с постоянными коэффициентами. Пусть

u1 : [−1; 0] → R, u2 : (0; ε) → R, u3 : [ε; 1] → R

есть общие решения (4) на соответствующих промежутках. Отметим, что
каждая из функций u1(x), u2(x), u3(x) зависит от двух произвольных
постоянных. Значения этих постоянных найдем из граничных условий:
u1(−1) = 0, u3(1) = 0 и условий сопряжения в точках x = 0 и x = ε:
u1(−0) = u2(+0), u2(ε − 0) = u3(ε + 0), u′1(−0) = u′2(+0), u′2(ε − 0) =
= u′3(ε+0). Явные выражения для u1(x), u2(x), u3(x) не приводим ввиду
их громоздкости. Таким образом, функция

uε(x) =


u1(x), при x ∈ [−1; 0],
u2(x), при x ∈ (0; ε),
u3(x), при x ∈ [ε; 1]
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является непрерывно дифференцируемой на [−1; 1], удовлетворяет
граничным условиям (2) и уравнению (4) за исключением x = 0 и x = ε.

Теорема. В каждой точке x отрезка [−1; 1] существует предел
lim
ε→+0

uε(x) =: u(x), где

u(x) =



x∫
−1

(x− t)f(t) dt+
(x+ 1)(A+ aA+B − C −D)

2 + a
, x ∈ [−1; 0),

−
1∫

x

(x− t)f(t) dt+
(x− 1)(A−B − C − aC +D)

2 + a
, x ∈ [0; 1],

A =

0∫
−1

tf(t)dt, B = −
0∫

−1

f(t)dt, C = −
1∫

0

tf(t)dt, D =

1∫
0

f(t)dt.

Справедливы следующие утверждения
(i) u(x) непрерывна на [−1; 1] и u(−1) = u(1) = 0;
(ii) u(x) имеет непрерывную производную на промежутках [−1; 0)

и (0; 1], существуют u′(−0) и u′(+0) и выполняется условие

u′(+0)− u′(−0) = au(0);

(iii) u′′(x) = f(x) при x ∈ (−1; 0) ∪ (0; 1).
Пусть теперь u′′g – вторая производная функции u в смысле теории

обобщенных функций. Тогда для любой основной функции φ ∈ D(−1; 1)
выполняется равенство ⟨u′′g ;φ⟩ = ⟨u′′(x) + (u′(+0) − u′(−0))δ(x);φ⟩,
которое с учетом утверждений (ii) и (iii) теоремы принимает вид

⟨u′′g − au(0)δ(x);φ⟩ = ⟨f ;φ⟩.

Последнее равенство и утверждение (i) теоремы показывают, что u(x)
является решением задачи (1), (2).

Пример. Пусть f(x) = x3 − 2x + 1. Тогда решением задачи (1), (2)
при a = 0 является функция

v(x) =
x5

20
− x3

3
+
x2

2
+

17

60
x− 1

2
,
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а при a > 0 функция

u(x) =

{
x5

20 −
x3

3 + x2

2 + 7x
4 + 29

30 −
88+29a
60+30a(x+ 1), x ∈ [−1; 0),

x5

20 −
x3

3 + x2

2 − x
4 +

1
30 +

32+a
60+30a(x− 1), x ∈ [0; 1].

На рисунке мы видим, что наличие δ-слагаемого в уравнении (1) вызы-

вает излом графика решения в точке x = 0.

Рисунок – Графики функций v(x) и u(x) при a = 2
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АЛГЕБРАИЧЕСКАЯ ИНТЕРПОЛЯЦИОННАЯ ЗАДАЧА
ЭРМИТА ОТНОСИТЕЛЬНО ПЯТИКРАТНЫХ УЗЛОВ

Пусть на [a, b] заданы различные точки x0, x1, ..., xn – узлы интерпо-
лирования, в которых известны конечные значения интерполируемой
функции f : [a, b] → R и значения ее первых четырех производных.
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Рассмотрим интерполяционную задачу типа Эрмита с узлами пятой
кратности относительно алгебраической системы функций, состоящую

в построении многочлена P5n+4(x) =
5n+4∑
i=0

aix
i степени не выше 5n + 4,

удовлетворяющего условиям

P
(s)
5n+4 (xj) = f (s) (xj) (j = 0, 1, ..., n; s = 0, 1, 2, 3, 4) (1).

Коэффициенты ai (i = 0, 1, ..., 5n+ 4) многочлена P5n+4 (x) находят-
ся из системы уравнений (1) единственным образом. Приведем решение
этой задачи в явном виде.

Теорема. Для алгебраического многочлена Эрмита с узлами пятой
кратности

P5n+4 (x) =
n∑

k=0

ω5 (x)

(x− xk)
5[ω′ (xk)]

5 {f (xk) ×

×
[
1 + C1,k (x− xk) + C2,k(x− xk)

2 + C3,k(x− xk)
3 + C4,k(x− xk)

4
]
+

+f ′ (xk)
[
(x− xk) + C1,k(x− xk)

2 + C2,k(x− xk)
3 + C3,k(x− xk)

4
]
+

+f ′′ (xk)
[
(x− xk)

2 + C1,k(x− xk)
3 + C2,k(x− xk)

4
]
/2+

+f ′′′ (xk)
[
(x− xk)

3 + C1,k(x− xk)
4
]
/6 + f (4) (xk) (x− xk)

4/24
}
,

где функции

C1,k = −5ω′′ (xk)

2ω′ (xk)
, C2,k = −5ω′′′ (xk)

6ω′ (xk)
+

15

4

[
ω′′ (xk)

ω′ (xk)

]2
,

C3,k = −35

8

[
ω′′ (xk)

ω′ (xk)

]3
+

5ω′′ (xk)ω
′′′ (xk)

2[ω′ (xk)]
2 − 5ω(4) (xk)

24ω′ (xk)
,

C4,k =
35

8

[
ω′′ (xk)

ω′ (xk)

]4
− 35[ω′′ (xk)]

2ω′′′ (xk)

8[ω′ (xk)]
3 +

5

12

[
ω′′′ (xk)

ω′ (xk)

]2
+

+
5ω′′ (xk)ω

(4) (xk)

8[ω′ (xk)]
2 − ω(5) (xk)

24ω′ (xk)
(k = 0, 1, ..., n) ; ω (x) =

n∏
i=0

(x− xi),

выполняются условия (1).
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Если функция f (x) имеет конечную производную f (N+1)(x) на наи-
меньшем отрезке [a, b], содержащем узлы x0, x1, ..., xn и точку интерполи-
рования y, то существует точка ξ = ξ (y), a < ξ < b, такая, что
для погрешности

R5n+4 (f, y) = f (y)− P5n+4 (y)

алгебраического многочлена Эрмита с узлами пятой кратности P5n+4 (x)
справедливо [1] следующее представление:

R5n+4 (f, y) =
f (5n+5) (ξ)

(5n+ 5)!
ω5 (y) .

Ряд интерполяционных операторных формул, представляющих ре-
шение задачи Эрмита с узлами произвольной кратности, основанных на
тождественных преобразованиях функций, имеется в работе [2]. Доста-
точно полная теория операторного интерполирования изложена в моно-
графиях [3; 4].
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МАТРИЧНО-ЗНАЧНЫЕ ФУНКЦИИ
ДВУХ ПЕРЕМЕННЫХ

Пусть F (µ, ε) есть матрично-значная функция, разлагающаяся в ряд
по степеням малого параметра ε и обратимая при ε ̸= 0 :

F (µ, ε) =
∞∑

k=k0

Fk(µ)ε
k,

где коэффициенты Fk(µ) – матрично-значные функции, аналитические
в области Ω ⊂ C и Fk0 ̸= 0.

При исследовании систем уравнений [1] с дельтообразными коэф-
фициентами возникает вопрос о поведении обратных матриц [F (µ, ε)]−1

при ε→ 0. В первую очередь это нахождение предела

lim
ε→0

[F (µ, ε)]−1 := S(µ)

и получение условий, когда этот предел ненулевой.
Если detFk0(µ) ̸≡ 0, то в матричном случае разложение [F (µ, ε)]−1

имеет аналогичный вид и начинается с 1
εk0

[Fk0(µ)]
−1. Если detFk0(µ) ≡ 0,

то задача о разложении обратной матрицы-функции становится более
сложной, так как это разложение начинается с члена, содержащего 1

εν ,
где ν отлично от k0. В связи с этим возникает задача о построении та-
кого разложения и, в частности, нахождении главного члена в нем, т. е.
вычислении показателя ν и коэффициента при 1

εν .
Рассмотрим матрицы-функции, которые появляются при решении

систем дифференциальных уравнений с дельта-образными коэффициен-
тами. Рассматриваются аппроксимации формального дифференциаль-
ного выражения семейством операторов Lε, зависящих от малого па-
раметра ε, и формальному выражению ставится в соответствие опера-
тор L0 – предел аппроксимирующего семейства в смысле резольвентной
сходимости.
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В выражение для резольвенты аппроксимирующего оператора Lε

входят матрицы-функции [F (µ, ε)]−1, где F (µ, ε) имеет специальный вид

F (µ, ε) = R(ε) +
1

ε
B(εµ).

Размерность такой матрицы-функции равна числу уравнений системы;
матрица-функция R(ε) есть матрица, обратная к матрице A(ε), состав-
ленной из коэффициентов уравнения; матрица-функцияB(εµ) определя-
ется способом аппроксимации δ-функции; переменная µ связана
со спектральным параметром λ равенством µ2 = −λ и рассматривае-
мые функции определены при Reµ > 0.

В приложениях к системам уравнений с дельтообразным коэффици-
ентом условия резонанса позволяют найти те коэффициенты, при кото-
рых слагаемые, содержащие в качестве коэффициента δ-функцию,
влияют на вид решения.

Отметим, что в случае одного уравнения содержательные результаты
имеют место только при бесконечно малых коэффициентах вида

a(ε) = a1ε+ a2ε
2 + . . . .

Тогда скалярная функция f(µ, ε) имеет разложение

f(µ, ε) =
1

a(ε)
+

1

ε
b(εµ) =

[
1

a1
+ b0

]
1

ε
+

[
a2
a21

+ b1µ

]
+ . . .

и ответ получается просто: условие резонанса есть равенство a1 = − 1
b0

;
при этом условии

S(µ) = lim
ε→0

1

f(µ, ε)
=

1
a2
a21
+ b1µ

.

Здесь функция S(µ) имеет особенность только в одной точке, откуда
следует, что в скалярном случае оператор L0 имеет только одно соб-
ственное значение.
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ПОСТРОЕНИЕ ДВУХ ОБОБЩЕННЫХ РЕШЕНИЙ
ЗАДАЧИ КОШИ ДЛЯ ТРЕТЬЕГО УРАВНЕНИЯ
ИЕРАРХИИ РИККАТИ

Предметом исследования является уравнение

w′′′ + γ3w4 + 6γ2w2w′ + 4γww′′ + 3γw′2 = 0. (1)

Это третье уравнение из иерархии уравнений со свойством Пенлеве, по-
рожденной уравнением Риккати

w′(z) + γw2(z) = 0.

Указанная иерархия была построена в работе [1]. Это уравнения вида

Dn
Rw = 0, n = 1, 2, 3, ...,

где DR есть преобразование дифференциальных выражений, действую-
щее по формуле

DR =
d

dz
+ γw, z ∈ C, γ ∈ R\{0}.

Уравнение (1) получаем при n = 3. Как показано в [1], уравнению (1)
удовлетворяет формальный ряд вида

w =
1

γ(z − a)
+ c1+ c2(z−a)+ c3(z−a)2+ c4(z−a)3+ c5(z−a)4+ ..., (2)

где c1 = h1, c2 = h2, c3 = −3
2γh1h2 −

1
2γ

2h31, c4 =
1
2γ

3h41 + γ2h21h2 − 1
2γh

2
2,

c5 = −1
4γ

4h51 +
5
4γ

2h1h
2
2, коэффициенты cj, j > 5, однозначно опреде-

ляются через произвольные параметры h1, h2. Согласно работе [2], ряд
в (2) сходится в области |z − a| < ρ, ρ = min

{
1

|γk1| ,
1

|γk2|

}
, где

k1 =
1

2
h1 +

1

2

√
−h21 −

2

γ
h2, k2 =

1

2
h1 −

1

2

√
−h21 −

2

γ
h2,
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h1, h2 – произвольные постоянные, а знаком √ обозначена одна из
ветвей многозначной аналитической функции. Найдя сумму ряда в (2),
получили решение уравнения (1) – функцию вида

w(z) =
1

γ(z − a)
+

k1
1 + γk1(z − a)

+
k2

1 + γk2(z − a)
. (3)

Аналитические решения w(z) уравнения (1) могут иметь три раз-
личных полюса первого порядка – точки a, b = a − 1

γk1
и c = a − 1

γk2
.

Если a, b и c вещественные, то эти точки делят прямую на четыре части
и на вещественной оси решение задачи Коши с начальными условиями
в точке x0 ∈ R однозначно определено только на одной из этих частей,
содержащей точку x0. Но аналитическая функция w(z) задает по усло-
вию Коши однозначно определенную на всей прямой функцию, которую
будем называть формальным решением задачи Коши.

Рассмотрим уравнение (1) на прямой, т. е. уравнение вида

u′′′(x) + γ3u4(x) + 6γ2u2(x)u′(x) + 4γu(x)u′′(x) + 3γu′2(x) = 0, (4)

и задачу Коши для этого уравнения с начальными условиями u(x0) = C1,
u′(x0) = C2, u

′′(x0) = C3, где C1, C2, C3 ∈ R. Зафиксируем фор-
мальное решение u(x), удовлетворяющее указанным начальным услови-
ям
и имеющее полюсы в точках a, b и c на прямой.

Пусть C1(ε), C2(ε), C3(ε) ∈ C, C1(ε) → C1, C2(ε) → C2, C3(ε) → C3

при ε→ 0 и C1(ε), C2(ε), C3(ε) таковы, что решения wε(x) задачи Коши
для уравнения (1) с условиями wε(x0) = C1(ε), w′

ε(x0) = C2(ε), w
′′
ε (x0) =

C3(ε) не имеют особенностей на вещественной оси.
Определение. Распределение W будем называть обобщенным

решением задачи Коши для уравнения (4) с условиями u(x0) = C1,
u′(x0) = C2, u′′(x0) = C3 при заданном способе аппроксимации началь-
ных условий, если wε(x) сходятся при ε → 0 к W в смысле сходимости
в пространстве обобщенных функций.

Наличие трех различных полюсов порождает восемь случаев [2], в за-
висимости от расположения каждого из полюсов выше или ниже
вещественной оси. Поэтому существует восемь разных обобщенных реше-
ний задачи Коши. Возможны вырожденные случаи. Уравнение (4) имеет
только два обобщенных решения, если b = ∞ и c = ∞.
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Теорема. Если C2 = −γC2
1 и C3 = 2γ2C3

1 , то обобщенными реше-
ниями задачи Коши являются распределения

W± =
1

γ
P

(
1

x− a

)
± iπ

1

γ
δa,

где a = x0 − 1
γC1

, и только они.
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НЕПРЕРЫВНОЕ ПРЕДСТАВЛЕНИЕ ФУНКЦИЙ
ДОПУСКАЮЩИХ РАЗРЫВЫ ПЕРВОГО РОДА

Согласно теории Гельфанда [1], симметричная банахова алгебра A
ограниченных комплекснозначных функций изоморфна алгебре всех
непрерывных функций на пространстве максимальных идеалов M(A)
этой алгебры, которое является компактным топологическим простран-
ством. Это пространство обычно интерпретируется как естественная
область определения рассматриваемых функций, при этом структура
этого пространства отражает возможные типы разрывов этих функций.
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В работе рассматриваются замкнутые в равномерной норме симмет-
ричные алгебры ограниченных комплекснозначных функций, определен-
ных на линейно упорядоченных множествах и имеющих разрывы толь-
ко первого рода. Для данного класса алгебр построены в явном виде
пространства максимальных идеалов. Показано, что даже для таких
алгебр, состоящих из функций, допускающих разрывы простейшего ви-
да, пространства максимальных идеалов оказались компактными про-
странствами с экзотическими свойствами. В частности, одним из таких
пространств является известное пространство «две стрелки» [4; 5]. Оно
было впервые введено Александровым и Урысоном в их классической
работе [3] и используется как универсальный пример компактного про-
странства со сложной структурой. Например, оно не метризуемо, но при
этом для него выполнено 6 из 7 известых условий метризуемости.

Итак, пусть (X,<) – упорядоченное множество, компактное в поряд-
ковой топологии. В таком множестве существует наименьший элемент 0̂
и наибольший элемент 1̂. Пусть JD(X) есть алгебра всех комплексно-
значных функций, которые в каждой точке имеют односторонние преде-
лы. Напомним, что пределом f в точке x слева называется такое число
y, что:

∀ε > 0 ∃x′(ε) < x : ∀x′′ ∈ (x′;x) |f(x′′)− y| < ε.

Далее обозначаем y = lim
x→x0−0

f(x) = f−(x0), аналогично вводится предел

справа и, соответственно, обозначения lim
x→x0+0

f(x) = f+(x0). Определе-

ние предела слева содержательно, если никакой интервал (x′;x) не пуст,
в противном случае существование этого предела не накладывает ни-
каких ограничений на f . Если же в упорядоченном пространстве нет
сечений типа скачок, то в любой окрестности любой точки, за исключе-
нием 0̂ и 1̂, есть точки как слева, так и справа. Далее мы рассматриваем
только упорядоченные пространства без скачков.

Пусть L = {x ∈ X : 0̂ < x < 1̂}, построим

EX = {0̂, 0̂+, 1̂−, 1̂} ∪ L× {−1, 0, 1}

и введем на этом множестве порядок по правилам:
1) на L× {−1, 0, 1} вводим лексикографический порядок;
2) 0̂ < 0̂+ < x < 1̂− < 1̂ ∀x ∈ L× {−1, 0, 1}.
Множество EX и порядок на нем можно кратко описать на языке
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арифметики порядковых типов [2]. В данном случаеX имеет тип 1+λ+1,
где λ – порядковый тип L, а EX имеет тип 2 + 3 · λ+ 2.

Пусть x ∈ X, x ̸= 0̂, 1̂, обозначим x− = x × {−1}, x+ = x × {1},
x0 = x× {0}. Также L− = L× {−1} ∪ {1̂−}, L0 = L× {−1} ∪ {0̂} ∪ {1̂},
L+ = L× {1} ∪ {0̂+}. Далее любой элемент L−(L+) обозначаем x−(x+).

Каждая точка x− ∈ L−(x+ ∈ L+) имеет ФСО, состоящую
из открыто-замкнутых окрестностей, лежащих слева от x−(справа от
x+), то есть меньше x−(больше x+). Действительно: U(x−) = (z0;x0) =
= [z+; x−], где z < x и U(x+) = (x0; z0) = [x+; z−], где z > x. Кро-
ме того, всякая точка из L0 изолирована. Следовательно, построенное
пространство EX нульмерно, а значит и вполне несвязно и содержит
всюду плотное дискретное подпространство L0. Сформулируем условие
непрерывности на EX :

Лемма 1. Для того, чтобы функция была непрерывна на EX необ-
ходимо и достаточно, чтобы она была непрерывна слева на L− и непре-
рывна справа на L+.

Теорема 1. EX компактно и гомеоморфно M(JD(X)).
Теорема доказывается с помощью построения изоморфизма φ

из JD(X) в C(EX). Построим f̂ = φ(f):
1) f̂(0̂) = f(0̂) и f̂(1̂) = f(1̂);
2) f̂(x0) = f(x), f̂(x+) = f+(x) и f̂(x−) = f−(x).
По построению изоморфизма, множество M(JD(X)) состоит из Mτ ,

M−
τ и M+

τ . Mτ состоит из функций обращающихся в нуль в точке τ ,
M−

τ (M+
τ ) состоит из функций? предел которых слева (справа) в точке τ

равен нулю. Поскольку есть взаимнооднозначное соответствие
между максимальными идеалами и мультипликативными функционала-
ми, Mτ(f) = f(τ), M−

τ (f) = f−(τ) и M+
τ (f) = f+(τ) – мультипликатив-

ные функционалы алгебры JD(X).
В случае X = [0; 1], EX сепарабельно, имеет континуальный вес, не

метризуемо, не совершенно нормально, является примером не диадиче-
ского компакта. Пусть T [0; 1] подалгебра JD[0; 1], состоящая из непре-
рывных слева и непрерывных в 0 функций. Тогда M(T [0; 1]) есть фактор-
пространство EX , получаемое «склеиванием» идеалов M−

τ и Mτ .
M(T [0; 1]) гомеоморфно пространству «две стрелки» (рисунок).
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Рисунок – E[0;1] с выделенной окрестностью точки (ξ; 1)

Работа выполнена при финансовой поддержке БРФФИ (проект
Ф25МП-010).
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ЗАДАЧА КОШИ ДЛЯ СИСТЕМЫ ЛИНЕЙНЫХ
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ДРОБНЫМИ
ПРОИЗВОДНЫМИ КАПУТО

Пусть Iαa+f , Dα
a+g – правосторонние дробные интегралы и производ-

ные Римана – Лиувилля комплексного порядка α ∈ C (Re(α) > 0)
на конечном отрезке [a, b] действительной оси [1, § 2.2, 2.4].

Через (cDα
a+y) (x) обозначим дробную производную Капуто [2], опре-

деляемую формулой

(cDα
a+y) (x) =

(
Dα

a+

[
f(x)−

n−1∑
k=0

xk

k!
f (k)(0)

])
(x),

где α ∈ C, Re(α) > 0, n = [Re(α)] + 1 при α /∈ N = {1, 2, . . .}, и n = α
при α ∈ N.

Если α > 0, n − 1 < α 6 n (n ∈ N) и y ∈ Cn[a, b], то при α ∈ N
производная cDα

a+y совпадает с обычной производной:

(cDα
a+y) (x) = (Dny) (x)

(
n ∈ N, D =

d

dx

)
,

а при n − 1 < α < n оператор cDα
a+ представляется в виде композиции

оператора дробного интегрирования Римана – Лиувилля In−α
a+ и опера-

тора дифференцирования Dn: (cDα
a+y) (x) =

(
In−α
a+ Dny

)
(x).

В практических приложениях использование дробной производной
Капуто дает более естественное решение проблемы начальных условий
при решении дифференциальных уравнений нецелых порядков.

Обозначим через Cγ[a, b] (γ ∈ C) класс функций g : [a, b] → R таких,
что (x− a)γg(x) ∈ C[a, b]:

Cγ[a, b] =
{
g(x) : ∥g∥Cγ

= ∥(x− a)γg(x)∥C <∞
}
, C0[a, b] = C[a, b].

Для γ ∈ C (0 6 Re(γ) < 1), α ∈ C (0 < Re(α) < 1):

Cα
γ [a, b] = {y ∈ C[a, b] : cDα

a+y ∈ Cγ[a, b]} ,
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Cα,1
γ [a, b] =

{
y ∈ C1[a, b] : cDα

a+y ∈ Cγ[a, b]
}
.

Обозначим через Eα,β(z) =
∞∑
k=0

zk

Γ(αk+β) (z ∈ C; α, β ∈ C; Re(α) > 0)

функцию Миттаг-Леффлера.
Рассмотрим задачу Коши для системы линейных дифференциаль-

ных уравнений с дробными производными Капуто

(cDαs
a+ys) (x) =

m∑
k=1

λkyk(x) + hs(x), ys(a) = bs ∈ C, (1)

где αs ∈ C (0 < Re(αs) < 1), λs ∈ C (s = 1, . . . ,m).
Пусть

C
α
γ [a, b] = Cα1

γ1
[a, b]×Cα2

γ2
[a, b]× . . .×Cαm

γm
[a, b],

C
α,1
γ [a, b] = Cα1,1

γ1
[a, b]×Cα2,1

γ2
[a, b]× . . .×Cαm,1

γm
[a, b].

Применяя к задаче Коши (1) результаты, полученные в работах [3],
[4], можно показать справедливость следующих теорем.

Теорема 1. Если hs ∈ Cγs[a, b], γs ∈ C (0 6 Re(γs) < 1), то за-
дача Коши (1) имеет в банаховом пространстве Cα

γ [a, b] единственное
решение

ys(x) = bsEαs,1 [λs(x− a)] +

x∫
a

(x− t)αs−1Eαs,αs
[λs(x− t)αs]hs(t)dt,

s = 1, . . . ,m.
В частности, ys(x) = bsEαs,1 [λs(x− a)αs] – единственное решение

задачи Коши

(cDαs
a+ys) (x) =

m∑
k=1

λkyk(x), ys(a) = bs (s = 1, . . . ,m).

Теорема 2. Если hs(x) ∈ Cγs[a, b], θs ̸= 0, γs ∈ C (0 6 Re(γs) < 1),
то задача Коши(

cD1+iθs
a+ ys

)
(x) =

m∑
k=1

λkyk(x) + hs(x), ys(a) = b1s ∈ C, y′s(a) = b2s ∈ C,
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имеет в C1+iθ,1
γ [a, b] единственное решение

ys(x) = b1sE1+iθs,1

[
λs(x− a)1+iθs

]
+ b2sE1+iθs,2

[
λs(x− a)1+iθs

]
+

+

x∫
a

(x− t)iθsE1+iθ,1+iθs

[
λs(x− t)1+iθs

]
hs(t)dt, s = 1, . . . ,m.

В частности, решение задачи(
cD1+iθs

a+ ys

)
(x) =

m∑
s=1

λsys(x), ys(a) = b1s ∈ C, y′s(a) = b2s ∈ C

имеет вид

ys(x) = b1sE1+iθs,1

[
λs(x− a)1+iθs

]
+ b2sE1+iθs,2

[
λs(x− a)1+iθs

]
,

s = 1, . . . ,m.
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ВЫБОР МОМЕНТА ОСТАНОВА ДЛЯ ТРЕХСЛОЙНОГО
ЯВНОГО ИТЕРАЦИОННОГО ПРОЦЕССА В
ПОЛУНОРМЕ ГИЛЬБЕРТОВА ПРОСТРАНСТВА

В действительном гильбертовом пространстве H решается линейное
некорректное уравнение

Ax = y, (1)

где A : H → H – положительный, ограниченный, самосопряженный
оператор (0 ∈ SpA, и, следовательно, рассматриваемая задача неустой-
чива). Решать данную задачу будем при помощи трехслойного явного
итерационного процесса

xn = 2(E − αA)xn−1 − (E − αA)2xn−2 + α2Ay, x0 = x1 = 0,

который при возмущениях (∥y − yδ∥ 6 δ) в правой части уравнения (1)
примет вид:

xn,δ = 2(E − αA)xn−1,δ − (E − αA)2xn−2,δ + α2Ayδ, x0,δ = x1,δ = 0. (2)

Изучим сходимость метода (2) в полунорме гильбертова простран-
ства ∥x∥A =

√
(Ax, x), где x ∈ H, в случае единственного решения урав-

нения (1) при возмущениях в правой части. При этом число итераций n
нужно выбирать в зависимости от уровня погрешности δ.

Теорема. При условии α ∈ (0, 5
4∥A∥ ] метод (2) сходится в полунорме

гильбертова пространства, если число итераций n выбирать из усло-
вия

√
n− 1δ → 0, n → ∞, δ → 0. Для метода (2) справедлива оценка

погрешности:

∥x− xn,δ∥A ≤ (e+ 1)1/2(e+ 4)1/2e−3/2[(n− 1)α]−1/2∥x∥+

+31/2(n− 1)1/2α1/2δ, n ≥ 1.
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Для минимизации оценки погрешности метода (2) вычислим ее
правую часть в точке, в которой производная от нее равна нулю; в ре-
зультате получим

∥x− xn,δ∥опт
A ≤ 2 · 31/4(e+ 1)1/4(e+ 4)1/4e−3/4δ1/2∥x∥1/2

и
nопт = 1 + 3−1/2(αδ)−1(e+ 1)1/2(e+ 4)1/2e−3/2∥x∥.

Отметим тот факт, что для сходимости метода (2) в полунорме
достаточно выбирать число итераций n = n(δ) так, чтобы

√
n− 1δ → 0,

n → ∞, δ → 0. Однако nопт = O(δ−1), т. е. nопт относительно δ имеет
порядок δ−1, и такой порядок обеспечивает сходимость (регуляризующие
свойства) трехслойного явного итерационного процесса (2).

Замечание. Оптимальная оценка погрешности не зависит от α,
но от α зависит nопт. Поэтому для уменьшения nопт, т. е. объема
вычислительной работы, следует брать α возможно большим из усло-
вия α ∈ (0, 5

4∥A∥ ], и чтобы nопт было целым.

УДК 517.983.54

О. В. МАТЫСИК, И. В. КОСТЕНКОВ
Беларусь, Брест, БрГУ имени А. С. Пушкина

ПОЛУЧЕНИЕ АПРИОРНЫХ ОЦЕНОК ПОГРЕШНОСТИ
ДЛЯ ИТЕРАЦИОННОЙ ПРОЦЕДУРЫ РЕШЕНИЯ
НЕУСТОЙЧИВЫХ ЗАДАЧ

В действительном гильбертовом пространстве H решается оператор-
ное уравнение первого рода Ax = yδ, где A – ограниченный, линейный,
самосопряженный оператор. Здесь ∥y − yδ∥ ≤ δ и 0 ∈ SpA (но нуль
не является собственным значением A), поэтому рассматриваемая
задача некорректна (неустойчива). Предположим, что при точной пра-
вой части y существует единственное решение x операторного уравнения.
Для его отыскания применим неявную итерационную процедуру с α > 0:(

E + αA2
)
xn+1,δ =

(
E − αA2

)
xn,δ + 2αAyδ, x0,δ = 0. (1)
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Метод (1) является сходящимся, если приближения (1) сколь угодно
близко подходят к точному решению уравнения Ax = yδ при подходящем
выборе n и достаточно малых δ, т. е. что lim

δ→0

(
inf
n
∥x− xn,δ∥

)
= 0.

Теорема. Процесс (1) сходится, если выбирать число итераций n
в зависимости от δ так, чтобы n1/2 δ → 0, n → ∞, δ → 0. Если
точное решение x уравнения Ax = yδ истокопредставимо (x = Asz,
s > 0), то для метода итераций (1) справедлива оценка погрешности

∥x− xn,δ∥ ≤ s
s
2 (2nαe)−

s
2 ∥z∥+ 4n1/2α1/2δ,

и априорный момент останова

nonm = 2−(s+4)/(s+1)s(s+2)/(s+1)α−1e−s/(s+1) ∥z∥2/(s+1) δ−2/(s+1).

Рассмотрим погрешность метода при счете с округлениями. Пусть
xn,δ – точное значение, получаемое по формуле (1), а zn – значение с
учетом вычислительной погрешности, т. е.

zn+1 =
(
E + αA2

)−1 [(
E − αA2

)
zn + 2αAyδ

]
+ αγn, z0 = 0. (2)

Здесь γn – погрешность вычислений. Обозначим εn = zn − xn,δ и
вычтем из (2) равенство (1). Имеем

εn+1 =
(
E + αA2

)−1 (
E − αA2

)
εn + αγn, ε0 = 0.

Поскольку нулевые приближения равны нулю, то γ0 = 0. По индукции
нетрудно получить, что

εn =
n−1∑
i=0

(
E + αA2

)−(n−1−i) (
E − αA2

)n−1−i
αγi.

В силу α > 0 и того, что 0 ∈ Sp A, справедливо∥∥∥(E + αA2
)−1 (

E − αA2
) ∥∥∥ 6 1,

поэтому ∥εn∥ ≤ nαγ, где γ = sup
i

|γi|.
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Таким образом, с учетом вычислительной погрешности оценка
погрешности неявного метода (1) запишется в виде:

∥x− zn∥ 6 ∥x− xn,δ∥+ ∥xn,δ − zn∥ 6 ss/2 (2nαe)−s/2 ∥z∥ +

+ 4n1/2α1/2δ + nαγ, n > 1.
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ЯВНЫЙ ИТЕРАЦИОННЫЙ МЕТОД
РЕГУЛЯРИЗАЦИИ НЕКОРРЕКТНЫХ ЗАДАЧ В
СЛУЧАЕ НЕЕДИНСТВЕННОГО РЕШЕНИЯ

В статье рассматривается некорректное уравнение первого рода

Ax = y (1)

с действующим в гильбертовом пространстве H ограниченным поло-
жительным самосопряженным оператором A : H → H. Для решения
применим явный метод итераций

xn+1 = (E − αA)3xn + A−1(E − (E − αA)3)y, x0 = 0. (2)

Здесь E – единичный оператор, а оператор A−1, фигурирующий в (2),
не означает, что для рассматриваемой схемы (2) необходимо его знать.
Нужно заметить, что после раскрытия скобок во втором слагаемом он
сокращается и весь оператор в квадратных скобках является полиномом
от оператора A.

Покажем, что метод (2) пригоден и тогда, когда λ = 0 – собственное
значение оператора (случай неединственного решения уравнения (1)).
Обозначим через N(A) = {x ∈ H | Ax = 0} ядро оператора A, M(A) –
ортогональное дополнение ядра N(A) до H. Пусть P (A)x – проекция
x ∈ H на N(A), а Π(A)x – проекция x ∈ H на M(A). Доказана

Теорема. Пусть A ≥ 0, y ∈ H, 0 < α < 2
∥A∥. Тогда для итерацион-

ного процесса (2) верны следующие утверждения:
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a) Axn → Π(A)y, ∥Axn − y∥ → I(A, y) = inf
x∈H

∥Ax− y∥
b) последовательность xn сходится тогда и только тогда, когда

уравнение Axn = Π(A)y разрешимо. В последнем случае

xn → P (A)x0 + x∗,

где x∗ – минимальное решение уравнения (1).
Замечание. В рассматриваемом случае x0 = 0, поэтому xn → x∗,

т. е. процесс (2) сходится к нормальному решению, т. е. к решению
с минимальной нормой.

УДК 004.942:519.218

П. А. МЕРКУШЕВИЧ, И. Ю. СВЕРБА, Л. П. МАХНИСТ,
Т. И. КАРИМОВА
Беларусь, Брест, БрГТУ

ПРИМЕНЕНИЕ СТЕПЕННЫХ РЯДОВ ДЛЯ РЕШЕНИЯ
ОДНОЙ ИЗ ЗАДАЧ ГИДРОЛОГИИ

Рассмотрим дифференциальное уравнение для описания колебаний
речного стока, используемое в стохастической гидрологии (например,
в [1] и [2]):

d2θ1
dξ2

− ξ
dθ1
dξ

= −1,
dθ1
dξ

∣∣∣∣
ξ=∞

= 0, θ1(ξ)|ξ=ξ∗
= 0 (1)

Уравнение (1) при решении некоторых прикладных задач, интегри-
ровалось различными методами, например, в [3], а в работах [4], [5]
исследовалась сходимость решения таких уравнений. В работах [6] и [7]
для решения уравнения (1) использовалась система компьютерной ал-
гебры.

Приведем решение этого уравнения, используя степенные ряды.
Введем обозначение dθ1

dξ = f1(ξ). Тогда, учитывая, что d2θ1
dξ2 = df1

dξ ,
приходим к линейному дифференциальному уравнению первого порядка
df1
dξ − ξf1 = −1, с начальным условием f1(ξ)|ξ=∞ = 0.
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Решение последнего уравнения будем искать в виде f1(ξ) = u(ξ)v(ξ).
Тогда, учитывая, что f ′1(ξ) = u′(ξ)v(ξ) + u(ξ)v′(ξ), получим уравнение

u′v + u(v′ − ξv) = −1 (2).

Найдем одно из ненулевых решений уравнения v′− ξv = 0. Разделяя
переменные в уравнении dv

dξ = ξv, решением которого, очевидно, является
v = 0, получим dv

v = ξdξ. Интегрируя последнее уравнение, получим∫
dv
v =

∫
ξdξ + C2. Откуда ln |v| = ξ2

2 + lnC1 или v = ±C1e
ξ2

2 .

Следовательно, v = Ce
ξ2

2 – общее решение дифференциального урав-
нения v′ − ξv = 0.

Выберем одно из ненулевых решений этого уравнения, например,
v = e

ξ2

2 , при C = 1. Подставляя его в уравнение (2), имеем u′e
ξ2

2 = −1

или u′ = −e− ξ2

2 . Откуда u = −
∫
e−

ξ2

2 dξ + C.
Следовательно, f1(ξ) = u(ξ)v(ξ) =

(
−
∫
e−

ξ2

2 dξ + C
)
e

ξ2

2 или

f1(ξ) =
(
C −

∫ ξ

−∞ e−
t2

2 dt
)
e

ξ2

2 .

Заметим, что
√

2
π

∫ +∞
0 e−

t2

2 dt = 1. Тогда, учитывая начальное условие

f1(ξ)|ξ=∞ = 0, имеем f1(ξ) =
(√

2π −
∫ ξ

−∞ e−
t2

2 dt
)
e

ξ2

2 или

f1(ξ) =
(√

π
2 −

∫ ξ

0 e
− t2

2 dt
)
e

ξ2

2 , что можно проверить, используя правило
Лопиталя.

Далее решение дифференциального уравнения df1
dξ − ξf1 = −1

будем искать в виде степенного ряда f1(ξ) =
∑∞

n=0 cnξ
n. Тогда f ′1(ξ) =

=
∑∞

n=1 ncnξ
n−1. Подставляя f1(ξ) и f ′1(ξ) в уравнение df1

dξ − ξf1 = −1,
получим

∞∑
n=1

ncnξ
n−1 −

∞∑
n=0

cnξ
n+1 = −1.

Введя замены n− 1 = k и n+ 1 = m в первой и второй сумме, соот-
ветственно, получим уравнение

∑∞
k=0(k + 1)ck+1ξ

k −
∑∞

m=1 cm−1ξ
m = −1

или, полагая k = n и m = n в первой и второй сумме, соответствен-
но, получим уравнение c1 +

∑∞
n=1(n + 1)cn+1ξ

n −
∑∞

n=1 cn−1ξ
n = −1 или

уравнение c1 +
∑∞

n=1 ((n+ 1)cn+1 − cn−1) ξ
n = −1 для любого ξ . Следо-

вательно, (n + 1)cn+1 − cn−1 = 0 или cn+1 =
cn−1

n+1 , если n – натуральное
число, и c1 = −1 .
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При n = 2k− 1 – нечетное число (k ∈ N), получим c2k =
c2k−2

2k = c0
(2k)!! ,

где (2k)!! = 2 · 4 · ... · (2k) – двойной факториал четного числа 2k.
При n = 2k−1 – четное число (k ∈ N), получим c2k+1 =

c2k−1

2k+1 = c1
(2k+1)!! ,

где (2k + 1)!! = 1 · 3 · ... · (2k + 1) – двойной факториал нечетного числа
2k + 1.

Следовательно,

f1(ξ) =
∞∑
n=0

cnξ
n = c0+c1ξ+

∞∑
n=2

cnξ
n = c0+c1ξ+

∞∑
k=1

c2kξ
2k+

∞∑
k=1

c2k+1ξ
2k+1 =

= c0+c1ξ+c0

∞∑
k=1

ξ2k

(2k)!!
+c1

∞∑
k=1

ξ2k+1

(2k + 1)!!
= c0

∞∑
k=1

ξ2k

(2k)!!
+c1

∞∑
k=1

ξ2k+1

(2k + 1)!!
,

полагая, что 0!! = 1.
Так как c0 = f1(0) =

√
π
2 и c1 = −1, то

f1(ξ) =

√
π

2

∞∑
k=0

ξ2k

(2k)!!
−

∞∑
k=0

ξ2k+1

(2k + 1)!!
.

Так как dθ1
dξ = f1(ξ), то

θ1(ξ) =

√
π

2

∞∑
k=0

ξ2k+2

(2k)!!(2k + 1)
−

∞∑
k=0

ξ2k+2

(2k + 1)!!(2k + 2)
+ C.

Учитывая начальное условие, θ1(ξ)|ξ=ξ∗
= 0, получаем, что θ1(ξ) =

S1(ξ)− S1(ξ∗), где

S1(ξ) =

√
π

2

∞∑
k=0

ξ2k+2

(2k)!!(2k + 1)
−

∞∑
k=0

ξ2k+2

(2k + 1)!!(2k + 2)

или

S1(ξ) =
+∞∑
n=1

(π
2

){n
2} (−1)n−1ξn

(n− 1)!!n
,

где {t} – дробная часть числа t соответственно.
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДИСПЕРСИИ
СГЛАЖЕННОЙ ОЦЕНКИ СПЕКТРАЛЬНОЙ
ПЛОТНОСТИ В ЗАВИСИМОСТИ
ОТ ОКОН ПРОСМОТРА ДАННЫХ

В спектральном анализе временных рядов одной из проблем являет-
ся построение оценок спектральных плотностей второго порядка стаци-
онарных случайных процессов, так как они дают важную информацию
о структуре процесса.

Исследование статистических оценок спектральных плотностей
является одной из классических задач анализа временных рядов. Это
связано с широким применением анализа временных рядов к анализу
данных, которые возникают в физике, технике, теории распознавания
образов, экономике. Часто данные являются многомерными. Такая си-
туация особенно характерна для экономических данных.

В данной работе в качестве оценки неизвестной взаимной спектраль-
ной плотности исследована статистика, построенная по методу Уэлча.
Предложенная оценка использована для анализа многомерных времен-
ных рядов.

В данной работе с помощью метода Уэлча [1] проведен сравнитель-
ный анализ дисперсии оценки спектральной плотности в зависимости
от окон просмотра данных для временного ряда, представляющего еже-
месячные данные по геомагнитной активности (магнитные бури на Зем-
ле) с 1984 г. по 2024 г.

Пусть Xr(t), t ∈ Z – r-мерный действительный стационарный
в широком смысле случайный процесс. Будем предполагать, что взаим-
ная спектральная плотность fab(λ), λ ∈ Π, a, b = 1, r случайного процес-
са неизвестна.

В работе исследована сглаженная оценка взаимной спектральной плот-
ности вида

f̃
(T )
ab (λ) =

2π

T

T∑
l=1

Wab

(
λ− 2πl

T

)
ITab

(
2πl

T

)
, (1)
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где Wab(x), x ∈ R, a, b = 1, r – спектральное окно, ITab(λ), λ ∈ Π – расши-
ренная периодограмма процесса Xr(t), t ∈ Z, заданная соотношением

ITab(λ) = dNa (λ)d
N
b (λ).

Показано, что оценка (1) является асимптотически несмещенной оцен-
кой взаимной спектральной плотности процесса Xr(t), t ∈ Z.

Проведен сравнительный анализ дисперсии оценки взаимной
спектральной плотности, заданной соотношением (1), для различных
окон просмотра данных. Уменьшение дисперсии оценок достигается за
счет выбора функции окна просмотра данных.

Показано, что наименьшей дисперсией обладает оценка, построенная
с использованием прямоугольного окна просмотра данных.

Рисунок – Графики оценки спектральной плотности,
построенные для временного ряда с использованием окна Хэмминга

и прямоугольного окна
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ИССЛЕДОВАНИЕ ПЕРВЫХ ДВУХ МОМЕНТОВ
ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ,
ПОСТРОЕННОЙ С ИСПОЛЬЗОВАНИЕМ
ОКНА ХЭММИНГА

Одной из задач спектрального анализа временных рядов является по-
строение состоятельных в среднеквадратическом смысле оценок
спектральной плотности и исследование их статистических свойств.

В данной работе в качестве оценки неизвестной взаимной спектраль-
ной плотности стационарного случайного процесса исследована оцен-
ка, построенная по методу Уэлча [1] с использованием окна просмотра
данных Хэмминга.

Рассмотрим Xr(t), t ∈ Z, r-мерный стационарный в широком смыс-
ле случайный процесс с MXr(t) = 0, t ∈ Z, и неизвестной взаимной
спектральной плотностью fab(λ), λ ∈ Π, a, b = 1, r. Предположим, что
число наблюдений T = S(N −M) +M , где S – число пересекающих-
ся интервалов разбиения длины N , N и M являются целыми числами,
0 6M < N , (S не зависит от T ).

В качестве оценки неизвестной взаимной спектральной плотности
процесса в работе исследована статистика вида

f̃Tab(λ) =
1

S

S∑
s=1

I
s(N−M)
ab (λ), (1)

λ ∈ Π, a, b = 1, r, где расширенная периодограмма задана выражением

I
s(N−M)
ab (λ) = ds(N−M)

a (λ)d
s(N−M)
b (λ),

а модифицированное конечное преобразование Фурье наблюдений
d
s(N−M)
a (λ) =

=
1

2
√
2πN

(s−1)(N−M)+M−1∑
(s−1)(N−M)

(
1 + cos

π(t− (s− 1)(N −M))

T

)
Xa(t)e

−itλ.
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В работе вычислены первые два момента построенной оценки.
Доказано, что при некоторых ограничениях на взаимную спектральную
плотность процесса Xr(t), t ∈ Z, оценка взаимной спектральной плотно-
сти, заданная соотношением (1), является асимптотической несмещенной
оценкой взаимной спектральной плотности.
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КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РЕШЕНИЯ
ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

Рассмотрим нахождения решения интегро-дифференциального урав-
нения вида:

u′(t) = sin(u(t)) +

∫ t

0

(t− s)u2(s) ds. (1)

Компьютерное моделирование данного уравнения методом конечных
разностей позволяет не только получить численное решение, но и глуб-
же понять, как ведёт себя функция на заданном отрезке. В основе ме-
тода лежит итерационный алгоритм, представляющий собой поэтапный
процесс приближения к искомому значению.

Для запуска этого алгоритма требуется задать интервал [a; b], шаг h,
а также точность ε. Далее по специальной рекуррентной формуле, выве-
денной из исходного уравнения путем аппроксимации интеграла
и производной, строится цепочка приближённых значений. Итерации
продолжаются до тех пор, пока результат не достигнет заранее задан-
ной точности, гарантируя тем самым надёжность и точность решения.
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Аппроксимация производной по разностной формуле:

u′(tk) =
uk − uk−1

h
. (2)

Аппроксимация интеграла с использованием решения методом
прямоугольников:∫ tk

0

(tk − s)u2(s) ds ≈ h2
k∑

j=0

(k − j)u2j . (3)

Применив аппроксимации (2) и (3) в (1) получим следующую рекур-
рентную формулу:

uk = uk−1 + h sin(uk) + h3
k∑

j=0

(k − j)u2j . (4)

На рисунке представлены численные решения уравнения, получен-
ные на интервале [0, 2] с шагом h = {0,5; 0,1; 0,05} и заданной точно-
стью ε.

Рисунок – Численное решение интегро-дифференциального
уравнения методом итераций

Как видно, с уменьшением шага точность решения увеличивается.
Результаты численного эксперимента показывают, что предложенный
метод обеспечивает высокую точность в нахождении решения рассмат-
риваемого уравнения.
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Э. В. МУСАФИРОВ
Беларусь, Гродно, ГрГУ имени Янки Купалы

О ТРЕХМЕРНЫХ КВАДРАТИЧНЫХ СИСТЕМАХ
ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ СО СКРЫТЫМИ КОЛЕБАНИЯМИ

Введение. Согласно [1], «аттрактор называется скрытым, если
область его притяжения не соприкасается с неустойчивыми состояниями
равновесия, в противном случае аттрактор называется самовозбуждаю-
щимся». В частности, у системы, не имеющей состояний равновесия или
имеющей только устойчивые состояния равновесия, аттрактор является
скрытым.

Вещественная автономная двумерная система имеет замкнутую
траекторию только если у нее существует хотя бы одно состояние равно-
весия [2, с. 124]. В. И. Булгаков привел пример трехмерной системы [3],
которая, в отличие от двумерных систем, не обладает указанным свой-
ством:

ẋ = 2xz + ay,

ẏ = 2yz − ax, (x, y, z) ∈ R3 (1)
ż = z2 + bz + 1− x2 − y2,

где a, b ∈ R – параметры системы. В этой системе при −2 < b < 0
имеется предельный цикл, но отсутствуют состояния равновесия (в этом
случае предельный цикл является скрытым аттрактором и система
демонстрирует скрытые колебания).
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Основной результат. С помощью теории отражающей функции
Мироненко (ОФМ) [4, 5] и подхода, изложенного в [6–9], получено множе-
ство неавтономных систем, имеющих одну и ту же отражающую функ-
цию Мироненко и обладающих скрытыми колебаниями. В частности,
доказано следующее утверждение.

Теорема. Пусть αi = αi(t)(i = 1, 5) — произвольные скалярные
непрерывные нечетные функции, тогда:

1. ∀a, b ∈ R ОФМ системы (1) совпадает с ОФМ системы

ẋ = (2xz + ay) (1 + α1) + 2xzα2 + yα3,

ẏ = (2yz − ax) (1 + α1) + 2yzα2 − xα3, (2)
ż =

(
z2 + bz + 1− x2 − y2

)
(1 + α1 + α2) ;

2. при a = ±2, b = 0 ОФМ системы (1) совпадает с ОФМ системы

ẋ = 2 (xz ± y) (1 + α1) + 2xzα2 + yα3 ± 2 (xy ± z)α4∓
∓
(
1 + x2 − y2 − z2

)
α5,

ẏ = 2 (yz ∓ x) (1 + α1) + 2yzα2 − xα3 ±
(
1− x2 + y2 − z2

)
α4∓

∓ 2 (xy ∓ z)α5,

ż =
(
1− x2 − y2 + z2

)
(1 + α1 + α2)± 2 (yz ∓ x)α4 ∓ 2 (xz ± y)α5;

3. при a = b = 0 ОФМ системы (1) совпадает с ОФМ системы

ẋ = 2xz (1 + α1(t)) + 2xyα2(t)−
(
1− x2 + y2 + z2

)
α3(t) + yα4(t),

ẏ = 2yz (1 + α1(t))−
(
1 + x2 − y2 + z2

)
α2(t) + 2xyα3(t)− xα4(t),

ż =
(
1− x2 − y2 + z2

)
(1 + α1(t)) + 2yzα2(t) + 2xzα3(t).

Для полученных возмущенных неавтономных систем изучена устой-
чивость по Ляпунову стационарных решений, доказано существование
предельного цикла и периодических решений, а также изучен характер
их устойчивости по Ляпунову. Показано, что возмущенная неавтономная
система (2), как и исходная автономная система (1), при определенных
значениях параметров проявляет скрытые колебания (имеет предельный
цикл, но не имеет стационарных решений) (таблица 1).
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Таблица 1 – Характер устойчивости предельного цикла (ПЦ) x2+y2 = 1,
z = 0 и равновесных решений

P

(
0, 0,−1

2

(
b+

√
b2 − 4

))
, Q

(
0, 0,−1

2

(
b−

√
b2 − 4

))
системы (2) в случае, когда α1(t) + α2(t) > −1 ∀t ≥ 0

b Равновесные решения ПЦ
(−∞,−2) P и Q неустойчивы устойчив

−2 P = Q = (0, 0, 1) устойчиво устойчив
(−2, 0) отсутствуют устойчив

0 отсутствуют —
(0, 2) отсутствуют неустойчив
2 P = Q = (0, 0,−1) неустойчиво неустойчив

(2,+∞) P асимптотически устойчиво, Q неустойчиво неустойчив

Работа выполнена при финансовой поддержке Белорусского респуб-
ликанского фонда фундаментальных исследований, проект Ф25КИ-087.
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МОДЕЛИРОВАНИЕ ЭФФЕКТОВ ТРАНСФОРМАЦИЙ
ГИБРИДНОЙ СТРУКТУРОЙ УРАВНЕНИЙ

Статья рассматривает проблематику моделирования эволюционных
процессов в противоборствующем сообществе организмов и адаптации
одной из компонент биофизической системы. Инвазионные процессы
в биосистемах при вселении видов c высоким репродуктивным парамет-
ром в новый ареал запускают многообразные нелинейные процессы и
некоторые из инвазионных вторжений развиваются стремительно в фор-
ме вспышки из одного пика.

В статье опишем формирование моделирующих структур с вклю-
ченной логикой, задающей условия переопределения системы уравнений
на основе отслеживания изменяющихся эволюционных характеристик и
трансформирующихся параметров. Гибридная модель из набора выби-
раемых по заданным условиям переопределяемых функций активаций
и демпфирования колебаний имитирует последствия событийной эволю-
ции возбудителя. На основе алгоритмической реализации структуры пе-
реходов между режимами поведения в серии имитационных сценариев
развития эпидемических волн в регионах в зависимости от факторов им-
мунизации и оценки действенности антиэпидемических мер. Получены
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сценарии развития эпидемической ситуации при смене доминирующих
штаммов коронавируса в пяти регионах.

Предложим модели с вероятностной компонетой при развитии ситуа-
ции инвазионного процесса в биосистеме с адаптивным сопротивлением.
Представим несколько аспектов запаздывания. Частный случай инвазии
с неопределенно запаздывающим ответом – это иммунный ответ на коро-
навирус, который может быть или сильным или медленно возникающим
по целому ряду не полностью детерменированных факторов. Мы вклю-
чим в модель возмущенного равномерно распределенной на [0, 1] σ репро-
дуктивного запаздывания x(t−τ×σ) как способ разнообразить варианты
поведения траектории, но не расширяя структуру. Вопрос определения
связи величины τ с непосредственной популяционной характеристикой
открыт. τ – это агрегированная характеристика процессов и сложенная
из разных явлений.

Модификации моделей с запаздыванием представляют значимость
для исследования редких сценариев популяционной динамики, которые
относим к типу экстремальных [1]. В предложенной нами модели по-
лучен вариант разрушения колебаний без необходимости дальнейшего
увеличения r, H = 1/3K:

dN

dt
= rN

(
1− N(t− τ × σ)

K

)
(H −N(t− γ)) , γ < τ. (1)

Модель была основана на нашей идее, что для механизмов контроля
имеет значение переход N(t− γ) через предкритический порог H. Вели-
чина H трактовалась как мягкое пороговое состояние «преднасыщения»
среды, когда при N(t) → H+ϵ популяция вселенца уже начинает разру-
шительно воздействовать на среду [2]. В сценарии на динамику инвази-
онного процесса оказывает влияние отклонение [H −N(t− γ)], притом
величина отклонения может быть как положительной, так и отрицатель-
ной. В иммунологической трактовке при такой вирусной нагрузке орга-
низм через небольшой интервал задержки сталкивается опасными симп-
томами. Модель описала вычислительный сценарий с выбросом траекто-
рии из окрестности цикла. После образования колебаний при превыше-
нии значения в момент maxN∗(tmax; rτγ) предельного для экосистемы
уровня траектория далее N(t) → ∞ с остановкой расчетов. B модели
релаксационный цикл оказывается переходным режимом существова-
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ния, а образование неограниченной траектории оценено нами как ка-
тастрофическая динамика.

Используем в новой форме модели вместо квадратичной зависимо-
сти логарифмическую форму регуляции. B таком варианте уравнения с
внешним воздействием биотической среды дополнение модели фактором
противодействия с отдельным запаздыванием изменит качественный ха-
рактер решения:

dN

dt
= r ln

(
K

N(t− τ)

)
− QN(t− ν), (2)

Определим такое запаздывание адаптационным ν и будем отличать его
от феноменологического регуляционного τ из уравнений Xатчинсонa или
Hиколсонa.

Для f(N) = rN ln(K/N) ордината точки перегиба Np на кривой ре-
шения Ṅ = f(N) лежит ниже K/2, так как f ′(Np) = 0, Np = K/e.
В данной модификации мы используем обозначение K, так как дости-
жение уровня может быть кратковременным при больших r. В вычисли-
тельном сценарии наблюдается гибель популяции агрессивного вселенца
после двух максимумов осцилляций. При уменьшении r траектория де-
монстрирует [2] обычные гармонические колебания N∗(t; τr).

Усовершенствуем (1) с включением нелинейности

F (N) = −QNk(t− ν), τ > ν,

что обосновано ситуацией, когда текущее воздействие может определять-
ся предшествующим состоянием популяции.

Применение модели возможно для анализа эпидемических
волн COVID. Рассмотрим пульсирующий эпидемический процесс, кото-
рый свойственен быстро мутирующему коронавирусу. 12 волн заболева-
емости образовалось в ходе эпидемии в Бельгии. В 2024 г. активность
линии JN.1–KP.3 нарушила тренд затухания. При росте числа перебо-
левших формируется популяционный иммунитет, но случайные мутации
с неслучайным отбором ведут к образованию ветвей эволюции конку-
рирующих штаммов вируса. Момент активации нового штамма вероят-
ностно вариативен [τ1, τ1 +∆]. C учетом стохастического возмущения τ1
случайной величиной γ в диапазоне γ(ω) ∈ [1, 2] опишем с возмущен-
ным равномерной случайной величиной запаздыванием (t − τ1γ) волн
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эпидемии при смене доминирующего штамма:
dY
dt = R2Y (t) exp(−ςY (t− γτ)− ε

√
(J −N(t− τ))2,

dN
dt = R1N(t) ln

(
K

N(t−τγ)

)
− δN2(t−τ1γ)

(J−Y (t))
2 − φY (t),

δ > q, γ(ω) ∈ [1, 2].

(3)

В системе (3) учтен эффект борьбы штаммов при эволюции на укло-
нение от связывания с антителами. При Y (0) < J < K N(t) → 0 + ϵ
происходит смена характеристик осцилляционного режима. Положение
экстремумов колебаний N(t) → N∗(t),maxN∗(t) < J , minN∗(t) зависит
от возмущения запаздывания.

Исследование выполнено в рамках бюджетной темы СПБ ФИЦ РАН
(руководитель А. С. Гейда).
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О НЕКОТОРЫХ ПРИЛОЖЕНИЯХ
ТЕОРЕМ ЕДИНСТВЕННОСТИ В ВЕСОВЫХ
ПРОСТРАНСТВАХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

В комплексном и гармоническом анализе важную роль играет пред-
ставление функций, принадлежащих тому или иному классу на задан-
ном множестве, в виде простых дробей с фиксированными полюсами.
В данной работе рассмотрены некоторые случаи таких представлений,
доказательство которых основано в том числе на использовании теоре-
мы единственности в соответствующем классе.
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Пусть C – комплексная плоскость, D = {z ∈ C : |z| < 1} – единич-
ный круг на комплексной плоскости, T = {z ∈ C : |z| = 1} – единичная
окружность; H (D) – множество всех аналитических функций в D.

Предположим, что E – некоторое замкнутое множество на единичной
окружности T и обозначим eζ,k (z) множество всех простых дробей вида

eζ,k (z) =
1

(1− ζz)k
, z ∈ D, k ∈ Z+, ζ ∈ E.

Положим также

M (r, f) = max
|z|≤r

|f (z)| = max
|z|=r

|f (z)| , 0 ≤ r < 1.

СимволомXα обозначим пространство всех аналитических вD функ-
ций, для которых

Xα =

{
f ∈ H (D) , M (r, f) e−

1
(1−r)α −→

r→1−0
0, α > 0

}
,

∥f∥Xα
= sup

0≤r<1

{
M (r, f) e−

1
(1−r)α

}
. (1)

Основной результат работы – получить полное описание тех замкну-
тых множеств E на окружности T , для которых система функций

Y (E) = {eζ,k} , k ∈ Z+, ζ ∈ E (2)

составляет всюду плотное множество в пространстве Xα и соответствен-
но в Ap

α (D) , где

Ap
α =

{
f ∈ H (D) , M (r, f) e−

1
(1−r)α −→

r→1−0
0

}
=

=

{
f ∈ H (D) : ∥f∥Ap

α(D) =

∫
D

|f (z)|pexp
(
− 1

(1− |z|)α
)  1

p

dm2 (z) < +∞

}
.
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Известно, что при 1 ≤ p < +∞ Ap
α (D) является нормированным

пространством, а при 0 < p < 1 – метрическим пространством относи-
тельно соответствующей метрики. Вышеуказанные пространства введе-
ны и исследовались в работах [1], [2].

Сформулируем основные результаты работы в виде следующих двух
теорем.

Теорема 1. Пусть E – замкнутое множество на единичной окруж-
ности T , {lk}+∞

k=1 – дополнительные интервалы множества
E∗ = {φ ∈ [−π, π] : eiφ ∈ E}.

Тогда, если
+∞∑
k=1

l
1

1+α

k = +∞, (3)

то
Y (E) = Xα,

где замыкание берется в топологии пространства Xα.

В случае пространства Ap
α (D) справедливо следующее утверждение.

Теорема 2. Пусть 0 < p < +∞, E – множество из теоремы 1,
Y (E) определяется равенством (2). Тогда если дополнительные интер-
валы множества E удовлетворяют условию (3), то

Y (E) = Ap
α (D)

при всех 0 < p < +∞, 0 < α < +∞, где замыкание Y (E) берется
в топологии пространства Ap

α (D).
Доказательство теоремы 2 основано на следующих вспомогательных

результатах.
Лемма 1. Пусть Φ – линейный непрерывный функционал на Xα,

eζ (z) =
1

1− ζz
, z, ζ ∈ D.

Предположим, что g (ζ) = Φ (eζ) . Тогда g ∈ H (D), причем

g (ζ) =
+∞∑
k=0

Φ (δk) ζ
k,

где δk (ζ) = ζk, ζ ∈ D.
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Лемма 2. Пусть Φ – линейный непрерывный функционал на Xα,
eζ , g – функции, определенные в лемме 1. Тогда∣∣∣g(n) (ζ)∣∣∣ ≤ Annn(1+

1
α), n ∈ Z+,

где A – некоторое положительное число, зависящее только от Φ.
Лемма 3. Пусть g – функция, определенная в лемме 1, E – неко-

торое замкнутое множество на T . Тогда если g(k) (ζ) = 0, k ∈ Z+,
ζ ∈ E, и при этом дополнительные интервалы {lk}+∞

k=1 множества
E∗ =

{
φ ∈ [−π, π] : eiφ ∈ E

}
удовлетворяют условию (3), то функция

g равна нулю тождественно, т. е. g (z) ≡ 0, z ∈ D.
Лемма 4. Пусть Φ – линейный непрерывный функционал на Xα, eζ ,

g – функции, определенные в лемме 1. Тогда для произвольной f ∈ Xα

справедливо следующее представление

Φ (f) = lim
ρ→1−0

1

2π

π∫
−π

f
(
ρeiφ

)
g
(
ρeiφ

)
dφ .
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УДК 517.977

О. Б. ЦЕХАН
Беларусь, Гродно, ГрГУ имени Янки Купалы

ОБ ОПЕРАТОРЕ ДЕКОМПОЗИЦИИ
СИНГУЛЯРНО ВОЗМУЩЕННОЙ СИСТЕМЫ
С ПОСТОЯННЫМ ЗАПАЗДЫВАНИЕМ

Пусть µ – малый параметр, µ ∈ (0, µ0], µ0 ≪ 1, p
∆
= d

dt – оператор
дифференцирования, h > 0 – запаздывание, e−ph – оператор запаздыва-
ния: e−phz(t) = z(t−h), PC

(
[a, b];Rk

)
(C,PC) – линейное пространство
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кусочно-непрерывных (непрерывных, ограниченных кусочно-непрерыв-
ных) функций, отображающих интервал [a, b] в k-мерное действительное
пространство Rk, R[[µ]][λ] – кольцо полиномов от переменной λ с коэф-
фициентами из кольца формальных степенных рядов по µ над полем R.
Для любых r, s ∈ N обозначим Ar×s

T

(
µ, e−ph

)
класс r×s-матричных опе-

раторов A с элементами из C(T ;R)[[µ]][e−ph], действующих из
PC ([t− h, t];Rn) в Rn, M , diag {En1

, µ−1En2
}, n1, n2 ∈ N,

MAr×s
T

(
µ, e−ph

)
– класс операторов вида M ·A, где A ∈ Ar×s

T

(
µ, e−ph

)
.

Пусть Ai

(
t, e−ph

)
= Ai0(t) + Ai1(t)e

−ph, Aij (t), i = 1, 2, j = 0, 1,
Am (t), m = 3, 4, – непрерывные на T матричные функции подходящих
размеров, z′ = (x′, y′), x ∈ Rn1, y ∈ Rn2. Рассмотрим линейную нестацио-
нарную сингулярно возмущенную систему (СВС) с запаздыванием [1]:

ż(t) = A
(
t, µ, e−ph

)
z(t), t ∈ T. (1)

Aµ , A
(
t, µ, e−ph

)
=M ·A

(
t, e−ph

)
∈MAn×n

T

(
µ, e−ph

)
, n = n1+n2, (2)

A
(
t, e−ph

)
=

(
A1

(
t, e−ph

)
A2

(
t, e−ph

)
A3 (t) A4 (t)

)
∈ An×n

T

(
µ, e−ph

)
.

В качестве пространства состояний системы (1) рассмотрим простран-
ство (PC[t− h, t);Rn)× Rn.

Известны сложности исследования СВС из-за их жесткости, а также
возможной высокой размерности. Чтобы снизить размерность
и избежать жесткости, в [2] предложена двухэтапная процедура разделе-
ния временной шкалы двухтемповой СВС. Композиция преобразований
двух этапов порождает оператор K специального вида [3] из группы пре-
образований Ляпунова [4]. Применение преобразования K к оператору
СВС приводит к его блочной диагонализации, что соответствует расщеп-
лению СВС на разделенные по темпам системы меньшей размерности,
чем исходная, при этом, в отличие от исходной, эти подсистемы регуляр-
ным образом зависят от малого параметра. Таким образом, K является
оператором регуляризирующего расщепляющего преобразования.

Однако применение преобразованияK [2; 3] к оператору A
(
t, µ, e−ph

)
(2) не приводит к его блочной диагонализации, что обусловлено зависи-
мостью Aµ от оператора запаздывания (нелокальным действием). Для
систем с запаздыванием естественно рассматривать класс преобразова-
ний с запаздыванием [5]. Рассмотрим группу Gn

T (µ, e
−ph) ⊂ An×n

T

(
µ, e−ph

)



111

непрерывно дифференцируемых на T невырожденных для каждого t ∈ ∈
T операторов G(t, µ, e−ph), каждый из которых задает оператор
преобразования элементов Aµ ∈MAn×n

T

(
µ, e−ph

)
по правилу:

G ∗Aµ = G−1AµG−G−1Ġ.

В общем случае G ∗ Aµ ̸∈ MAn×n
T

(
µ, e−ph

)
. Чтобы корректно опре-

делить действие операторов из Gn
T (µ, e

−ph) на Aµ (2), погрузим класс
An×n

T

(
µ, e−ph

)
в класс An×n

(
µ, e−ph

)
: (PC(−∞, t];Rn) → Rn матричных

операторов с элементами из PC ((−∞; t1],R) [[µ]][[e−ph]]. Класс операто-
ров вида M ·A,A ∈ An×n, обозначим MAn×n

(
µ, e−ph

)
.

Рассмотрим группу Gn(µ, e−ph) непрерывно дифференцируемых на T
невырожденных для каждого t ∈ T операторов из класса An×n

(
µ, e−ph

)
.

В статье доказывается, что в общем случае для оператора Aµ (2) не суще-
ствует блочно-диагонализующего преобразования в группе Gn

T (µ, e
−ph),

но при некоторых условиях на Aij (t), i = 1, 2, j = 0, 1, Am (t), m = 3, 4,
такое преобразование K существует в группе Gn(µ, e−ph) ⊃ Gn

T (µ, e
−ph).

Оператор преобразования K может быть представлен в виде асимпто-
тического ряда по µ. Соответствующая расщепленная СВСЗ, алгебраи-
чески и асимптотически эквивалентная исходной системе с оператором
Aµ, является системой с бесконечным запаздываним специального вида.
Обосновано асимптотическое приближение оператора K ∗Aµ ∈ MAn×n

расщепленной СВС блочно-диагональным оператором из MAn×n
T , что

соответствует расщеплению СВСЗ на не зависящие от параметра µ под-
системы c конечным запаздыванием.

Теорема. Пусть ∀t ∈ T : Reλ (A4 (t)) ≤ −a < 0; ∥A4 (t)∥ ≤ b;∥∥∥Ȧ4 (t)
∥∥∥ ≤ c; элементы Aij (t) , i = 1, 2, j = 0, 1, Ai (t) , i = 3, 4, опре-

делены, ограничены и непрерывно дифференцируемы с ограниченными
производными на (−∞, t1]. Тогда для достаточно малых µ ∈ (0, µ0]
существует преобразование Ляпунова с унимодулярным оператором
K ∈ Gn(µ, e−ph) вида

K
(
t, µ, e−ph

)
=

(
En 1

µK12

−K21 En2
− µK21K12

)
,

где Kij ∈ Ani×nj
(
µ, e−ph

)
, i, j,= 1, 2, – операторы, удовлетворяющие

специальным операторным уравнениям Риккати, которое преобразует
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Aµ ∈MAn×n в блочно-диагональный оператор:

K ∗Aµ =M · diag {Aξ, Aη} ∈MAn×n,

Aξ ∈ An1×n1, Aη ∈ An2×n2. Если при этом элементы Aij (t), i = 1, 2,
j = 0, 1, Am (t), m = 3, 4, достаточно гладкие на (−∞, t1], то асимп-
тотическое (по µ) приближение для K можно найти в виде оператора
с конечным запаздыванием.

Получены итерационные схемы для нахождения оператора расщеп-
ляющего преобразования K и матриц Aξ,Aη преобразованных систем,
описано действие асимптотических приближений оператора K на СВСЗ.

Результаты можно применять для развития [1] при получении асимп-
тотических аппроксимаций любого порядка решения СВСЗ, при постро-
ении асиптотических (по µ) регуляторов и наблюдателей таких систем.

Работа выполнена при поддержке Министерства образования Рес-
публики Беларусь в рамках ГПНИ «Конвергенция-2025», 1.2.04.
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Belarus, Brest, Brest State A. S. Pushkin University

IRREGULARIZABILITY OF THE RIEMANN – HILBERT
BOUNDARY VALUE PROBLEM FOR ONE
BIHARMONIC SYSTEM IN R3

Let Ω be a simply connected bounded, homeomorphic to a ball, domain
in R3 with a sufficiently smooth boundary ∂Ω. We consider in Ω the system
of four first-order differential equations of the form

∂U

∂x1
+


0 −1 2 0
1 0 0 −1
0 0 0 1
0 0 −1 0

 ∂U

∂x2
+


0 0 −1 0
−1 0 0 −1
1 0 0 0
0 1 −2 0

 ∂U

∂x3
= 0, (1)

where U = (u1(x), u2(x), u3(x), u4(x))
T is a column vector of the real-

valued functions, T is for transpose and x = (x1, x2, x3) ∈ R3.
We note that the system (1) is not a three-dimensional analog of the

Cauchy – Riemann system [1]. However, it is elliptic and each component
of an arbitrary continuously differentiable solution of the system (1) satisfies
the biharmonic equation [2] in R3. Such systems are classified to the systems
of the biharmonic type [3].

We consider the Riemann – Hilbert boundary value problem of finding
a solution of the system (1), satisfying the boundary conditions

u1|∂Ω = f1(y), (u2ν1 + u3ν2 + u4ν3)|∂Ω = f2(y) (y ∈ ∂Ω), (2)

where ν(y) = (ν1(y), ν2(y), ν3(y)) is the unit field of internal normals on the
surface ∂Ω, f is the given Hölder continuous on the surface ∂Ω the two-
component vector-function.

Theorem. [4] The Riemann-Hilbert problem for system (1) and boundary
condition (2) is not regularisable.

To prove the theorem, it is shown that at the point of the surface ∂Ω, in
which the internal normal is parallel to the axis Ox1, rank of the Lopatinskiy
matrix [5] of the problem (1), (2) is not maximal.
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СЕКЦИЯ 3
ФИЗИКА И МЕТОДИКА ЕЕ ПРЕПОДАВАНИЯ

УДК 373.3/.5 : 53

И. В. АВДУЛОВА
Россия, Курск, ОБПОУ КАТК

ФОРМИРОВАНИЕ
ФУНКЦИОНАЛЬНОЙ ГРАМОТНОСТИ
НА ЗАНЯТИЯХ ПО ФИЗИКЕ

Необходимость оперативно реагировать на перемены, происходящие
в повседневной жизни, способность самостоятельно искать, анализиро-
вать и эффективно использовать нужную информацию приобретает
особую значимость в наше время и занимает лидирующую позицию сре-
ди требований к подготовке обучающихся по всему миру.

Реализовать эти требования можно путем целенаправленного разви-
тия всех типов функциональной грамотности. Сам термин «функцио-
нальная грамотность» пришел из социологии и психологии труда, когда
стали изучать, почему многие работники с хорошим образованием оказы-
ваются неспособны выполнять рабочие обязанности должным образом.
Оказалось, что причина кроется не в недостатке квалификации, а в низ-
ком уровне именно функциональной грамотности – способности гибко
применять знания в условиях изменяющейся среды.

Наиболее влиятельным источником популяризации функциональной
грамотности считается Организация Объединенных Наций по вопросам
образования, науки и культуры (ЮНЕСКО), предложившая концепцию
функциональной грамотности в рамках программы ЮНЕСКО «Образо-
вание для всех» (Education for All). Сегодня концепция получила
признание на международном уровне и входит в число важных пока-
зателей оценки уровня подготовки молодежи и взрослого населения.

Функциональная грамотность подразумевает умение эффективно
решать практические задачи, возникающие в повседневной жизни и про-
фессиональной деятельности, опираясь на имеющиеся знания.

Главная задача современного учебного заведения заключается
не столько в передаче большого объема информации студентами, сколь-
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ко в формировании у них способности осознанно применять полученные
знания в реальных жизненных обстоятельствах.

Перед каждым педагогом стоят следующие важные задачи: обеспе-
чить эффективность учебного процесса, создать благоприятные усло-
вия для самостоятельного познания, применять проектные методики,
групповые и коллективные работы на занятиях, а также интеграция
информационно-коммуникационных технологий и электронного образо-
вательного контента.

Разберем категории функциональной грамотности подробнее.
• Грамотность чтения – это умение читать и глубоко воспринимать

учебный текст, выделять необходимую информацию, толковать прочи-
танное и применять полученные сведения для решения учебных и быто-
вых, а также будущих профессиональных задач. Чтение служит
фундаментом всей функциональной грамотности.

• Математическая грамотность – это способность правильно ставить
задачи, пользоваться математическими методами и инструментами в раз-
ных жизненных ситуациях, делать обоснованные выводы и давать объ-
яснения различным явлениям природы и общественной жизни.

• Финансовая грамотность – это владение финансовыми понятия-
ми и умениями оценивать финансовые риски, принимать рациональные
решения в денежных вопросах, направленные на укрепление личного
благосостояния и экономического роста общества.

• Компетентность в креативном мышлении проявляется способно-
стью вырабатывать оригинальные идеи, качественно оценивать их
потенциал и реализовывать творческие замыслы, формирующие эффек-
тивные и новаторские решения.

• Глобальные компетенции подразумевают умение объективно
рассматривать международные и межкультурные вопросы, учитывая
разнообразие мнений и культурных различий, и вести конструктивный
диалог с представителями других народов, уважительно относясь к пра-
вам и достоинствам каждого.

• И наконец, естественно-научная грамотность характеризует
способность гражданина активно включаться в общественные обсужде-
ния и принятие решений, касающихся естественных наук и технологий,
требующих владения компетенциями, такими как научное обоснование
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явлений, интерпретация результатов исследований и аргументация по-
зиций на основе полученных доказательств.

Особое место в обучении физике занимают физические эксперимен-
ты, играющие ведущую роль в формировании функциональной грамот-
ности. Лабораторные, демонстрационные, фронтальные и домашние экс-
перименты активизируют познавательные и мыслительные процессы сту-
дентов, развивая у них внимательность, образное мышление и умение
делать выводы на основании наблюдений. Особенно это касается работ,
напрямую имеющих взаимосвязь с их будущей профессией. Эксперимент
при этом никогда не проводится изолированно, а всегда сочетается с уст-
ными методами преподавания (лекциями, объяснениями, беседами) и ви-
зуализационными средствами (рисунками, таблицами, мультимедийны-
ми пособиями).

Примеры заданий для формирования функциональной грамотности:
1. Расчет потребления электроэнергии. Представьте, что ва-

ша семья планирует установить солнечные батареи на крышу вашего
дома. Ваша задача – рассчитать потребление электроэнергии вашей се-
мьей за месяц и сделать вывод, выгодна ли установка солнечных батарей
с учетом текущих тарифов на электроэнергию.

Исходные данные. Стоимость одного киловатта электроэнергии
составляет 5 рублей. Среднесуточное потребление электроэнергии се-
мьей: освещение – 10 Вт/ч, холодильник – 50 Вт/ч, телевизор – 30 Вт/ч,
компьютер – 100 Вт/ч. Время работы каждого прибора в сутки.

Задания:
1. Какова сумма ежемесячного расхода семьи на электричество?
2. Что влияет на выгодность установки солнечных панелей?
3. Какой дополнительный экономический эффект принесёт вам такая

инвестиция?
2. Выбор режима сварки. Необходимо подобрать режим аргоно-

вой сварки алюминиевых деталей толщиной 5 мм. Используя справочные
таблицы и рекомендации производителя электродов, рассчитайте силу
тока и диаметр электрода.

Параметры: Материал изделия: алюминий марки АД31. Диаметр
присадочной проволоки: 1,6 мм. Толщина свариваемого металла: 5 мм.
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Задание:
1. Определить рекомендованную величину сварочного тока и реко-

мендуемый диаметр электрода.
3. Анализ аварийной ситуации. Проанализируйте реальное ДТП

и определите причины происшествия с точки зрения законов физики.
Допустим, автомобиль движется по скользкой зимней дороге и теряет
контроль над управлением.

Материалы: Фотовидеофиксация инцидента, схема участка дороги,
технические характеристики автомобиля.

Задания:
1. Какая физика лежит в основе потери управляемости автомобилем?
2. Могла ли погода повлиять на происшествие?
3. Какие меры предосторожности помогли бы избежать подобного

исхода?
Таким образом, физическая дисциплина помогает развивать функ-

циональные навыки, готовит студентов к успешной адаптации в дина-
мичном мире и стимулирует интеллектуальное развитие.

Значительную роль в повышении функциональной грамотности
играет правильное использование разнообразных индивидуальных до-
машних заданий. Важно помнить, что разнообразие заданий не является
самоцелью, оно выступает инструментом для достижения основной це-
ли – развития функциональной грамотности. Примерами таких заданий
являются:

1) создание рекламы физического закона, понятия или явления;
2) составление задачи по заданной теме (желательно с профессио-

нальной направленностью);
3) разработка тематического кроссворда;
4) написание рассказов, стихов или поэм;
5) проведение исследования зависимостей;
6) улучшение конструкции лабораторного оборудования (весов, мен-

зурок, реостатов и др.).
Из всего вышесказанного можно сделать вывод, что развитие функ-

циональной грамотности крайне важно, так как оно помогает студен-
там применять полученные знания для решения междисциплинарных
и профессиональных задач, продолжения учебы и успешной адаптации
в обществе. Активные формы обучения создают необходимые условия
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для приобретения студентами способностей к самостоятельному мышле-
нию, анализу, отбору нужной информации, ориентированию в незнако-
мых ситуациях и поиску методов решения конкретных задач в реальной
и профессиональной жизни.
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МЕСТОРОЖДЕНИЙ

Оконтуривание рудных тел полезных ископаемых является наибо-
лее ответственной операцией. Основное влияние на оконтуривание тел
полезных ископаемых имеет взаимное пространственное распределение
полезных ископаемых и вмещающих пород на участках их контакта.
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Суть оконтуривания тел полезных ископаемых заключается в прове-
дении двух последовательных операций:

– установления опорных точек по данным геологоразведочного опро-
бования;

– проведения через опорные точки линий контура.
Основой для оконтуривания являются данные отдельных геологораз-

ведочных выработок, для которых по данным опробирования выделяют-
ся контуры рудных пропластков (пересечений), характеризующие мощ-
ность и сорт рудного тела, содержание полезных и вредных компонентов
на участках пересечения рудного тела геологоразведочной выработкой.
Основным и принципиальным отличием разработанных автором мето-
дик и алгоритмов является пространственное объемное оконтуривание.

Рассмотрим некоторые классические способы построения контуров
в двухмерной области (на планах и разрезах) и далее рассмотрим мате-
матические методы их реализации при автоматизированных расчетах на
основе математической модели месторождения.

На рисунке 1 схематично показано построение нулевого контура
и формирование контуров рудной залежи. Возможность изменения (ва-
рьирования) параметров кондиций позволяет оперативно получать раз-
личные варианты оконтуривания, анализировать целесообразность при-
менения различных технологий оконтуривания, а также оперативно уточ-
нять контуры рудных тел в процессе ввода в модель новых геологических
данных эксплуатационной разведки, полученных в процессе доразведки
и эксплуатации месторождения.

При выборе математического аппарата сделано допущение – распре-
деление моделируемого параметра на начальный момент наблюдения
имеет потенциальную природу и может рассматриваться как потенци-
альное поле. Такая постановка задачи делает возможным произведение
интерполяции геологических данных на основе аппроксимации функции
вида U = U(x, y, z), проходящей через точки наблюдения, уравнением
Лапласа, вида

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0

c граничными условиями, удовлетворяющими условиям Дирихле.
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Рисунок 1 – Схема к построению промышленного контура и выделению
рудного тела по данным кондиционных ограничений (mk, αk)

На рисунке 1 : a) результаты распространения геологических
данных по методу ближайшего района; b) результаты интерполяции зна-
чений горно-геологических параметров; с) формирование промышленно-
го контура; d) графическая интерпретация результатов моделирования;
1 – содержание полезного компонента; 2 – значение мощности; 3 – нуле-
вой контур; 4 – рудные выработки; 5 – безрудные выработки.

При практической реализации предложенного метода для математи-
ческого моделирования геологических объектов с использованием ЭВМ
возникают серьезные проблемы, связанные с затратами времени
на интерполяцию и обеспечением необходимой точности . Для реальных
геологических объектов размерность области моделирования может до-
стигать от нескольких десятков или сотен тысяч до нескольких десятков
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или сотен миллионов дискретных точек. Причем каждая дискретная точ-
ка может нести в себе информацию о совокупности параметров. При та-
ких размерностях даже в случае применения современных супер-ПЭВМ
временные затраты на интерполяцию могут быть весьма значительными.

В результате исследований разработана методика, позволившая
значительно сократить количество итераций, а соответственно, и вре-
менные затраты ПЭВМ при условии обеспечения необходимой точности
интерполяции. Суть методики сводится к использованию классического
метода близости из вычислительной геометрии в его интерпретации
для дискретной сети узловых точек в сочетании с итерационным про-
цессом по методу Либмана с применением метода сеток. Причем итера-
ционный процесс разбивается на два этапа, Первоначально производит-
ся заполнение всей области значениями из точек наблюдения по методу
близости, а затем осуществляется процесс интерполяции.

В результате проведенных исследований были получены зависимости
значений критериальных оценок (среднеквадратичной ошибки, точности
интерполяции, абсолютной ошибки) от количества итераций. Некоторые
сравнительные результаты исследований приведены на рисунке 2.

Рисунок 2 – График зависимости точности вычислений от количества
итераций при традиционном и предлагаемом методе
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Проведенные исследования позволяют сделать следующие выводы:
– предложенный метод интерполяции можно эффективно использо-

вать для моделирования линейных, плоских и объемных объектов;
– применение разработанного метода интерполяции позволяет значи-

тельно, в десятки и сотни раз сократить время, необходимое для проведе-
ния интерполяции при моделировании. Причем временные соотношения
тем значительнее, чем ниже плотность информационных узлов и значи-
тельнее изменчивость исходных значений моделируемых параметров.

Практическая апробация разработанной методики доказала эффек-
тивность ее применения для моделирования горно-геологических
объектов в условиях штокверковых и пластовых месторождений твер-
дых полезных ископаемых.

В связи с тем, что уравнения в частных производных довольно широ-
ко используются для решения задач механики, экологии, гидрогеологии,
океанологии и т. д., использование предложенного подхода значительно
упрощает решение задач в данных областях.
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В. А. БОРСУК, Н. Н. СЕНДЕР
Беларусь, Брест, БрГУ имени А. С. Пушкина

АЛГОРИТМИЗАЦИЯ РЕШЕНИЯ
ФИЗИЧЕСКИХ ЗАДАЧ
НА ЗАНЯТИЯХ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

Решение физической задачи – творческий процесс, поэтому универ-
сального алгоритма решения не существует. Можно дать лишь самые
общие рекомендации. Часто решение удобно начинать «с конца», т. е.
с определения физического закона, в формулу которого входит искомая
величина. Умение решать задачи приходит постепенно по мере накопле-
ния опыта. Решить задачу по физике можно лишь тогда, когда усвоена
теория, относящаяся к данной теме.

Начинать надо с простых задач и затем переходить к более сложным.
Для продуктивной работы предлагаем придерживаться определенного
алгоритмического предписания.
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1. Внимательно прочесть условия задачи, мысленно представляя
ситуацию, описанную в ней.

2. Кратко записать условия задачи, в том числе то, что задано и
то, что необходимо найти. При этом постараться максимально форма-
лизовать их математически, то есть литературные выражения выразить
через конкретные физические величины, например, выражение «глад-
кая поверхность» соответствует записи «µ = 0» или «Fтр = 0». А вы-
ражение «до полной остановки» соответствует записи «vк = 0». Иногда
в задаче необходимо узнать, как изменилась какая-либо величина. На-
пример, спрашивается «Как изменилась скорость?», что соответствует
записи «

v2
v1

– ?» или «v2 − v1 – ?» и т. д.

3. Перевести значения всех физических величин в СИ. Иногда нет
необходимости выражать все данные в одной и той же системе, например,
если в формуле какая-либо величина входит в числитель и знаменатель,
необходимо только, чтобы единицы были одинаковые.

4. Сделать рисунок, чертеж, схему. На рисунке показать все век-
торные величины (скорости, ускорения, силы, импульсы и т. д.). Если
в задаче описано движение или процесс, то на рисунке надо показать
по крайней мере два состояния системы: начальное и конечное. Можно
показать и промежуточное состояние. Причем лишь одно положение по-
казывается сплошной линией. Остальные положения показываются либо
пунктирно, либо тонкой линией.

5. Выяснить, какими физическими законами можно описать данную
задачу. Это значит, надо определить, какие связи имеются между физи-
ческими величинами. Если в закон входят векторные величины, то надо
записать уравнение, выражающее закон в векторной форме.

6. Выбрать направления координатных осей и записать векторные
соотношения в проекциях на оси координат в виде скалярных уравнений.

7. Оценить количество неизвестных физических величин, вошедших
в уравнения и составить столько же уравнений, которые образуют
систему уравнений. Решить полученную систему уравнений и выразить
искомую величину в общем виде, то есть в буквенном виде.

8. Проверить правильность решения с помощью обозначений единиц
физических величин – это так называемая проверка на размерность. Для
этого следует проверить, совпадают ли размерности левой и правой ча-
стей формулы. Если размерности не совпадают, значит, в ходе решения
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задачи была допущена ошибка. Правда, совпадение размерностей еще
не означает, что задача решена правильно.

9. Подставить в общее решение числовые значения физических
величин и произвести вычисления, при этом точность ответа не должна
превышать точности, с которой даны исходные величины.

10. Оценить реальность полученного результата и записать ответ
в единицах СИ или в тех единицах, которые заданы в условии задачи.

11. По мере возможности проверить, есть ли другие способы решения
данной задачи.

Рассмотрим алгоритм решения физической задачи на примере.
Задача. Две автомашины движутся по двум взаимно перпендику-

лярным и прямолинейным дорогам по направлению к перекрестку
с постоянными скоростями v1 = 50 км/ч и v2 = 100 км/ч. В начальный
момент времени первая машина находилась на расстоянии s1 = 100 км
от перекрестка, а вторая – на расстоянии s2 = 50 км (рисунок 1). Через
какое время расстояние между машинами будет минимальным?

J Путь, который каждой из машин остается пройти до перекрестка
через некоторый промежуток времени t, составит (рисунок 1):

a = s1 − v1t; b = s2 = v2t.

s
1

s
2

a

b
s

Рисунок 1 – Схема движения автомобилей

Расстояние между машинами представляет собой гипотенузу
треугольника, которая является функцией времени и определяется тео-
ремой Пифагора:

s(t) =
√
a2 + b2 =

√
(s1 − v1t)2 + (s2 − v2t)2.
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По характеру задачи видно, что сначала машины сближаются,
а затем удалятся друг от друга. Таким образом, в силу непрерывно-
сти s(t) будет наблюдаться лишь одно экстремальное значение, в нашем
случае минимальное. Для определения времени tmin соответствующего
минимуму функции s(t) (в нашем случае оно будет и наименьшим) возь-
мем первую производную по времени и приравняем ее к нулю:

ds

dt
= −(s1 − v1t)v1 + (s2 − v2t)v2√

(s1 − v1t)2 + (s2 − v2t)2
.

Отношение равно нулю только тогда, когда равен нулю числитель, т. е.:

(s1 − v1tmin)v1 + (s2 − v2tmin)v2 = 0,

отсюда

tmin =
s1v1 + s2v2
v21 + v22

. (1)

Определим единицу измерения расчетной формулы, причем нет на-
добности переводить единицы измерения в систему СИ, а достаточно их
выразить в одинаковых единицах: [t] =

[
км · км/ч
(км/ч)2

]
= ч.

Подставив числовые значения в формулу (1), получим: tmin= 0, 8 ч. I
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РАСЧЕТ КОНЦЕНТРАЦИИ И ПОДВИЖНОСТИ
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ЛЕГИРОВАННОГО ИНДИЕМ

Известно, что в сплаве висмут – сурьма концентрации электронов
и дырок совпадают, а подвижность электронов µ превышает подвиж-
ность дырок ν [1; 2]. Для определения указанных параметров носителей
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заряда использовалась двухзонная изотропная модель, согласно которой
удельное сопротивление, магнетосопротивление и коэффициент Холла
могут быть выражены следующим образом:

ρ =
1

ne(µ+ ν)
, β = B2µν,

R =
1

ne
· ν − µ

ν + µ
.

Из указанных формул можно выразить параметры носителей тока:

n =
1

ρe
·
{
R2

ρ2
+

4β

B2

}− 1
2

,

µ =
1

2

[
−R
ρ
+

{
R2

ρ2
+

4β

B2

}1
2

]
,

ν =
1

2

[
R

ρ
+

{
R2

ρ2
+

4β

B2

}1
2

]
.

Расчеты носителей заряда позволят, в частности, сделать вывод
о различных механизмах рассеяния при низких температурах и темпе-
ратурах, близких к комнатной, а также объяснить знак коэффициента
Холла и дифференциальной термо-ЭДС [3].

Экспериментальные температурные зависимости удельного сопротив-
ления, магнетосопротивления и коэффициента Холла, необходимые
в последующем при проведении расчетов, представлены на рисунках
1–3. Удельное сопротивление фольг тройного сплава несколько больше
значения для бинарного сплава и монотонно уменьшается во всем иссле-
дуемом температурном интервале [4; 5]. Магнетосопротивление тройных
сплавов на порядок меньше, чем у бинарных сплавов, и незначительно
уменьшается с увеличением температуры, в то время как для бинарных
сплавов оно уменьшалось монотонно [6]. Коэффициент Холла положите-
лен в области низких температур, выше температуры 130 К принимает
отрицательные значения (для бинарных сплавов он отрицателен во всем
температурном интервале 77. . . 300 К) [7].
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Рисунок 1 – Температурная зависимость удельного
электросопротивления сплава на основе Bi0,89Sb0,11, легированного In

Рисунок 2 – Температурная зависимость магнетосопротивления сплава
на основе Bi0,89Sb0,11, легированного In

Рисунок 3 – Температурная зависимость коэффициента Холла сплава
на основе Bi0,89Sb0,11, легированного In
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Таблица – Расчетные значения концентрации и подвижности носителей
заряда бинарных и тройных сплавов на основе Bi0,89Sb0,11

Состав,
ат. % In

Температура,
К

Концентрация,
1023 м−3

Подвижность
дырок,
м2/(В·с)

Подвижность
электронов,

м2/(В·с)

0,00 77 1,04 2,93 6,74
280 11,08 0,91 1,51

0,25 77 2,89 1,38 1,33
280 8,26 1,25 1,36

0,50 77 2,95 1,30 1,25
280 8,15 1,20 1,27

1,00 77 3,03 1,24 1,19
280 8,30 1,15 1,21

2,00 77 3,04 1,19 1,18
280 8,29 1,15 1,14

4,00 77 3,08 1,18 1,13
280 8,06 1,08 1,14
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СРЕДНЯЯ ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ
ДЛЯ БОРНОВСКИХ ПРИБЛИЖЕНИЙ МОТТОВСКОГО
СЕЧЕНИЯ РАССЕЯНИЯ ДЛЯ ПОЗИТРОНОВ
ДЛЯ ЭЛЕМЕНТОВ ОТ КАЛИЯ ДО КСЕНОНА

В работе [1] были вычислены средние по углам и энергиям относи-
тельные погрешности ⟨ER⟩ трех борновских приближений моттовско-
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го сечения рассеяния позитронов для первых 18 элементов периодиче-
ской системы химических элементов. Как и для рассеяния электронов [2]
погрешности уменьшались с ростом номера борновского приближения
от первого до третьего.

ER(Ei) =

√∑36
k=1 [R(Ei, θk)−REXACT (Ei, θk)]

2∑36
k=1 [R

EXACT (Ei, θk)]
2 , (1)

⟨ER⟩ = 1

15

15∑
i=1

ER(Ei). (2)

Рассматривались углы рассеяния от 5 до 180 градусов и энергии
позитронов от 5 кэВ до 10 МэВ.

REXACT – нормированное моттовское сечение рассеяния, вычислен-
ное по точным формулам Мотта [3]. R – соответствующее сечение
в борновском приближении [3–5].

Погрешности борновских приближений для позитронов (таблица) ока-
зываются меньше, чем для электронов. Например, для Z = 54 погреш-
ности второго и третьего борновских приближений составляют 22 % и
10,1 % соответственно. Средняя погрешность первого борновского при-
ближения для электронов уже для Z = 29 достигает 16 %.

Таблица – Cреднее арифметическое значение относительной ошибки

Z, % 19 20 21 22 23 24
⟨ER⟩B 6.25 6.50 6.75 7.00 7.23 7.46
⟨ER⟩MF 2.20 2.42 2.65 2.88 3.13 3.38
⟨ER⟩JWM 0.551 0.637 0.730 0.832 0.942 1.06

Z, % 25 26 27 28 29 30
⟨ER⟩B 7.69 7.91 8.12 8.33 8.53 8.72
⟨ER⟩MF 3.64 3.90 4.18 4.46 4.74 5.04
⟨ER⟩JWM 1.19 1.33 1.47 1.63 1.79 1.97

Z, % 31 32 33 34 35 36
⟨ER⟩B 8.91 9.10 9.28 9.45 9.62 9.79
⟨ER⟩MF 5.34 5.65 5.96 6.28 6.61 6.94
⟨ER⟩JWM 2.15 2.34 2.55 2.77 3.00 3.24
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Продолжение таблицы

Z, % 37 38 39 40 41 42
⟨ER⟩B 9.95 10.10 10.25 10.40 10.54 10.67
⟨ER⟩MF 7.27 7.61 7.96 8.31 8.67 9.03
⟨ER⟩JWM 3.48 3.74 4.02 4.30 4.59 4.90

Z, % 43 44 45 46 47 48
⟨ER⟩B 10.81 10.93 11.06 11.18 11.29 11.41
⟨ER⟩MF 9.40 9.77 10.14 10.52 10.91 11.29
⟨ER⟩JWM 5.22 5.55 5.89 6.24 6.61 6.99

Z, % 49 50 51 52 53 54
⟨ER⟩B 11.51 11.62 11.72 11.82 11.91 12.00
⟨ER⟩MF 11.68 12.08 12.48 12.88 13.28 13.69
⟨ER⟩JWM 7.38 7.78 8.20 8.63 9.07 9.52
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ПРИМЕНЕНИЕ ЦИФРОВЫХ ОБРАЗОВАТЕЛЬНЫХ
ТЕХНОЛОГИЙ В ОБУЧЕНИИ ФИЗИКЕ

Стремительный процесс развития и внедрения современных цифро-
вых образовательных технологий создает возможности для повышения
качества обучения физике как в университете, так и в средней школе.
Сегодня цифровизация образования в целом – это необратимый процесс
изменения содержания физического образования и методов обучения
физике, в частности.

Одним из направлений цифровизации физического образования
является внедрение в учебный процесс электронных средств обучения,
представляющих из себя современные цифровые учебно-методические
комплексы, включающие в свою структуру следующие компоненты:

– цифровые теоретические обучающие средства, сообщающие
в интерактивной форме необходимые знания по физике;

– цифровые практические обучающие средства, предназначенные для
формирования умений и навыков, организации самостоятельной
работы обучающихся (электронные физические задачи);

– цифровые контролирующие средства, предназначенные
для контроля уровня усвоения учебного материала (электронные тесты);

– цифровые демонстрационные средства, обеспечивающие визуали-
зацию изучаемых физических объектов, явлений, классических физиче-
ских экспериментов;

– цифровые моделирующие средства, предназначенные для создания
цифровой модели физического объекта, явления, опыта, с целью его
изучения, создания цифровых лабораторных работ;

– цифровые учебно-игровые средства, предназначенные для органи-
зации внешкольной учебной работы по физике (домашний физический
эксперимент, виртуальные экскурсии, компьютерные игры с физическим
содержанием);

– цифровые справочные средства, предоставляющие возможность
поиска и получения дополнительной необходимой обучающемуся инфор-
мации по физике.
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СОЗДАНИЕ И ИСПОЛЬЗОВАНИЕ В ФИЗИКЕ
(НА ПРИМЕРЕ ЗАКОНОВ КИРХГОФА)
КОМПЬЮТЕРНОГО КОДА МЕТОДА КРАМЕРА

Метод Крамера – один из способов решения систем линейных алгеб-
раических уравнений с числом уравнений равным числу неизвестных
с ненулевым определителем матрицы коэффициентов системы. Пусть
дана система: 

a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + . . .+ annxn = bn.

(1)

На основании теоремы Крамера, если определитель ∆ ̸= 0, то существует
единственное решение, которое можно найти по формулам:

x1 =
∆x1

∆
, x2 =

∆x2

∆
, . . . , xn =

∆xn

∆
, (2)

где

∆ =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣ ,

∆x1
=

∣∣∣∣∣∣∣∣
b1 a12 . . . a1n
b2 a22 . . . a2n
. . . . . . . . . . . .
bn an2 . . . ann

∣∣∣∣∣∣∣∣ , . . . , ∆xn
=

∣∣∣∣∣∣∣∣
a11 a12 . . . b1
a21 a22 . . . b2
. . . . . . . . . . . .
an1 an2 . . . bn

∣∣∣∣∣∣∣∣ .

Реализация метода Крамера на языке программирования Java:
import java.util.Scanner;
public class CramerSolver
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public static void main(String[] args)
Scanner scanner = new Scanner(System.in);
System.out.print("Введите количество переменных (или уравнений): ");
int n = scanner.nextInt();
double[][] coefficients = new double[n][n];
double[] constants = new double[n];
System.out.println("Введите коэффициенты системы уравнений:");
for (int i = 0; i < n; i++)
System.out.print("Уравнение "+ (i + 1) + ": ");
for (int j = 0; j < n; j++)
coefficients[i][j] = scanner.nextDouble();
System.out.print("Свободный член: ");
constants[i] = scanner.nextDouble();
double[] solution = solve(coefficients, constants);
if (solution != null)
System.out.println("Решение:");
for (int i = 0; i < solution.length; i++)
System.out.printf("x
else
System.out.println("Система уравнений не имеет единственного решения или имеет

бесконечно множество решений.");
public static double[] solve(double[][] coefficients, double[] constants)
int n = coefficients.length;
double determinant = determinant(coefficients);
if (determinant == 0)
return null; // Система не имеет единственного решения
double[] solution = new double[n];
for (int i = 0; i < n; i++)
double[][] temp = new double[n][n];
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
temp[j][k] = coefficients[j][k];
temp[j][i] = constants[j]; // Заменяем i-ую колонку на
свободные члены
solution[i] = determinant(temp) / determinant; // Решение для
переменной xi
return solution;
private static double determinant(double[][] matrix)
int n = matrix.length;
double det = 0;
if (n == 1)
return matrix[0][0];
if (n == 2)
return matrix[0][0] * matrix[1][1] - matrix[0][1] *
matrix[1][0];



136

for (int i = 0; i < n; i++)
double[][] subMatrix = new double[n - 1][n - 1];
for (int j = 1; j < n; j++)
for (int k = 0; k < n; k++)
if (k < i)
subMatrix[j - 1][k] = matrix[j][k];
else if (k > i)
subMatrix[j - 1][k - 1] = matrix[j][k];
det += Math.pow(-1, i) * matrix[0][i] * determinant(subMatrix);
return det;
Метод Крамера находит свое применение не только в математике, но

и в физике, в частности, для решения систем уравнений, составленных
по законам Кирхгофа. Рассмотрим один из таких примеров (рисунок):

Рисунок – Условие задачи

Составим систему уравнений по законам Кирхгофа:


I1 + I2 = I3,

I1R1 + I3R3 = E1,

I2R2 + I3R3 = E2

⇔


I1 + I2 − I3 = 0,

100I1 + 0I2 + 150I3 = 75,

0I1 + 150I2 + 150I3 = 100.

Внесем эти данные в программу. На выходе получим решение систе-
мы: I1 = 0, 143; I2 = 0, 262; I3 = 0, 405.
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ПРИЛОЖЕНИЯ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ И ИХ СИСТЕМ В ФИЗИКЕ

При изучении явлений природы, решении многих задач физики и тех-
ники, химии и биологии, других наук, а также при решении прикладных
физических задач требуется знание математики на достаточно
высоком уровне. Поэтому при изучении математических предметов
у физиков необходимо рассматривать математические понятия в тесной
связи с физическими понятиями. Изучение дифференциальных уравне-
ний и их систем на примерах физических задач преследует цель более
глубокого усвоения этих понятий.

Физико-математические факультеты университетов уделяют большое
внимание изучению дифференциальных уравнений, требующих формаль-
ного их решения, а также решению технических и прикладных задач,
приводящих к составлению дифференциальных уравнений.

Дифференциальные уравнения играют значительную роль в прило-
жениях математики к техническим наукам. С помощью данных урав-
нений многие прикладные процессы описываются полнее. Они помогают
решать многие вопросы общетехнических, а также специальных
прикладных дисциплин: физики, теоретической механики, сопротивле-
ния материалов, гидравлики, теории машин и механизмов, химии, техно-
логии производств, биологии, т. к. дифференциальные уравнения часто
возникают в процессе решения данных вопросов.

Многочисленные и разнообразные технические приложения теории
обыкновенных дифференциальных уравнений требуют глубокого знания
разных физических и математических законов.

При помощи задач инженерно-технического характера появляется
возможность овладеть методами решения дифференциальных уравне-
ний. Упомянутые выше задачи облегчают изучение ряда важнейших
дисциплин, которые являются основой образования специалиста любой
отрасли.
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В нашей статье показаны результаты изучения дифференциальных
уравнений на примерах физических задач. Мы нашли формулу кри-
тических скоростей тонкого вращающегося вала длиной l с радиусом
поперечного сечения вала a, весом P и модулем упругости материала E.

УДК 372.853+530.121
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О ВВЕДЕНИИ ПОНЯТИЯ ИМПУЛЬСА
В РЕЛЯТИВИСТСКОЙ МЕХАНИКЕ

В ньютоновской механике импульс частицы определяется как произ-
ведение некоторой инвариантной величины, называемой массой,
на скорость частицы:

−→p = m−→v . (1)

Определенный таким способом импульс сохраняется при соударени-
ях (взаимодействиях) частиц малой энергии. Однако опыт показывает,
что этот импульс не сохраняется при столкновении (взаимодействии)
с большими энергиями. Таким образом, при переходе от классической
механики к специальной теории относительности встает выбор – отка-
заться либо от ньютоновского определения импульса, либо от закона со-
хранения импульса. А поскольку закон сохранения импульса в физике
весьма существенен, то выбор делается в его пользу.

Обычно импульс в СТО вводится следующим способом. Требование
релятивистской инвариантности уравнения движения материальной точ-
ки приводит к виду этого уравнения [1]:

d

dt

 m−→v√
1− ϑ2

c2

 =
−→
F . (2)
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Если обозначить
−→p =

m−→v√
1− v2

c2

, (3)

то получаем уравнение движения

d−→p
dt

=
−→
F , (4)

внешне сходное с классическим уравнением движения, в котором −→p име-
ет вид (1). На основании указанного сходства и определяют величину −→p
(3) как релятивистский импульс.

Очевидно, что такой способ введения импульса в СТО является фор-
мальным, т. е. не связан напрямую с законом сохранения импульса. Мы
в настоящей статье хотим предложить способ определения импульса как
сохраняющейся векторной величины.

Поскольку импульс – величина векторная, следует прежде всего вы-
яснить направление этого вектора для данной частицы и уже затем
найти зависимость его модуля от ее скорости. В инерциальной системе
отсчета (далее – ИСО) пространство изотропно. Если так, то единствен-
ным выделенным направлением, связанным с движением частицы, яв-
ляется направление, в котором происходит это движение. Все остальные
направления будут равноправными, и ни одно из них нельзя будет пред-
почесть другому. Остается единственная возможность – вектор импульса
частицы совпадает по направлению с ее скоростью.

На следующем этапе рассуждений определим абсолютную величину
(модуль) этого вектора. Возьмем в качестве сталкивающихся объектов
два одинаковых шара A и B и предположим, что между ними происхо-
дит упругое скользящее (нецентральное) соударение. Всегда можно най-
ти ИСО, в которой скорости шаров до столкновения равны по модулю
и противоположны по направлению. В этой системе отсчета полный
импульс шаров равен нулю. После столкновения по закону сохранения
импульса шары опять-таки должны двигаться во взаимно противопо-
ложных направлениях с равными скоростями. В результате эффект
соударения сводится в рассматриваемой ИСО к простому повороту век-
торов скорости обеих частиц. Очевидно, что в этой ИСО можно выбрать
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направления осей X и Y таким образом, что x-компоненты скоростей
обеих частиц не изменятся при столкновении, тогда как их y-компоненты
просто меняют знак.

Нас интересует анализ y-компоненты полного импульса и ее сохра-
нение. Для этого удобно рассмотреть столкновение в системе отсчета,
в которой один шар (B) движется только в направлении оси y (лабора-
торная ИСО). Мы можем подобрать такое столкновение, при котором
частица-мишень (шар B) обладает сколь угодно малой скоростью как
до, так и после соударения. Импульс частицы-мишени рассчитывается
по ньютоновской формуле (1). Исходя из этого, легко определить изме-
нение импульса медленной частицы в процессе соударения, что позволит
найти изменение импульса и сам импульс быстрой частицы (шар A).

Переданный импульс составляет меньшую и известную сторону
треугольника импульсов (рисунок 1). Две другие (равные) стороны это-
го треугольника являются большими и неизвестны нам. Но мы знаем,
чему равны как длинные, так и короткие стороны подобного треуголь-
ника – треугольника перемещений (рисунок 2). Из пропорциональности
соответствующих сторон при учете связи между собственным и лабора-
торным временем

dt =
dτ√
1− β2

(5)

получаем выражение для импульса быстро движущейся частицы

py = m
dy

dτ
, −→p = m

d−→r
dτ

, (6)

равносильное формуле (3).

:

z

m
dy

dτ

p⃗A :

z

dy

dr⃗

Рисунок 1 Рисунок 2

В данном примере величина m – это масса в классическом пони-
мании, т. е. не зависит от скорости. Все различие между релятивист-
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ской формулой для импульса и соответствующей ньютоновской форму-
лой сводится к различию между собственным и лабораторным временем,
а не к различию массы при этих двух описаниях природы. Этот факт
сейчас получает все более широкое признание [2; 3].
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РЕШЕНИЕ И АНАЛИЗ ФИЗИЧЕСКИХ ЗАДАЧ
НА ЗАНЯТИЯХ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

Решение и анализ физических задач позволяют понять и запомнить
основные законы и формулы физики, создают представление об их
характерных особенностях и границах применения. Задачи развивают
навык использования общих законов материального мира для решения
конкретных вопросов, имеющих практическое и познавательное значе-
ние. Умение решать задачи – лучший критерий оценки глубины изучения
программного материала и его усвоения. В основу каждой физической
задачи положено то или иное частное проявление одного или несколь-
ких фундаментальных законов природы и их следствий. Исходя из это-
го, прежде чем приступать к решению физических задач из какого-либо
раздела курса физики, следует тщательно проработать теорию вопро-
са и внимательно разобрать иллюстрирующие ее примеры. Без твердого
знания теории нельзя рассчитывать на успешное решение и анализ даже
сравнительно простых задач, не говоря уже о более сложных.

В процессе решения физической задачи можно выделить три этапа:
физический, математический и анализ решения.
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Физический этап начинается с ознакомления с условием задачи и
уяснения физических закономерностей, лежащих в ее основе. Ознако-
мившись с условием задачи, не следует заострять внимание на искомой
величине и тем более пытаться сразу ее найти. Необходимо помнить, что
ближайшая цель решения состоит в том, чтобы свести задачу от физи-
ческой к математической, записав ее условие при помощи формул.

Чтобы хорошо понять условие задачи, необходимо сделать схемати-
ческий чертеж, поясняющий ее сущность, и на чертеже, хотя бы условно,
указать все величины, характеризующие данное явление. Если при этом
окажется, что для полного описания процесса надо использовать вели-
чины, не фигурирующие в условии задачи, их нужно ввести в решение
самим, так как в большинстве случаев без них невозможно найти связь
между искомыми и заданными величинами. Следует твердо помнить, что
почти во всех случаях чертеж сильно упрощает и поиск, и само реше-
ние (впрочем, этот пункт нередко опускается). После этого приступают
к анализу физических процессов, происходящих в ситуации, описанной
в условии, к выявлению тех законов, которым подчиняются эти про-
цессы. Заканчивается физический этап составлением уравнений, связы-
вающих физические величины, которые характеризуют рассматривае-
мое явление с количественной стороны. Применение известных законов
и формул физики для математической записи условий задачи представ-
ляет основную трудность при решении почти всех задач по физике. Сде-
лав такую запись, мы получаем одно или несколько уравнений, в кото-
рых неизвестным служит искомая величина, и физический этап перехо-
дит в математический.

Математический этап начинается решением системы уравнений
и заканчивается получением числового ответа. Безусловно, математиче-
ский этап является не менее важным, чем этап физический. Необходи-
мо подчеркнуть, что он не является второстепенным. Если при реше-
нии системы уравнений, переводе единиц или арифметическом расчете
совершена ошибка, решение задачи в целом окажется неверным. С точ-
ки зрения практики задача решена правильно только в том случае, если
получен ее верный общий и числовой ответ. Неправильно считать мате-
матический этап второстепенным еще и потому, что после него должен
следовать анализ решения. Последний этап вообще нельзя провести, если
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не получен общий и числовой ответ задачи. Таким образом, для оконча-
тельного решения задачи по физике физический и математический
этапы являются в равной степени необходимыми.

После получения решения в общем виде и числового ответа следу-
ет этап анализа решения. На этом этапе выясняют, как и от каких
физических величин зависит найденная величина, при каких условиях
эта зависимость осуществляется и т. д. При анализе числового ответа
исследуют:

– размерность полученной величины;
– соответствие полученного числового ответа физически возможным

значениям искомой величины, если нет такого соответствия, то этот
ответ явно неверен;

– при получении многозначного ответа соответствие полученных
ответов условиям задачи.

Рассмотрим решения физической задачи на примере.
Задача. Ось колеса (рисунок) радиусом R = 0, 5 м движется посту-

пательно со скоростью v0 = 1 м/с. Радиус колеса вращается с частотой
vвр = 1 об/с. Составить уравнение движения точки A обода и опреде-
лить, как меняется модуль ее скорости со временем. Определить, как
движется колесо относительно дороги: скользит или пробуксовывает.

J Любая точка обода, например точка B (рисунок) участвует в двух
движениях – поступательном со скоростью v0 и вращательном со скоро-
стью −→v вр, тогда скорость точки равна

−→v = −→v0 +−→v вр. (1)

A

x

y

B

φ
φ

О

вр.

Рисунок – Схема движения колеса
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Положение точки B в момент времени t определяется углом

φ = ωt = 2πvt,

где ω – круговая частота, vвр = ωR, тогда в проекциях на выбранные
оси Ox и Oy выражение (1) имеет вид:

Ox : vx = v0 − vвр cosφ = v0 − ωR cosωt, (2)

Oy : vy = vвр sinφ = ωR sinωt. (3)

Модуль скорости v равен:

v =
√
v2x + v2y =

√
v20 + ω2R2 − 2v0ωR cosωt.

По определению dx = vxdt и dy = vydt, проинтегрировав эти вы-
ражения, определим значения координат x и y в произвольный момент
времени t и учитывая, что точка A в момент времени t = 0, имеет коор-
динаты x(0) = 0, y(0) = 0:

x =

t∫
0

(ν0 − ωR cosωt) dt = ν0t−R sinωt,

y =

t∫
0

ωR sinωtdt = 2R sin2(ωt/2). (4)

Точка A будет соприкасаться с поверхностью дороги в моменты вре-
мени при которых y = 0. Из уравнения (4), следует:

sin2(ωt/2) = 0 или t =
2πn

ω
=
n

v
,

где n ∈ N. В эти моменты времени, согласно выражениям (2) и (3) ско-
рости соответственно равны:

vx = v0 − ωR = v0 − 2πvR = −5, 28 м/с, vy = 0.

Поскольку vx < 0, то колесо буксует. I
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А. И. СЕРЫЙ
Беларусь, Брест, БрГУ имени А. С. Пушкина

О РАЗЛИЧИЯХ МЕЖДУ КАЛЕНДАРНЫМ,
ТРОПИЧЕСКИМ И ЗВЕЗДНЫМ ГОДАМИ

В курсе астрономии при изучении тем «Календарь» и «Движение
Земли вокруг Солнца» требуется сравнение разных типов года. В таб-
лице, составленной на основе сведений из [1, с. 19, 31] и дополняющей
таблицы из [2, с. 60; 3, с. 67], дана сравнительная характеристика сред-
него календарного (далее – СКГ) и тропического (далее – ТГ) годов,
а также ТГ и звездного года (далее – ЗГ).

Таблица – Сравнение некоторых типов года

Годы СКГ и ТГ ТГ и ЗГ

Разница 26 секунд (СКГ длиннее) 20 минут 24 секунды
(ЗГ длиннее)

Накопление
разницы

1 сутки за 3300 лет
(приблизительно)

1 полный оборот небесной
сферы за 26 тысяч лет

(приблизительно)

Почему
календарь
привязан

к ТГ

Повседневная жизнь связана со сменой времен года
(что, в свою очередь, связано с моментами, когда
склонение Солнца равно нулю), а не с постоянным
целым числом суток или полным оборотом Земли

вокруг Солнца (относительно «неподвижных»
далеких звезд)

Корректи-
рующие
меры

Подбор правильной
закономерности для

високосных лет (ранее –
юлианская, позднее –

григорианская).

Пересчет значений
экваториальных координат
квазинеподвижных звезд
с учетом изменяющегося

положения точки
весеннего равноденствия
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О РАЗНОВИДНОСТЯХ БРОУНОВСКОГО ДВИЖЕНИЯ

При изучении темы «Броуновское движение» (далее – БрД) в школь-
ном и вузовском курсах физики уделяется внимание преимущественно
поступательной разновидности этого движения. Существует, однако, и
вращательное БрД. В связи с этим представляет интерес сравнительная
характеристика двух разновидностей БрД, представленная ниже в таб-
лицах, составленных на основе сведений из [1, с. 229–230; 2, с. 206–212].

Публикация дополняет статьи с участием автора, посвященные ис-
пользованию блок-схем и сравнительных таблиц в процессе преподава-
ния молекулярной физики, термодинамики и статистической физики
[3, с. 40–42; 4, с. 91; 5, с. 15–18].

Таблица 1 – Разновидности БрД (количественные соотношения)

Поступательное БрД Вращательное БрД

Основная
характери-

стика

∆x2 – средний квадрат
проекции смещения

частицы на
координатную ось

∆φ2 – среднеквадратичное
угловое смещение

частицы

Зависимость
от времени τ

∆x2 = 2Dτ,D = kT
6πηa

a);∆φ2 = 2Drτ , Dr =
kT

8πηa3 ;
б) ∆φ2 = kT/f
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Продолжение таблицы 1

Обозначения

k – постоянная Больцмана, T – абсолютная темпера-
тура, η – динамическая вязкость среды, a – радиус

сферической частицы, f – модуль кручения
кварцевой нити зеркальца

Формулы под-
тверждены

в опытах Ж. Перрена
и Т. Сведберга в опытах Ж. Перрена

Таблица 2 – Разновидности БрД (определения, экспериментальные
наблюдения, области применения)

Поступательное БрД Вращательное БрД
Под влиянием

ударов
молекул

окружающей
среды

частица, взвешенная в жид-
кости или газе, совершает
сложное беспорядочное

зигзагообразное движение

а)частица совершает бес-
порядочное вращение;

б)зеркальце хаотически
колеблется около

положения равновесия
Примеры

эксперимен-
тальных

наблюдений

Впервые – Р. Броун в 1827 г.
(наблюдения в микроскоп

цветочной пыльцы,
взвешенной в воде)

а) Перрен;
б) Капплер в 1932 г.

Сложность
наблюдений

Поступательное БрД наблюдать проще, чем
вращательное БрД со сферическими частицами,
и сложнее, чем вращательное БрД с зеркальцем

Область
применения

1. Фундаментальное зна-
чение: обоснование стати-

стической природы второго
начала термодинамики и
границ его применимости.
2. Прикладное значение:
а) физическая химия дис-
персных систем, кинети-

ческая теория коагуляции
растворов; б) теория

равновесия дисперсных
систем в поле тяготения или
в поле центробежной силы

Метрология: когда
вращательное БрД
подвижных частей

измерительного при-
бора сравнимо со сме-
щением, вызванным
измеряемым эффек-
том, достигается пре-
дел точности прибора
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ФИЗИЧЕСКИ БЕСКОНЕЧНО МАЛЫЙ ОБЪЕМ
В ЭЛЕКТРОСТАТИКЕ И ОПТИКЕ

Физически бесконечно малый объем (далее – ФБМО) – величина,
вводимая, в частности, в электростатике и оптике, где ее смысл имеет
свои отличительные особенности. В связи с этим представляет интерес
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сравнительная характеристика смыслового содержания ФБМО в двух
указанных разделах физики, представленная ниже в таблице, состав-
ленной на основе сведений из [1, с. 50; 2, с. 602]. Публикация дополняет
[3, с. 17—19; 4, с. 170—174].

Таблица – ФБМО в электростатике и оптике

Электростатика Оптика (рассеяние
света в газах)

Линейные
размеры
ФБМО

Намного больше линейных размеров атомов и молекул
Намного меньше линейных

размеров заряженного
макроскопического объекта

Намного меньше
длины волны

рассеиваемого света

Область
приме-
нения

Для сглаживания микроско-
пических и учета макроско-
пических неоднородностей

в пространственном
распределении заряда

Для учета макроскопиче-
ских неоднородностей по-
казателя преломления без
выхода за рамки геометри-

ческой оптики
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СЕКЦИЯ 4
ИННОВАЦИОННЫЕ И ИНФОРМАЦИОННЫЕ

ТЕХНОЛОГИИ В ОБРАЗОВАНИИ

УДК 378.147
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ВНЕДРЕНИЕ ИННОВАЦИОННЫХ ПОДХОДОВ
В УЧЕБНУЮ ДИСЦИПЛИНУ «ВЫЧИСЛИТЕЛЬНЫЕ
МЕТОДЫ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ»

Трансформация современных образовательных практик, связанная
с развитием технологий Индустрии 4.0 требует продуманной интеграции
в формирование и развитие базовых компетенций и прикладных навыков
студентов. Использование облачных платформ предоставляет доступ к
мощным вычислительным ресурсам и инструментам без необходимости
в дорогом оборудовании. Облачные ресурсы можно использовать для
реализации классических алгоритмов, а затем применять искусственный
интеллект для анализа полученных результатов.

Рассмотрим один из подходов к реализации современных инноваци-
онных решений в учебной дисциплине «Вычислительные методы и ком-
пьютерное моделирование», предназначенной для студентов специаль-
ности «Физико-математическое образование». В ходе изучения этой дис-
циплины студенты овладевают вычислительными методами решения за-
дач, возникающих в результате компьютерного моделирования
и имеющих широкий спектр приложений.

На лабораторных занятиях для формирования навыков практиче-
ской реализации изучаемых алгоритмов используются табличный
процессор MS Excel, математический пакет Maple и язык программиро-
вания Phyton [1]. Знание различных способов реализации методов и ал-
горитмов дает студентам возможность сопоставлять и осознанно выби-
рать инструменты решения в зависимости от конкретной задачи. Выбор
языка программирования Phyton позволяет включить в учебный процесс
современные программные средства и технологии, такие как машинное
обучение и облачные вычисления.
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В качестве инструмента для выполнения лабораторных заданий
студентам предлагается Google Colab [2] – облачная среда, в которой
можно выполнять код на языке Phyton непосредственно в браузере без
необходимости установки каких-либо библиотек или программного обес-
печения, что позволяет сконцентрироваться на решении задачи,
а не на настройке окружения. Colab предоставляет доступ к мощным
процессорам, что значительно ускоряет решение вычислительных задач
с большими объемами данных. Интеграция с другими сервисами Google
позволяет сохранять результаты работы на облачном диске, а также
предоставляет возможность совместного проведения исследования для
нескольких пользователей в реальном времени.

В качестве примера приведем сравнение классических (полиномиаль-
ных) и современных (нейросетевых) методов аппроксимации функции.
В блокноте Colab сначала выполним импорт необходимых библиотек
(numpy, matplotlib, sklearn). Затем подготовим тестовые данные,
сгенерируем на основе синуса зашумленную функцию:
x = np.linspace(-5, 5, 100).reshape(-1,1)

y = np.sin(x) + 0.1*np.random.randn(100,1)

Выполним полиномиальную аппроксимацию пятой степени:
poly_model = make_pipeline(

PolynomialFeatures(degree=5),

LinearRegression() )

poly_model.fit(x, y)

Построим нейросетевую модель на 20 нейронах с гиперболическим
тангенсом:
nn_model = MLPRegressor(

hidden_layer_sizes=(20,20),

activation=’tanh’,

max_iter=1000)

nn_model.fit(x, y.ravel())

Визуализируем результаты:
plt.figure(figsize=(12,6))

plt.scatter(x, y, label=’Initial␣data’)

plt.plot(x, poly_model.predict(x), ’r--’, label=’Polynomial␣of␣the␣5th␣degree’)

plt.plot(x, nn_model.predict(x), ’g-’, label=’Neural␣network’)

plt.legend()

plt.xlabel(’x’), plt.ylabel(’y’)

На рисунке показаны графики функций, которые аппроксимирова-
ны с помощью полиномов и нейросетью. У студентов появляется воз-
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можность обсудить результаты различных приближений, способы улуч-
шения моделей, область их применения и т. д. Проводя вычислительные
эксперименты, можно убедиться, что для задач с небольшими данными
(<1000) предпочтительны полиномы, а для сильно зашумленных зави-
симостей лучший результат дает нейросеть.

Изучаемая студентами тема «Приближение функций» играет
важную роль в искусственном интеллекте, особенно в области машинно-
го обучения и нейронных сетей. Алгоритмы машинного обучения осно-
ваны на аппроксимации функций для создания моделей, которые могут
предсказывать результаты на основе входных данных. Нейронные сети
можно рассматривать как сложные функции, которые аппроксимируют
данные. Это позволяет моделям обобщать информацию из обучающе-
го набора данных на новые, что критично для успешного применения
искусственного интеллекта.

Рисунок – Сравнение методов аппроксимации

Интеграция инструментов искусственного интеллекта, облачных
технологий и классических подходов в преподавание вычислительных
методов способна существенно повысить качество образования и подго-
товку студентов к актуальным профессиональным задачам.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Алейникова, Т. Г. Вычислительные методы : практикум / Т. Г. Алей-

никова, А. И. Шербаф. – Витебск : ВГУ им. П. М. Машерова, 2020. – 98 с.
2. Google Colab. – URL: https://colab.research.google.com/ (дата обра-

щения: 13.03.2025).



153

УДК 378.14

А. Р. АЛХУТОВА, Н. Н. СЕНДЕР
Беларусь, Брест, БрГУ имени А. С. Пушкина

ПРАКТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ
АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Аналитическая геометрия является важной областью математики,
которая помогает учащимся понять геометрические объекты и их свой-
ства через алгебраические методы. В данной статье рассмотрим ключе-
вые аспекты изучения аналитической геометрии, включая систему задач,
межпредметные связи и методические рекомендации по преподаванию.

Система задач и упражнений
Изучение аналитической геометрии предполагает использование

разнообразных типов задач, которые помогают учащимся развивать на-
выки работы с геометрическими объектами на координатной плоскости.
Выделим основные типы задач.

1. Построение графиков функций:
– линейные функции;
– квадратичные функции;
– показательные функции;
– тригонометрические функции.
2. Нахождение уравнений прямых и плоскостей:
– прямая по двум точкам;
– прямая по угловому коэффициенту и точке;
– плоскость по трем точкам;
– плоскость по нормальному вектору и точке.
3. Нахождение расстояний и углов:
– расстояние между двумя точками;
– угол наклона прямой к оси абсцисс;
– угол между двумя прямыми;
– угол между прямой и плоскостью.
4. Пересечение графиков:
– точки пересечения двух графиков функций;
– определение количества точек пересечения;
– решение систем уравнений для нахождения точек пересечения.
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5. Построение геометрических фигур:
– треугольник по трем сторонам;
– окружность по радиусу и центру;
– параллелограмм по сторонам и углу.
Каждый тип задач направлен на развитие конкретных навыков

учащихся и углубление их понимания материала. Важно разнообразить
задачи, чтобы обеспечить полноценное усвоение и успешное применение
знаний.

Уровни сложности задач
Уровни сложности задач варьируются в зависимости от стадии

обучения.
– Начальная школа (5–6 классы): задачи на построение графиков

линейных функций и нахождение расстояния между двумя точками.
– Средняя школа (7–8 классы): задачи на построение графиков квад-

ратичных и показательных функций, нахождение уравнений прямых и
плоскостей.

– Старшая школа (10–11 классы): задачи на построение графиков
тригонометрических функций и нахождение уравнений кривых второго
порядка.

Постепенное усложнение задач способствует совершенствованию
навыков и подготовке к решению более сложных математических задач.

Межпредметные связи
Аналитическая геометрия тесно связана с другими предметами,

такими как алгебра и физика. Например, использование алгебраических
методов позволяет решать геометрические задачи, а в физике аналити-
ческая геометрия помогает моделировать движение тел и анализировать
электромагнитные поля.

В заключение следует сказать, что аналитическая геометрия играет
ключевую роль в математическом образовании. Правильное применение
методик преподавания и разнообразие задач способствуют глубокому по-
ниманию материала и развитию аналитического мышления у учащихся.

Методические рекомендации по преподаванию
При преподавании аналитической геометрии важно тщательно

планировать уроки. Рекомендуется:
1) определение целей и задач: четко сформулированные цели помо-

гают учащимся понять, что они должны усвоить;
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2) структурирование урока: разделение на вводную часть, основную
часть и заключение обеспечивает логичность и последовательность;

3) использование интерактивных методов обучения: групповые зада-
ния и обсуждения повышают активность учащихся;

4) визуальные средства: диаграммы, графики и анимации помогают
лучше усвоить материал;

5) проверка понимания: краткие тесты и самопроверка позволяют
оценить уровень усвоения материала.

УДК 512.624, 519.682

А. М. АНТОНЮК, А. А. ТРОФИМУК
Беларусь, Брест, БрГУ имени А. С. Пушкина

ПОЛИГРАММНЫЙ ШИФР ХИЛЛА

Шифр Хилла представляет собой полиграммный метод шифрования,
основанный на применении линейной алгебры над конечными полями.
Разработанный Лестером Хиллом в 1929 году, данный алгоритм относит-
ся к классу блочных шифров и демонстрирует устойчивость
к частотному криптоанализу при корректном выборе параметров. В ра-
боте рассматриваются математические основы шифра, процедуры шиф-
рования и дешифрования, а также осуществлена его реализация.

Описание шифра Хилла
В шифре Хилла [1] текст предварительно преобразуют в цифровую

форму и разбивают на последовательности (блоки) по n последователь-
ных цифр. Такие последовательности называются n-граммами. Выбира-
ют обратимую по модулюm (n×n)-матрицуA = (aij), гдеm – число букв
в алфавите. Выбирают случайный n-вектор f = (f1, . . . , fn), после чего
n-грамма открытого текста x = (x1, x2, . . . , xn) заменяется n-граммой
шифрованного текста y = (y1, y2, . . . , yn) по формуле:

y = xA+ f mod m. (1)

Расшифрование проводится по правилу:

x = (y − f)A−1 mod m. (2)
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Соответствие букв и их положения в алфавите
Для английского алфавита (m = 26) соответствие букв и чисел сле-

дующее:

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Пример шифрования
Преобразуем английский алфавит в числовую форму (m = 26)

следующим образом: A → 0, B → 1, C → 2, . . . , Z → 25. Выберем
для примера n = 2. Запишем слово «STUDENTS». Каждой букве поста-
вим в соответствие её номер в алфавите:

S = 18, T = 19, U = 20, D = 3, E = 4, N = 13, T = 19, S = 18

Выберем квадратную матрицу шифрования A в виде:

A =

(
4 5
3 4

)
.

Эта матрица обратима по mod 26, так как её определитель равен 1 и
взаимно прост с m = 26. Обратная матрица равна:

A−1 =

(
4 −5
−3 4

)
.

Пусть f – нулевой вектор. Тогда из (1) следует:

y = xA mod m = (18, 19) ·
(
4 5
3 4

)
mod 26 = (25, 10).

Выполняем это действие до последней пары букв:

(20, 3) ·
(
4 5
3 4

)
mod 26 = (11, 8),

(4, 13) ·
(
4 5
3 4

)
mod 26 = (3, 20),
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(19, 18) ·
(
4 5
3 4

)
mod 26 = (0, 11).

Результатом является: (25, 10), (11, 8), (3, 20), (0, 11). Сопоставим чис-
ла с буквами по таблице:

25 = Z, 10 = K, 11 = L, 8 = I, 3 = D, 20 = U, 0 = A, 11 = L.

Итог: ZKLIDUAL – зашифрованная строка.
Пример расшифрования
Чтобы расшифровать строку ZKLIDUAL, нужно использовать фор-

мулу (2). Используя алгоритм, приведенный выше, мы получим:

(18,19) (20,3) (4,13) (19,18) = STUDENTS.

Реализация
Разработано консольное приложение, выполняющее шифрование

и расшифрование по алгоритму Хилла. Программа обрабатывает сле-
дующие ошибки:

1) ввод не целых чисел в матрицу;
2) отсутствие обратной матрицы.
На рисунках 1 и 2 показаны примеры работы программы, вклю-

чая обработку ошибочного ввода. При возникновении ошибок программа
запрашивает повторный ввод корректных данных.

Рисунок 1 – Пример работы программы

Рисунок 2 – Пример ошибочного ввода данных
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Шифр Хилла представляет особую ценность в учебном процессе как
наглядный пример соединения теоретических основ линейной алгебры
с практическими задачами криптографии. Этот алгоритм демонстриру-
ет применение матричных операций, модульной арифметики и теории
обратимости матриц в реальных вычислительных системах, что делает
его исключительно полезным для обучения фундаментальным концеп-
циям алгебры, теории чисел и программирования.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Криптографические методы защиты информации: учеб. пособие /

С. М. Владимиров, Э. М. Габидулин, А. И. Колыбельников, А. С. Кше-
вецкий. – М. : МФТИ, 2016. – 265 с.
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МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОДГОТОВКИ К ЦЭ/ЦТ
ПО МАТЕМАТИКЕ С АКЦЕНТОМ НА ПРОИЗВОДНУЮ

Подготовка учащихся к централизованному экзамену (ЦЭ)
и централизованному тестированию (ЦТ) по математике представляет
собой сложный и многогранный процесс, который требует от педагога не
только глубоких предметных знаний, но и владения современными ме-
тодиками обучения. В структуре экзаменационных заданий особое место
занимает тема производной.

Анализ результатов централизованного тестирования показывает, что
задания по теме производной традиционно вызывают затруднения. Труд-
ности, с которыми сталкиваются учащиеся, могут быть следующими:
недостаточное понимание смысла производной, особенно скорости изме-
нения функции или углового коэффициента касательной; ошибки при
применении правил дифференцирования, в частности при работе
с составными, дробными и тригонометрическими функциями; затруд-
нения при исследовании функций: нахождение интервалов возрастания
и убывания, точек экстремума и построение графиков.
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В связи с этим возрастает необходимость целенаправленной и мето-
дически обоснованной подготовки учащихся по данной теме. Эффектив-
ной становится стратегия, основанная на поэтапном освоении материала:
от базовых понятий и вычислений к исследованию функций и решению
задач повышенной сложности, в том числе с параметрами.

Для успешной подготовки важно постепенно переходить от простых
задач к более сложным. Важным элементом подготовки является
не только вычисление производных, но и анализ поведения функции,
исследование ее свойств.

Важным инструментом в подготовке являются современные онлайн-
платформы, такие как OnlineTestPad, которые позволяют не только
тестировать знания учащихся, но и анализировать ошибки, что способ-
ствует более глубокому усвоению материала. Платформа предлагает сле-
дующие возможности: автоматическую проверку ответов; предоставле-
ние разборов ошибок; индивидуальные задания, основанные на уровне
подготовки учащегося; моделирование различных вариантов контроль-
ных работ.

Особое внимание в заданиях ЦТ по теме «производная» уделяется
следующим видам задач: нахождение производной различных функций
(в том числе составных, дробных, логарифмических, тригонометриче-
ских); построение уравнения касательной к графику функции; определе-
ние тангенса угла наклона касательной; исследование функции
на возрастание и убывание; нахождение точек экстремума с использо-
ванием первой и второй производных; задачи с параметром, влияющим
на поведение функции.

Для систематизации подготовки были разработаны интерактивные
тренажеры в OnlineTestPad, охватывающие как базовый, так и повы-
шенный уровни сложности. Платформа предлагает следующие тесты:
«Производная:базовые действия»,«Геометрический смысл производной»,
«Экстремумы и графики функций», «Исследование функций
с параметрами».

Для закрепления знаний учащихся можно использовать платфор-
му GeoGebra, которая позволяет не только строить графики функций,
но и в режиме реального времени наблюдать, как изменения в аналитиче-
ском выражении влияют на поведение графика. Это дает учащимся воз-
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можность наглядно увидеть взаимосвязь между функцией и ее производ-
ной: касательные к графику, точки экстремума, интервалы возрастания
и убывания, точки перегиба и область выпуклости.

Особенно важно, что GeoGebra делает абстрактные математические
понятия, такие как геометрический смысл производной, угловой
коэффициент касательной, скорость изменения функции, наглядными
и интуитивно понятными. Работа с визуальными моделями способству-
ет развитию образного мышления, улучшает понимание сложных тем
и помогает устранить распространенные ошибки, возникающие при ре-
шении задач исключительно «в уме» или на бумаге.

Таким образом, эффективная подготовка учащихся к централизован-
ному экзамену (ЦЭ) и централизованному тестированию (ЦТ) по те-
ме «производная» должна строиться на комплексном подходе, сочета-
ющем глубокое понимание теоретического материала, систематическую
практику решения задач различного уровня сложности и широкое при-
менение современных цифровых образовательных ресурсов.

Не менее важной составляющей подготовки является регулярная
практика решения задач. Особое внимание следует уделять многообра-
зию формулировок и контекстов заданий, которые могут встретиться
в ЦТ. Учащимся необходимо не просто решать задачи, но и уметь ана-
лизировать полученные результаты, делать выводы, обосновывать выбор
метода решения.

Использование таких платформ, как Online Test Pad и GeoGebra,
не только облегчает организацию учебного процесса, но и способствует
формированию у учащихся навыков самооценки, самоконтроля и само-
стоятельной работы – качеств, особенно значимых в условиях высоких
требований к итоговой аттестации.

В итоге интеграция теории, практики и цифровых технологий
позволяет создать целостную методику подготовки, направленную на
развитие математического мышления, повышение уверенности учащихся
в собственных силах и достижение устойчивых результатов на центра-
лизованных экзаменах и тестированиях.
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СОВЕРШЕНСТВОВАНИЕ ТЕСТОВЫХ ЗАДАНИЙ
КАК ОСНОВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ
АВТОМАТИЗИРОВАННОГО ТЕСТИРОВАНИЯ

Тестирование для контроля знаний существует уже не один десяток
лет. Оно все глубже проникает в систему начального и среднего образо-
вания в школах, гимназиях и лицеях. Особенно актуальным тестирова-
ние становится в среде абитуриентов в период вступительной кампании
в вузы. В системе высшего образования тестирование также занимает
значительное место. Причем, если в первых двух случаях преобладает
опрос на бумажных носителях, то в вузах делается упор на компьютер-
ные системы автоматизированного тестирования.

Профессорско-преподавательский состав вузов по-разному относится
к тестированию. Одни считают это новаторским направлением,
другие воспринимают его резко отрицательно. В какой-то мере это свя-
зано со спецификой учебной дисциплины. Но зачастую причины кроются
в недостатках используемых материалов тестирования и эффективности
этой процедуры вообще.

Оценить качество тестовых материалов и выработать какие-то срав-
нительные оценки сложно. Во-первых, структура тестовых заданий
отличается, а во-вторых, в разных государствах применяются различ-
ные формы тестирования. На тему качества тестов было немало пуб-
ликаций в прессе [1]. В качестве косвенного, но видимо немаловажного
подтверждения одной из представленных выше точек зрения по поводу
качества тестового материала была реакция Министерства высшего об-
разования и науки Республики Казахстан (МОН РК) в виде «Требований
к содержанию тестовых заданий». Эти требования регламентируют каче-
ство подготовки материалов тестирования. В частности, при подготовке
материалов к тестированию предлагается использовать следующие фор-
мы тестовых заданий:

– закрытые тестовые задания – относятся к заданиям, на которые
даются готовые ответы на выбор, из них один правильный, остальные –
правдоподобные, но неправильные;
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– полузакрытые тестовые задания – задания, в которых нужно
выбрать несколько правильных ответов из числа предложенных;

– открытые тестовые задания – задания, в которых готовые ответы
с выбором не даются. Испытуемый должен сам дописать ответ, который
свидетельствует о наличии или отсутствии требуемых знаний.

Однако сейчас в распоряжении МОН РК нет эффективной системы
автоматизированного тестирования, с помощью которой было бы воз-
можно в процессе сдачи тестов учащимися реализовать все три заяв-
ленные в документе формы тестов. В таблице представлена структура
тестов, в различных странах [2].

Как видно из таблицы, в четырех странах экзамены состоят только
из заданий с выбором одного правильного ответа. К сожалению, даже
названия самих форм тестовых заданий на международном уровне пока
не отрегулированы, поэтому их сопоставление весьма затруднительно.
Структура экзаменов и число предметов, по которым проводятся экза-
мены, отличается по странам. В Южной Корее, например, выпускники
сдают всего один экзамен – College Scholastic Ability Test. «С его помо-
щью оценивается не общеобразовательная подготовка, а способности и
умения для продолжения образования. Тест состоит из четырех частей:
вербальный тест, математика, исследования в области естественных и
социальных наук, английский как иностранный язык» [2]. «Во Франции
набор экзаменов определяется направлением лицея, но один экзамен по
французской литературе обязателен для всех». В Беларуси два экзамена
являются обязательными (математика и один из государственных язы-
ков), третий – по выбору.

Методика, позволяющая решить часть обозначенных проблем, пред-
ставлена в работе [3]. Используя математический аппарат, можно по
ответам студентов на вопросы тестов выявить фактическую сложность
заданий, фактический уровень компетенций студентов, определить при-
мерный список «проблемных» и «бесполезных» вопросов и наметить
план мероприятий по улучшению тестовых заданий. Методика базирует-
ся на теории измерений латентных переменных. Используя математиче-
ский аппарат, можно по ответам студентов на вопросы тестов
выявить фактическую сложность заданий, фактический уровень компе-
тенций студентов, определить примерный список «проблемных» и «бес-
полезных» вопросов и наметить план мероприятий по улучшению тесто-
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вых заданий. Методика, разработана Георгом Рашем (George Rasch) и его
последователями [4; 5] и применяется во многих исследованиях [6 – 9].
Но идея методики, несмотря на используемый математический подход,
все же базируется на анализе ответов и тем самым в целом зависит от
уровня подготовки и уровня знаний тестируемой аудитории.

Таблица – Структура тестов, мировой опыт (A – закрытые,
В – с кратким ответом, С – с развернутым ответом)

Страна Типы заданий С какой целью проводится экзаменA B C
Англия + + + GCSE – для получения аттестата о среднем об-

разовании. A-levels – получение Общего свиде-
тельства об образовании продвинутого уровня и
одновременно вступительные в вуз

Беларусь + + + ЦТ – одновременно выпускной и вступительный
экзамен

Бразилия + + + Есть выпускной экзамен и вступительные (но
выпускной тоже учитывается)

Казахстан + − − ЕНТ – одновременно выпускной и вступитель-
ный экзамен

Кыргызстан + − − Одновременно выпускной и вступительный (есть
еще дополнительные вступительные)

Китай + + + Одновременно выпускной и вступительный
США + + + SAT как вступительный
Турция + − − OSS – выпускной, YFS – вступительный экзамен
Франция − − + Сертификация и поступление в университеты
Южная Корея + − − Вступительный в вузы

Большое внимание разработанной системы тестирования отводится
организации и ведению базы данных тестовых заданий. Основой базы
данных является группировка вопросов по темам и разделам в соответ-
ствии с программой учебной дисциплины. Причем чем шире и разносто-
роннее охвачены все разделы дисциплины, чем больше тестовых заданий
по разделам, тем выше надежность разработанного компьютерного те-
ста. Общее количество тестовых заданий практически не ограничено,
но наиболее оптимально иметь по дисциплине 500–1000 тестовых зада-
ний, сгруппированных в 25–50 разделов. Для создания тестовых заданий
рекомендуется привлечь группу высококвалифицированных преподава-
телей в данной области. Каждому преподавателю рекомендуется разра-
ботать тестовые задания и ответы к ним по указанному разделу учеб-
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ной дисциплины. Дополнительно каждое тестовые задание оценивается
коэффициентом сложности. На втором этапе тестовые задания вкруго-
вую рецензируются каждым преподавателем созданной группы авторов.
Причем при рецензировании не указывается авторство тестовых вопро-
сов. Несмотря на то, что данная процедура имеет некоторые отрица-
тельные психологические аспекты, с точки зрения повышения качества
тестовых заданий она крайне эффективна.

Привыкание к тесту устраняется многовариантностью тестов, кото-
рая достигается:

– избыточным количеством разработанных тестовых заданий;
– программной генерацией варианта теста из имеющихся в базе

данных тестовых заданий;
– возможностью включения согласно заданному шаблону требуемого

количества заданий из раздела;
– изменением последовательности ответов в тестовых заданиях.
Универсальность тестов обеспечивается возможностью их использо-

вания на различных уровнях изучения учебной дисциплины, что дости-
гается созданием специального шаблона тестирования, определяющего
конкретные разделы и количество вопросов из каждого раздела. Создан-
ная таким образом база данных тестовых заданий дает возможность его
использования на различных этапах учебного процесса:

– для комплексной проверки на этапе сдачи экзаменов и зачетов;
– на практических занятиях при изучении темы;
– для самоконтроля знаний;
– при защите лабораторной или курсовой работы после её выполне-

ния и оформления;
– на этапе текущего контроля или после изучения темы или раздела

дисциплины.
Все результаты автоматизированного тестирования сохраняются

с целью последующей обработки этих данных, расчета обобщенных
статистических показателей и выдачи соответствующих рекомендаций
по улучшению учебного процесса.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Лавриненко, П. В. Проблемы внедрения системы тестирования в

высшей школе / П. В. Лавриненко // Молодой ученый. – 2015. – № 23
(103). – С. 975–978.



165

2. Ахмадова, Г. Ф. Зарубежный опыт организации экзаменов с высо-
кими ставками в Норвегии / Г. Ф. Ахмадова // Nsportal.ru : общеобразов.
соц. сеть. – URL: https://nsportal.ru/vuz/pedagogicheskie-nauki/library/
2019/02/20/zarubezhnyy-opyt-organizatsii-ekzamenov-s-vysokimi (дата об-
ращения: 01.04.2025).

3. Гедранович, В. В. Методика оценки качества тестовых заданий /
В. В. Гедранович, А. Б. Гедранович // Инновационные образовательные
технологии. – 2011. – № 2. – С. 20–25.

4. Rasch, G. Probabilistic models for some intelligence and attainment
tests / G. Rasch. – Chicago : University of Chicago Press, 1980. – 228 p.

5. Wright, B. D. Measurement essentials. 2nd edition / B. D. Wright,
M. H. Stone. – Wilmington : Wide Range, INC. 1999. – 221 p.

6. Маслак, А. А. Измерение уровня развития инфраструктуры сферы
образования в субъектах РФ / А. А. Маслак, С. А. Поздняков, А. А. Да-
нилов // Высшее образование в России. – 2008. – № 2. – С. 102–108.

7. Маслак, А. А. Измерение латентных переменных в образовании /
А. А. Маслак, Т. С. Анисимова // Экономика и образование сегодня. –
2007. – № 13. – С. 85–88.

8. Гедранович, А. Б. Измерение качества образовательных услуг ву-
зов с помощью латентных переменных / А. Б. Гедранович // Управле-
ние в социальных и экономических системах : материалы ХIX междунар.
науч.-практ. конф., Минск, 18 мая 2010 г. – Минск : Изд-во МИУ. – 2010. –
С. 271–272.

9. Гедранович, В.В.Квалиметрический инструментарий в управлении
учебно-познавательной деятельностью студентов / В. В. Гедранович //
Инновационные образовательные технологии. – 2005. – № 1. – С. 58–65.

УДК 371:517.0

А. И. БАСИК, M. Г. КОТ, А. А. ТРОФИМУК
Беларусь, Брест, БрГУ имени А. С. Пушкина

СТУДЕНЧЕСКАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ
БрГУ ИМЕНИ А. С. ПУШКИНА

В апреле 2025 года состоялась I Межуниверситетская олимпиада
по математике, организованная совместно УО «Брестский государствен-
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ный университет имени А. С. Пушкина» (далее – БрГУ имени А. С. Пуш-
кина) и ФГБОУ ВО «Брянский государственный университет имени ака-
демика И. Г. Петровского» (далее – БГУ имени академика И. Г. Петров-
ского). Олимпиада проводилось в два этапа.

На первом этапе разработку заданий и проверку работ осуществля-
ли преподаватели БГУ имени академика И. Г. Петровского. Второй тур
проходил на базе БрГУ имени А. С. Пушкина, где методическое обеспе-
чение и оценку работ выполняли местные преподаватели.

Во втором этапе приняли участие 25 студентов физико-математи-
ческого факультета БрГУ имени А. С. Пушкина и 10 представителей
БГУ имени академика И. Г. Петровского. По итогам второго тура среди
брестских студентов лучшие результаты показали:

– диплом I степени – Довбыш Б. Г. (2 курс, специальность «Приклад-
ная математика»);

– диплом II степени – Костенков И. В. (3 курс, специальность «При-
кладная математика»);

– диплом III степени – Крень И. Н. (1 курс, специальность «При-
кладная математика»).

В настоящей публикации представлены условия задач второго тура
олимпиады и их подробные решения.

Задача 1. Решите уравнение |1944z + 1| = 2025iz относительно
комплексного числа z.

Решение. Пусть z = a+ bi. Тогда

|1944a+ 1944bi+ 1| = 2025ai− 2025b.

Т. к. |1944a+ 1944bi+ 1| – действительное число, то a = 0. Поэтому

|1944bi+ 1| = −2025b.

Тогда√
(1944)2b2 + 1 = −2025b ⇔

{
((2025)2 − (1944)2)b2 = 1,
b < 0.

Откуда b = − 1
567 .

Ответ: z = − 1
567i.
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Задача 2. Во множестве из 2025 элементов выбраны несколько
подмножеств так, что каждые два из них имеют ровно один общий
элемент и никакие три из них не имеют общих элементов. Каково
наибольшее возможное число таких подмножеств?

Решение. Обозначим количество подмножеств через k. По условию,
каждые два подмножества имеют ровно один общий элемент, и ника-
кие три подмножества не имеют общих элементов. Это означает, что для
каждого элемента из множества подмножеств существует ровно два под-
множества, которые его содержат.

Рассмотрим граф, в котором вершины соответствуют подмножествам,
а ребра соединяют две вершины, если соответствующие подмножества
имеют общий элемент. По условию задачи, каждая пара подмножеств
соединена ровно одним ребром. Таким образом, у графа каждая верши-
на имеет степень 2.

Поскольку каждый элемент может быть общим для двух подмно-
жеств, то общее количество пар подмножеств равно(

k

2

)
=
k(k − 1)

2
.

С другой стороны, общее количество таких элементов не может превы-
шать 2025, т. е.

k(k − 1)

2
≤ 2025.

Из полученного неравенства несложно найти, что максимальное це-
лое значение k равно 64.

Ответ: 64.
Задача 3. Пусть A, B, C и D – точки пересечения эллипса x2

9 +
+y2 = 1 и параболы y = x2+2x. Доказать, что около четырехугольника
ABCD можно описать окружность, найти ее центр и радиус.

Решение. Убедиться в существовании четырех точек пересечения
нетрудно с помощью теоремы Коши о промежуточном значении непре-
рывной функции.

Пусть (x, y) – координаты одной из точек A, B, C и D. Тогда x2

9
+ y2 = 1,

y = x2 + 2x
⇔

{
x2 = y − 2x,

y2 = 1 +
2x

9
− y

9
.
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Тогда

x2 + y2 = y − 2x+ 1 +
2x

9
− y

9
⇔

(
x+

8

9

)2

+

(
y − 4

9

)2

=
161

81
.

Полученное равенство означает, что точки A, B, C и D лежат на
окружности с центром в точке

(
−8

9 ,
4
9

)
и радиуса

√
161
9 .

Что и требовалось доказать. �
Задача 4. Вычислите A2025 − C2

2025(A− E)2, где Ck
n = n!

k!(n−k)! и

A =

 1 −a a
−a 1 0
−a 0 1

 .
Решение. Пусть

B := A− E =

 0 −a a
−a 0 0
−a 0 0

 .
Нетрудно видеть, что

B2 =

 0 0 0
0 a2 −a2
0 a2 −a2

 и B3 =

 0 0 0
0 0 0
0 0 0

 .
Т. к. BE = EB = B, то, согласно формуле бинома Ньютона, получим

A2025 = (E +B)2025 = E2025 + C1
2025E

2024B + C2
2025E

2023B2+

+C3
2025E

2022B3 + . . .+ C2024
2025EB

2024 +B2025 =

= E + 2025B + C2
2025B

2.

Окончательно,

A2025 − C2
2025(A− E)2 = E + 2025B =

 1 −2025a 2025a
−2025a 1 0
−2025a 0 1

 .
Ответ:  1 −2025a 2025a

−2025a 1 0
−2025a 0 1

 .
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Задача 5. Преобразование Лежандра выпуклой функции f : R → R
определяется формулой

f ∗(x) = sup
t∈R

{xt− f(t)}.

Найти преобразование Лежандра функции f(t) = et.
Решение. При каждом x ∈ R рассмотрим функцию gx(t) := xt − et,

при этом (gx)
′(t) = x− et.

Заметим, что при x > 0 функция gx(t) имеет одну стационарную
точку t0 = lnx, (gx)

′(t) > 0 на интервале (−∞; ln x) и (gx)
′(t) < 0

на интервале (lnx; +∞). Поэтому

f ∗(x) = gx(t0) = x lnx− x.

При x 6 0 для всех t ∈ R выполняется неравенство (gx)
′(t) < 0.

Следовательно, при каждом x 6 0 функция gx(t) убывает на всей чис-
ловой прямой. Тогда

f ∗(0) = sup
t∈R

{−et} = lim
t→−∞

(−et) = 0

и при x < 0

f ∗(0) = sup
t∈R

{xt− et} = lim
t→−∞

(xt− et) = +∞.

Ответ:

f ∗(x) =


x lnx− x, при x > 0,
0, при x = 0,
+∞, при x < 0.

Задача 6. Пусть a > 0, b > 0 и числовые последовательности
(an)

∞
n=1, (bn)∞n=1 заданы рекуррентно

a1 =
a+ b

2
, b1 =

√
ab, an+1 =

an + bn
2

, bn+1 =
√
anbn (n > 1).

Доказать, что последовательности (an)
∞
n=1 и (bn)

∞
n=1 являются моно-

тонными и сходятся к одному пределу.
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Решение. Заметим, что в силу неравенства Коши о среднем ариф-
метическом и среднем геометрическом при каждом n ∈ N выполняется
неравенство

an =
an−1 + bn−1

2
>
√
an−1bn−1 = bn

(здесь считается, что a0 = a и b0 = b).
Поскольку при каждом n ∈ N выполняется неравенство

an+1 − an =
an + bn

2
− an =

bn − an
2

6 0,

то последовательность (an)
∞
n=1 является невозрастающей. Очевидно, что

(an)
∞
n=1 ограничена снизу нулем. Согласно критерию Вейерштрасса

сходимости монотонной последовательности, существует lim
n→∞

an =: A.
Последовательность (bn)

∞
n=1 является неубывающей, ибо

bn+1 − bn =
√
anbn − bn = (

√
an −

√
bn)
√
bn > 0,

ограничена сверху числом a1 и, следовательно, существует lim
n→∞

bn =: B.
Осталось показать, что A = B. Имеем

A = lim
n→∞

an+1 = lim
n→∞

an + bn
2

=
A+B

2
.

Из последней цепочки равенств и следует требуемое. �
Задача 7. Пусть дважды непрерывно дифференцируемая функция

f : [0; 1] → R такова, что f(0) = f(1) и f ′(0) = 15
√
3. Найти

min

1∫
0

(f ′′(x))2dx.

Решение. Применяя формулы Ньютона – Лейбница и интегрирова-
ния по частям, получим

0 = f(1)− f(0) =

1∫
0

f ′(t) dt =

[
u = f ′(t) du = f ′′(t) dt
dv = dt v = t− 1

]
=
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= 15
√
3−

1∫
0

(t− 1)f ′′(t) dt,

т. е.
1∫

0

(t− 1)f ′′(t) dt = 15
√
3.

Используя неравенство Коши – Буняковского, получим оценку снизу
требуемого интеграла:

675 = (15
√
3)2 6

1∫
0

(t− 1)2 dt ·
1∫

0

(f ′′(t))2 dt =
1

3

1∫
0

(f ′′(t))2 dt.

Таким образом, мы доказали, что если функция f : [0; 1] → R удо-
влетворяет условию задачи, то выполняется неравенство

1∫
0

(f ′′(t))2 dt > 2025.

Знак равенства в неравенстве Коши – Буняковского достигается
в том и только том случае, если существует a ∈ R такое, что

f ′′(t) ≡ a(t− 1) при t ∈ [0; 1].

Интегрируя, найдем

f ′(t) =
at2

2
− at+ C1, f(t) =

at3

6
− at2

2
+ C1t+ C2,

где C1, C2 – действительные постоянные. Осталось заметить, что
при a = 45

√
3, C1 = 15

√
3 и любом C2 построенная функция удовле-

творяет условию задачи и
1∫

0

(f ′′(t))2 dt =
a2(t− 1)3

3

∣∣∣∣1
0

= 2025.

Ответ: 2025.
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ДИНАМИЧЕСКИЕ МОДЕЛИ В GEOGEBRA
ПРИ ИЗУЧЕНИИ ГЕОМЕТРИИ

В современном мире, где технологии стремительно развиваются,
образовательный процесс не может оставаться в стороне от инноваций.
Особенно это касается точных наук, где абстрактные понятия требуют
наглядного представления для эффективного усвоения знаний. Внедре-
ние информационных технологий в образовательный процесс является
необходимым шагом для повышения качества обучения и формирования
у обучающихся глубокого понимания математических концепций. Од-
ним из наиболее эффективных инструментов для достижения этих целей
является GeoGebra – мощная платформа для динамической математики,
объединяющая в себе геометрию, алгебру, статистику и графику.

GeoGebra предоставляет уникальную возможность визуализировать
математические концепции и активно взаимодействовать с ними. Дина-
мические модели, создаваемые с помощью этой платформы, позволяют
обучающимся исследовать геометрические объекты и их свойства в ин-
терактивной среде. Это взаимодействие способствует более глубокому
пониманию материала, так как обучающиеся могут изменять размеры
и расположение различных геометрических объектов, таких как точки,
линии, углы, треугольники и окружности. Таким образом, они получают
возможность наглядно наблюдать за изменениями свойств объектов, что
значительно улучшает процесс обучения.

Одним из важных аспектов использования динамических моделей
в GeoGebra является возможность исследования свойств геометрических
фигур. Например, при создании модели треугольника обучающиеся мо-
гут использовать инструмент «Ползунок» для изменения углов
и сторон, что позволяет им наблюдать за изменениями площади и пе-
риметра треугольника. Это активное исследование способствует форми-
рованию у обучающихся аналитического мышления и навыков критиче-
ского анализа.

GeoGebra также предоставляет возможности для визуального демон-
стрирования доказательств теорем. Создание моделей, иллюстрирующих
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теорему Пифагора или свойства параллельных прямых, позволяет обу-
чающимся экспериментировать с этими концепциями и самостоятельно
удостоверяться в их истинности. Такой подход не только укрепляет зна-
ния, но и развивает у обучающихся умение применять теоретические
знания на практике.

В дополнение к двумерной геометрии, динамические модели
в GeoGebra также находят широкое применение в стереометрии.
Обучающиеся могут создавать трехмерные модели геометрических фи-
гур, таких как кубы, сферы и пирамиды, а также исследовать их свой-
ства. Например, изменение радиуса сферы или длины ребра куба поз-
воляет визуализировать изменения объема и площади поверхности этих
фигур. Динамические модели сечений 3D-объектов позволяют учащим-
ся исследовать, как плоскости пересекают фигуры, что помогает лучше
понять их геометрические свойства и взаимосвязи. Это способствует раз-
витию пространственного мышления и критического подхода к изучению
стереометрии.

Создание интерактивных заданий с использованием GeoGebra позво-
ляет обучающимся самостоятельно исследовать как планиметрию, так и
стереометрию. Задачи по построению фигур с заданными свойствами
способствуют активному вовлечению обучающихся в учебный процесс.

Динамические модели могут быть использованы также для реше-
ния практических задач. Например, обучающиеся могут создавать мо-
дели для расчета площади участка земли или объема трехмерного объ-
екта, что позволяет им видеть, как меняются результаты при изменении
параметров. Этот практический аспект обучения помогает обучающимся
осознать значимость геометрии в реальной жизни, что непосредственно
влияет на повышение мотивации к изучению учебного предмета.

Кроме положительного влияния на восприятие материала учащими-
ся, использование динамических моделей предоставляет преимущества
и для преподавателей. Приложение GeoGebra помогает индивидуализи-
ровать обучение, учителя могут создавать задания с различными уров-
нями сложности, адаптируя их под потребности каждого ученика. Также
учителя могут заранее подготовить динамические модели к уроку, что
позволяет оптимизировать процесс обучения. Например, при обучении
решению задач на построение можно использовать инструмент «Шаги
построения», который позволяет демонстрировать последовательность
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действий в подходящем для учащихся темпе. Также можно предоста-
вить доступ к данным построениям, чтобы учащиеся могли повторно
просмотреть последовательность построения.

Таким образом, внедрение динамических моделей в образователь-
ный процесс с использованием GeoGebra открывает новые горизонты для
преподавания математики. Современные технологии не только упроща-
ют работу преподавателя, но и делают обучение более увлекательным
и эффективным для учащихся. Методический подход к использованию
GeoGebra позволяет интегрировать различные математические дисци-
плины, развивая у обучающихся критическое мышление и аналитиче-
ские навыки. В результате использование динамических моделей стано-
вится неотъемлемой частью современного образовательного процесса.

УДК 378.14:004

Н. И. БЛАШУК, Л. Н. САВЧУК
Беларусь, Брест, БрГУ имени А. С. Пушкина

НЕКОТОРЫЕ АСПЕКТЫ ПРИМЕНЕНИЯ
ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

В настоящее время искусственный интеллект (ИИ) – самая быстро-
развивающаяся и перспективная технология, которая проникает практи-
чески во все сферы деятельности человека, включая образование.
Возможности ИИ способствуют улучшению организации образователь-
ного процесса и заставляют переосмыслить подходы к обучению исходя
из современных реалий.

В нашей республике также работают над созданием методик препода-
вания школьных предметов с использованием ИИ. По словам министра
образования Республики Беларусь, эта работа проводится вместе с Пар-
ком высоких технологий и уже создан пилотный обучающий блок для
учителей информатики, а к сентябрю 2025 года планируется утвердить
правила использования ИИ как учителями, так и школьниками [1].
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Выделим основные аспекты образовательного процесса, где возмож-
но применение ИИ.

• В первую очередь, ИИ берет на себя автоматизацию рутинных
задач, которые отнимают много времени у преподавателей, например,
проверка домашних заданий и тестов. Традиционные методы провер-
ки домашних заданий и тестов часто требуют значительных временных
затрат со стороны преподавателей. В свою очередь ИИ может быстро
и точно оценивать правильность выполнения работы, выявляя ошибки
и недочеты.

• ИИ может предоставлять обратную связь в реальном времени.
Школьники, пишущие код на интерактивных платформах, получают
мгновенные подсказки и рекомендации по улучшению своих решений.
Это создает более динамичную образовательную среду, где можно учить-
ся на своих ошибках и экспериментировать с новыми подходами.

• ИИ может стать проводником в обучении учащихся. Каждый
ученик уникален, и его темп обучения может значительно отличаться
от других. ИИ способен адаптировать учебный материал в зависимости
от уровня знаний и потребностей каждого. Такой подход делает обучение
более эффективным, так как повышается мотивация и учащиеся могут
учиться в своем собственном темпе [2].

При обучении информатике, например, можно использовать следу-
ющие платформы:

Khan Academy. Платформа предлагает бесплатные образовательные
ресурсы по различным предметам. Она использует адаптивные техноло-
гии, чтобы подстраивать обучение под уровень знаний ученика,
предоставляя персонализированные рекомендации и задания.

Knewton Alta – адаптивная образовательная платформа, которая
использует ИИ для создания персонализированных учебных планов
на основе анализа данных о прогрессе студентов.

Kahoot! – игровая платформа для создания викторин, опросов и об-
суждений. С недавним внедрением ИИ, Kahoot! может анализировать
ответы учащихся и предоставлять учителям отчеты о понимании матери-
ала. Учителя могут создавать интерактивные викторины по различным
темам курса информатики и видеть, какие вопросы вызвали трудности
у учащихся, что позволяет адаптировать дальнейшее обучение.
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Внедрение ИИ в образовательный процесс открывает множество
возможностей, однако сопряжено с рядом значительных вызовов, таких
как обеспечение безопасности и конфиденциальности данных учащихся,
что требует тщательной проработки мер защиты.

Кроме того, необходимо учитывать уникальные особенности разно-
образных образовательных систем и адаптировать технологии к их тре-
бованиям. Ключевую роль в успешной интеграции ИИ играют квалифи-
цированные преподаватели, которые должны быть готовы к новым мето-
дам обучения и обладать необходимыми знаниями и ресурсами.
Наконец, важно помнить о ценности человеческого взаимодействия
в образовательном процессе, поскольку именно оно способствует разви-
тию критического мышления и эмоционального интеллекта у учеников.

Таким образом, для достижения гармоничного и эффективного
обучения необходимо найти баланс между инновациями и традицион-
ными подходами, чтобы ИИ стал надежным союзником в образовании,
а не заменой человеческому общению и взаимодействию.
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ПРИМЕНЕНИЕ СОВРЕМЕННЫХ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В КУРСЕ
«УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Основная задача при преподавании курса «Уравнения математиче-
ской физики» состоит в том, чтобы научить студента применять на прак-
тике методы решения задач, возникающих в прикладных вопросах.
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С этой целью для курса «Уравнения математической физики» создан
электронный учебно-методический комплекс на основе мультимедийных
технологий. Комплекс включает учебные, научные и методические ма-
териалы, методику изучения дисциплины средствами информационно-
коммуникационных технологий и обеспечивает условия для осуществле-
ния эффективной учебной деятельности.

Важную роль сыграл образовательный портал. На образовательном
портале на базе, организованной в БГУ LMS Moodle, созданный курс
«Уравнения математической физики» содержит общий блок, блок для
чтения лекций и блок для ведения лабораторных занятий. Каждый блок
прежде всего несет информативный характер, представляя данные
о преподавателе и различных методах взаимосвязи со студентами, ссыл-
ки на программы и необходимую литературу, различные базы данных,
а также позволяет сделать текущие объявления. Широко использованы
коммуникационные возможности системы, такие как чат, форум,
позволяющие осуществлять коммуникацию между преподавателем и сту-
дентами как по вопросам курса, так и по организационным вопросам.
Во время экзаменационной сессии в полном объеме использовался такой
элемент курса, как тестирование. Кроме того, для проведения лабора-
торных и контрольных работ эффективным также является инструмент
«задание», позволяющий в том числе контролировать сроки выполнения
заданий студентами.

Для более глубокого понимания студентами изучаемых ими
классических математических тем используются современные средства
компьютерной математики. Лабораторные занятия проводятся с исполь-
зованием математического пакета Wolfram Mathematica, который поз-
воляет студентам для скорейшего усвоения теоретического материала
использовать его графические возможности. Кроме того, предоставляет-
ся возможность эффективно проиллюстрировать решение одномерных
уравнений и систем уравнений в частных производных, а имеющийся
специализированный инструментарий позволяет решать двумерные за-
дачи математической физики в режиме графического интерфейса.
Инструментарий пакета Wolfram Mathematica включает в себя готовые
средства решения задач диффузии, теплопроводности, электростатики,
строительной механики и других областей математической физики.
В частности пакет Wolfram Mathematica используется для решения урав-
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нений в частных производных методом характеристик и анимации по-
лученного решения с помощью функций Plot, Animate и Manipulate
при различных значениях параметров; для решения задач Коши и Гур-
са для уравнений в частных производных второго порядка и визуализа-
ции решения с помощью функции Plot3D; для визуализации процесса
распространения тепла в стержне в зависимости от различных внешних
условий; для построения эквипотенциальных поверхностей электромаг-
нитных полей.

В качестве примера рассмотрим следующую смешанную задачу для
уравнения колебаний прямоугольной мембраны (рисунок 1).

ut t = ∆u, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, t > 0;

u
∣∣
x=0

= u
∣∣
x=1

= u
∣∣
y=0

= u
∣∣
y=2

= 0; u
∣∣
t=0

=
x y (1− x) (1− y)

5
, ut
∣∣
t
= x y.

Рисунок 1 – Условие задачи

Исходное уравнение записываем с помощью функции Laplacian,
а начальное условие на производную по времени – с помощью функции
Derivative. Далее, с помощью функции DSolve строим решение нашей
задачи (рисунок 2).

Рисунок 2 – Решение задачи

Для визуализации решения нам потребуется активировать решение.
С этой целью с помощью функций Activate и TruncateSum извлекаем
три слагаемых и получаем активированное решение (рисунок 3).

Рисунок 3 – Активация решения
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И, наконец, с помощью функций Plot3D и Animate визуализируем
решение и строим его анимацию по времени (рисунок 4).

Рисунок 4 – Визуализация решения

Таким образом, включение реальных прикладных задач в курс «Урав-
нения математической физики» и использование технических
и программных средств позволило с одной стороны разнообразить фор-
мы и методы обучения, способствующие прежде всего заинтересованно-
сти студентов в успешном освоении курса и высокому качеству получа-
емых знаний, с другой стороны, стимулировать студентов к проведению
научных исследований, созданию инновационных проектов.
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РАЗРАБОТКА ВЕБ-ПРИЛОЖЕНИЯ С МАРШРУТАМИ
И СКРЫТЫМИ МЕСТАМИ ГОРОДА БРЕСТА

Cовременный туризм невозможен без достоверной информации
и различных средств коммуникации. Ни одно путешествие не обойдется
без справочных материалов, которые играют особую роль для неоргани-
зованных групп, т. е. для самодеятельных туристов.
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Самодеятельный туризм, или «свободный туризм», подразумевает
поездки с частичным или полным отказом от услуг туристических фирм.
Путешественник самостоятельно выбирает свой маршрут, заботится о
приобретении билетов, о бронировании гостиниц, а также об органи-
зации питания и экскурсий. Такой вид туризма является чрезвычайно
широким понятием, поскольку он может предполагать, как динамичное
следование к цели путешествия, так и статичное пребывание, например,
на курорте.

В последние годы этот вариант организации и осуществления путе-
шествий, т. е. самодеятельный туризм, становится все более популярным
и превращается в заметное социально-экономическое явление. В связи
с этим актуальным является вопрос о качественном и своевременном
информационно-технологическом обеспечении данной категории тури-
стов. Мы же акцент делаем на город Брест.

Брест – город с богатой историей, уникальной архитектурой и мно-
жеством малоизвестных достопримечательностей. Чтобы помочь тури-
стам и местным жителям исследовать город, возникла идея разработать
веб-приложение с интерактивными маршрутами и скрытыми местами.

Рассмотрим ключевые моменты. Разрабатываемое приложение вклю-
чает в себя перечень туристических объектов с возможностью филь-
трации по категориям, готовые маршруты (исторический, культурный,
необычные места), скрытые локации (дворы, граффити, малоизвестные
памятники), описание мест с фото и историей. Планируется
добавить функцию, позволяющую просмотреть выбранную локацию на
архивных фотографиях.

Техническая реализация проекта предполагает интеграцию с Google
Maps API, а также облачное хранение мультимедийного контента.
Дизайн выполнен в минималистичном стиле с адаптацией под мобиль-
ные устройства (рисунок). Перспективы развития включают создание
мобильного приложения.

Такое приложение поможет открыть Брест с новой стороны, объеди-
нив классические и малоизвестные места. Планируется внедрение готово-
го проекта для популяризации туризма в Бресте. Функциональность при-
ложения может быть расширена в соответствии с потребностями
и пожеланиями пользователей, что позволит приложению оставаться
актуальным и востребованным на рынке.
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Рисунок – Сайт «Удивительные места города над Бугом»

УДК 371:517.0

М. А. КАЛАВУР
Беларусь, Брэст, БрДУ имя А. С. Пушкiна

ДЫФЕРЭНЦЫЯЛЬНЫЯ РАЎНАННI
НА ФАКУЛЬТАТЫВАХ У СЯРЭДНЯЙ ШКОЛЕ

З паняццем другой вытворнай школьнiкi часткова знаёмiлiся
пры вывучэннi прымянення вытворнай у фiзiцы. Паўторнае вяртанне да
гэтага пытання звязана ў асноўным з вывучэннем гарманiчных ваганняў.

Паняцце другой вытворнай замацоўваецца шляхам самастойнага
разбору рашэнняў прыкладаў на знаходжанне вытворных другога па-
радку для трыганаметрычных функцый. Абагульнiўшы рашэннi такiх
прыкладаў, карысна заўважыць, што:

sin′′ x = (sin′ x)′ = (cos x)′ = − sinx,

cos ′′x = (cos ′x)′ = (− sinx)′ = − cosx.
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Другая вытворная як ад сiнуса, так i ад косiнуса ёсць тая ж самая функ-
цыя, толькi ўзятая з процiлеглым знакам, г. зн. абедзве функцыi пры ўсiх
значэннях аргумента x задавальняюць суадносiнам:

f ′′(x) = −f(x).
Гэта спецыфiчная ўласцiвасць сiнуса i косiнуса.

Матэрыял аб дыферэнцыяльным раўнаннi гарманiчных ваганняў
можна выкласцi ў выглядзе лекцыi, у ходзе якой звярнуць увагу
на наступнае.

У алгебры для знаходжання невядомых велiчынь складваюць
раўнанне, якое звязвае невядомую велiчыню з данымi. Рашаючы раў-
нанне, знаходзяць значэннi шуканай велiчынi. Аналагiчна гэтаму
ў матэматычным аналiзе для знаходжання невядомай функцыi па да-
дзеных яе ўласцiвасцях таксама складваюць раўнанне, якое звязвае невя-
домую функцыю i велiчынi, якiя задаюць яе ўласцiвасцi. Так як уласцi-
васцi функцыi выражаюцца праз яе вытворныя таго цi iншага парадку,
то прыходзяць да суадносiн, якiя звязваюць невядомую функцыю i яе
вытворныя. Гэтыя суадносiны называюцца дыферэнцыяльным раўнан-
нем. Рашаючы яго, знаходзяць шукаемую функцыю.

Такiм чынам, апарат вытворнай дазваляе даследаваць уласцiвасцi
зададзенай функцыi (вызначыць прамежкi яе нарастання i спадання,
пункты максiмуму i мiнiмуму, напрамак увогнутасцi i выпукласцi кры-
вой на пэўным лiкавым прамежку i г. д.), а апарат дыферэнцыяльных
раўнанняў дазваляе рашаць адваротную задачу знаходзiць функцыю па
зададзеных уласцiвасцях.

Па сваiх практычных дадатках дыферэнцыяльныя раўнаннi маюць
вельмi вялiкую значнасць у жыццi, паколькi, рашаючы iх, г. зн. знахо-
дзячы невядомую функцыю па яе ўласцiвасцях, устанаўлiваем закон, па
якiм ажыццяўляецца той цi iншы працэс (вытворчы, фiзiчны, хiмiчны,
бiялагiчны i г. д.). Кожны вытворчы працэс мае сваю спецыфiчную праб-
лематыку, таму, натуральна, i апiсваецца сваiмi дыферэнцыяльнымi раў-
наннямi.

Не iснуе якiх-небудзь агульных правiл для складвання дыферэнцы-
яльных раўнанняў па ўмове канкрэтнай задачы. Важна, каб выконвалася
наступнае патрабаванне: умова задачы павiнна быць такой, каб можна
было скласцi суадносiны, якiя звязваюць пераменную, функцыю гэтай
пераменнай i яе вытворныя.
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Знаёмячы вучняў з гарманiчнымi ваганнямi, указваем, што калi ўда-
рыць па камертоне, то чуваць заўсёды гук аднаго тону незалежна ад
сiлы ўдару. Аналагiчна, нацiскаючы на адну i тую ж клавiшу пiянiна,
чуем гукi адной i той жа вышынi незалежна ад сiлы нацiску. Гэтыя
i шматлiкiя падобныя iм з’явы можна зразумець, разглядаючы цела, якое
вагаецца, па аналогii з ваганнем пругкай спружыны. Справа ў тым, што
дыферэнцыяльныя раўнаннi, якiя апiсваюць ваганнi камертона, струны
пiянiна i г. д., наблiжана супадаюць з раўнаннем руху пругкай спру-
жыны, г. зн. з раўнаннем f

′′
(t) = −ω2f(t), дзе аргумент t выражае час

вагання, f(t) – велiчыню зруху ад першапачатковага становiшча.
Пры разглядзе формулы перыяду гарманiчнага вагання T = 2π

ω звяр-
таем увагу школьнiкаў на такi дзiўны факт. У гэтую формулу ўваходзiць
лiк π – гэта ўказвае на сувязь гарманiчнага вагання i вярчальнага руху
па акружнасцi. Калi пункт рухаецца па акружнасцi так, што велiчы-
ня яго хуткасцi пастаянная, то кожная праекцыя гэтага пункта на восi
дэкартавай сiстэмы каардынат выконвае гарманiчныя ваганнi. Гэта на-
стаўнiк можа паказаць школьнiкам наглядна з дапамогай трыганаметра.

Доказ таго, што сума двух гарманiчных ваганняў аднолькавай часта-
ты з’яўляецца гарманiчным ваганнем той жа частаты, заснавана на ўлас-
цiвасцi рашэнняў дыферэнцыяльнага раўнання f

′′
(t) = −ω2f(t): сума

f1 + f2 двух рашэнняў f1 i f2 гэтага раўнання таксама з’яўляецца яго
рашэннем.

Усе рашэннi дыферэнцыяльнага раўнання f ′′(t) = −ω2f(t) выража-
юцца функцыямi выгляду f(t) = A cos(ωt+φ), дзеA i φ – адвольныя кан-
станты. Такiм чынам, у агульнае рашэнне дыферэнцыяльных раўнанняў
любога гарманiчнага вагання ўваходзяць дзве адвольныя
пастаянныя A i φ. Таму для знаходжання прыватнага рашэння (г. зн.
рашэння канкрэтнай задачы) неабходна задаць пачатковыя ўмовы: у па-
чатковы момант задаць значэнне функцыi i яе вытворнай. Напрыканцы
адзначаем, што пры выкладаннi пытання “Паняцце аб дыферэнцыяль-
ным раўнаннi. Гарманiчныя ваганнi” не трэба абцяжарваць школьнiкаў
разглядам шматлiкiх тэхнiчных фактаў, якiя звязаны з гарманiчнымi
вагальнымi рухамi. Не трэба з iмi вымалёўваць шматлiкiя графiкi тры-
ганаметрычных функцый для гэтых выпадкаў. Важна дабiцца прынцы-
повага разумення пытання. Пабудову графiкаў гарманiчных ваганняў
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можна выконваць на аснове даследавання функцыi па стандартнай
схеме. Атрыманыя матэматычныя веды па гэтай тэме ў значнай ступенi
аблегчаць разуменне шматлiкiх раздзелаў фiзiкi, бiялогii, хiмii.

Разгледзiм прыклады практыкаванняў на дыферэнцыяльныя
раўнаннi (далей – ДР).

Прыклад 1. Знайдзiце рашэнне ДР

f
′′
(t) =

1

16
f(t),

якое адказвае наступным пачатковым умовам: f(0) = 4, f ′(0) =
√
3.

Рашэнне. Рашэнне дадзенага ДР гарманiчнага вагання ў агульным
выглядзе можа быць запiсана так: f(t) = A cos(14t+ φ). Знойдзем f ′(t):

f ′(t) = −A sin

(
1

4
t+ φ

)
· 1
4
= −A

4
sin

(
1

4
t+ φ

)
,

тады, згодна з дадзенымi пачатковымi умовамi, маем:

f(0) = A cosφ, A cosφ = 4;

f ′(0) = −A
4
sinφ, −A

4
sinφ =

√
3, A sinφ = −4

√
3.

Атрымаем сiстэму раўнанняў:{
A cosφ = 4,

A sinφ = −4
√
3.

Адкуль знаходзiм A i φ:

A cosφ

A sinφ
=

4

−4
√
3
, ctgφ = − 1√

3
, φ =

2π

3
, A cos

2π

3
= 4, A = −8.

Рашэннем дадзенага ДР будзе функцыя f(t) = −8 cos
(
1
4t+

2π
3

)
. Пасля

прымянення формул прывядзення прымае выгляд

f(t) = 8 sin

(
1

4
t+

π

6

)
.
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Н. И. КОВАЛЕВИЧ
Беларусь, Брест, БОИРО

ПЛАНИМЕТРИЧЕСКАЯ ЗАДАЧА:
РАЗЛИЧНЫЕ СПОСОБЫ РЕШЕНИЯ

Решение математических задач различными методами способствует:
• актуализации определённых предметных знаний;
• формированию положительной внутренней мотивации учащихся;
• формированию умения учащихся составлять, на основе опорных,

более сложные задачи;
• пополнению банка действенных приемов в работе над математиче-

ской задачей;
• формированию синтетическо-аналитического стиля мышления

обучаемых;
• системному усвоению учащимися предметного содержания;
• организации самоконтроля за процессом работы над задачей;
• реализации принципа наглядности в обучении (в контексте изла-

гаемого – иллюстрируются методы решения планиметрических задач:
алгебраический, тригонометрический, геометрический, комбинирован-
ный) и др.

Поиск различных способов – само по себе занятие увлекательное
и познавательное, формирующее мотивационную основу усвоения содер-
жания школьного курса математики.

Общепринятой классификации методов решения планиметрических
задач не существует, но обозначенная нами выше с практической точки
зрения удобна.

При использовании алгебраического метода составляются уравнения
или системы уравнений, содержащие заданные и искомые величины.
Интерпретация полученных решений уравнений, систем уравнений при-
водит к желаемому результату. При использовании тригонометрического
метода в качестве опорных элементов выбираются углы, используются
тригонометрические формулы и т. п., что в конечном итоге позволяет
получить желаемый результат.

При решении задач геометрическим методом требуемые утвержде-
ния выводятся посредством логических рассуждений из ряда теоретиче-
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ских положений. К геометрическим методам обычно относят метод гео-
метрических преобразований: выполняются поворот, центральная
и осевая симметрии, гомотетия, инверсия, параллельный перенос и др.;
при использовании методов этой группы часто используются дополни-
тельные построения: построение описанной, вписанной окружностей
треугольника, четырехугольника, проведение через заданную точку пря-
мой, параллельной (перпендикулярной) данной прямой и т. д.

При использовании комбинированного подхода ряд этапов решения
реализуется геометрически, а ряд – алгебраически.

В процессе решения планиметрических задач различными способа-
ми формируется широкий спектр истинных суждений, способствующих
осознанному, глубокому, прочному, обобщенному, системному усвоению
математического содержания. Например, доказать, что две прямые па-
раллельны между собой, можно, установив, что обе прямые перпендику-
лярны к третьей прямой; каждая из них порознь параллельна третьей
прямой и т. д.; для того, чтобы все вершины четырехугольника ABCD
располагались на одной окружности, необходимо и достаточно, чтобы
выполнялось одно из равенств:

1) ∠B + ∠D = 180◦;
2) ∠ABD = ∠ACD;
3) FA ·FC = FB ·FD, где F – точка пересечения диагоналей четы-

рехугольника ABCD;
4) NA ·NB=ND ·NC, где N –точка пересечения прямых AB и CD;

катет прямоугольного треугольника равен сумме радиуса вписанной
окружности и радиуса вневписанной окружности, касающейся этого
катета; площадь треугольника выражается формулой S = (p− a)ra, где
ra – радиус вневписанной окружности, касающейся стороны, равной a,
p – полупериметр треугольника и т. д.

Приведем три способа (алгебраический, тригонометрический
и геометрический) решения одной задачи.

Задача. Даны две непересекающиеся окружности с центрами
в точках O1 и O2 радиусов R и r соответственно. Их общие внут-
ренние касательные ME и LF взаимно перпендикулярны (рисунок).
Найти площадь треугольника ABC, образованного этими касатель-
ными и общей внешней касательной DK окружностей.
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Решение. Обозначим через S искомую площадь △ABC.
I способ. Пусть AD = x, BK = y. Тогда AE = x и FB = y –

как отрезки касательных прямых, проведенные из одной точки к одной
окружности. По условию, ∠ACB = 90◦.

Заметим, что ∠O1EC = O1LC = 90◦ как углы между касатель-
ной и радиусом, проведенным в точку касания. Тогда O1ECL является
прямоугольником. Поскольку O1E = O1L = R, то O1ECL – квадрат
со сторонойR. Аналогично доказывается, что четырехугольникO2FCM –
квадрат со стороной r.

Рисунок

MA = AK и LB = BD как отрезки касательных прямых, прове-
денных из одной точки к одной окружности. Таким образом, получим
систему уравнений {

x+R + r = AB + y,
y +R + r = AB + x.

Вычитая из первого уравнения второе, получим, что

x− y = y − x ⇔ x = y.

Следовательно, AB = R + r.
Согласно теореме Пифагора для △ABC, будем иметь

AB2 = AC2 +BC2 ⇔ (R + r)2 = (x+R)2 + (x+ r)2 ⇔

⇔ x2 + x(R + r) = Rr.
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Окончательно получим

S =
AC · CB

2
=

(x+R)(x+ r)

2
=
x2 + x(R + r) +Rr

2
= Rr.

II способ. Обозначим ∠DO1E = α. Тогда

∠DAE = 180◦ − α, ∠CAB = α, ∠ABC = 90◦ − α,

∠FBK = 90◦ + α, ∠FO2K = 90◦ − α.

Поэтому

S =
AC · CB

2
=

(R + AE)(r +BF )

2
=

(R +R tg α
2 )(r + r tg(45◦ − α

2 ))

2
=

=
Rr

2

(
1 + tg

α

2

)(
1 +

1− tg α
2

1 + tg α
2

)
=
Rr

2

(
1 + tg

α

2
+ 1− tg

α

2

)
= Rr.

III способ. Пусть BC = a, AC = b, AB = c и p – полупериметр
треугольника ABC. Т. к. окружность с центром в точке O1 и радиу-
са R является вневписанной для △ABC, касающаяся стороны AC, то
S = (p− b)R. Аналогично получим, что S = (p− a)r.

Пользуясь равенством a2 + b2 = c2, найдем, что

R =
S

p− b
=

ab

a+ c− b
= p+

ab

a+ c− b
− a+ b+ c

2
=

= p+
2ab− (a+ c)2 + b2

2(a+ c− b)
= p+

2ab− 2ac− 2a2

2(a+ c− b)
= p− a,

т. е. R = p− a. Отсюда следует, что

S = r(p− a) = Rr.

Ответ: Rr.
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РАЗВИТИЕ У СТУДЕНТОВ
ФИЗИКО-МАТЕМАТИЧЕСКИХ ПРОФИЛЕЙ
ОБУЧЕНИЯ ПРЕДМЕТНЫХ ЗНАНИЙ НА ЗАНЯТИЯХ
ПО ОБРАТНЫМ ЗАДАЧАМ
ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Успешная вузовская подготовка будущих специалистов прикладной
математики обеспечивается не только привлечением студентов начиная
с младших курсов к научной деятельности (научно-исследовательские
практики, выполнение курсовых и выпускных квалификационных
работ, научные семинары, конференции и др.), преподаванием базовых
физико-математических дисциплин, но и преподаванием курсов по вы-
бору. Посещая такие курсы по выбору, студенты знакомятся с современ-
ными достижениями мировой науки в области прикладной математики.

Одними из таких курсов по выбору, содержащихся в учебных
планах подготовки будущих специалистов прикладной математики, яв-
ляются курсы по выбору, посвященные теории и практике обратных за-
дач для дифференциальных уравнений (далее – ОЗ) – одному из научных
направлений прикладной математики, которое активно, вот уже на про-
тяжении последних 60 лет, развивается в многочисленных работах отече-
ственных и зарубежных авторов [1; 2; 3; 4; 5; 6]. Такие курсы по выбору
преподаются в российских вузах для студентов физико-математических
профилей подготовки уже более полувека, являются межпредметными
дисциплинами [2].

Студенты на курсах по выбору по ОЗ закрепляют и развивают свои
знания по прикладной и вычислительной математике, физике,
в других предметных областях, таких, например, как философия. Сту-
денты развивают свое мировоззрение, приобретают умения смотреть на
ОЗ как на математические модели, описывающие процессы и объекты.
Поясним вышесказанное.

Развитие знаний по прикладной математике. Студенты знакомят-
ся с математическими учебными постановками ОЗ и учатся применять
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методы математической физики для их решения (методы Грина, Далам-
бера, Кирхгофа, операторных уравнений, Пуассона, свертки, Соболева,
Фурье, характеристик и др.), закрепляют знания и пополняют новыми
знания по целому ряду дисциплин прикладной математики, среди ко-
торых можно отметить математический анализ, функциональный ана-
лиз, алгебру, интегральные уравнения и др. Например, решая обратную
задачу в обобщенной постановке, студенты знакомятся с методом выде-
ления сингулярной части у обобщенного решения соответствующей пря-
мой задачи. Или, например, сконструировав систему уравнений, экви-
валентную исходной, и представив его в виде операторного уравнения,
студенты осваивают принцип сжатых отображений, позволяющий иссле-
довать вопросы существования и единственности решения такого опера-
торного уравнения.

Развитие знаний по вычислительной математике. Не секрет, что
у многих ОЗ затруднительно найти точное решение. Одна из причин – их
нелинейность. Поэтому неудивительно стремление специалистов
по ОЗ на всем протяжении развития теории обратных задач разрабаты-
вать приближенные методы их решения. Сегодня теория обратных задач
обладает внушительным списком таких приближенных методов (оптими-
зационные, градиентные, вариационные, обращения разностных схем и
др.). И с такими методами решения ОЗ студенты могут познакомиться
на соответствующих курсах по выбору, приобрести умения и навыки их
использования при решении ОЗ. Например, если тема курса по выбо-
ру посвящена конечно-разностным методам решения ОЗ, то преподава-
тель должен стремиться научить студентов привлекать математические
методы (вариационно-разностные, интегро-интерполяционные и др.),
позволяющие построить разностные схемы (явные, явно-неявные, неяв-
ные), обладающую нужным свойствам.

Развитие физических знаний. Прикладная направленность препо-
давания ОЗ позволяет преподавателю донести до сведений студентов
физический смысл изучаемых прикладных задач с последующим анали-
зом физических законов. Например, при рассмотрении темы курса по вы-
бору, посвященной обратным задачам для системы уравнений Максвел-
ла, важно обратить внимание студентов на то, что, например, значение
электрической проводимости земной среды может менять тип диффе-
ренциального уравнения. В частности, в предположении большой прово-
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димости земной среды из системы уравнений Максвелла можно получить
ОЗ для параболических уравнений, но предположение наличия
нулевой проводимости приводит уже к ОЗ для гиперболических урав-
нений. Или, например, знакомясь на курсах по выбору с ОЗ электро-
динамики, студенты осмысливают, например, распространение электро-
магнитных волн в земной среде, развивая знания о волновых процессах
как форме движения материи.

Развитие знаний о философских понятиях. Рассматривая
математические постановки ОЗ, преподавателю целесообразно обращать
внимание студентов на философский смысл ОЗ – по известным следстви-
ям определяются неизвестные причины, порождающие эти следствия.
При рассмотрении, например, темы курса по выбору, посвященной ко-
эффициентным ОЗ, студентам разъясняется, что неизвестными причи-
нами являются коэффициенты уравнений, а следствия – функционалы
от решения ОЗ. Взгляд на ОЗ и понимание причинно-следственных свя-
зей с философской точки зрения дает возможность студентам предста-
вить новую информацию, полученную с помощью решения ОЗ связан-
ных с философскими вопросами естествознания.
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ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ОБУЧЕНИИ
МАТЕМАТИКЕ СЛУШАТЕЛЕЙ-ИНОСТРАНЦЕВ
НА ПОДГОТОВИТЕЛЬНОМ ОТДЕЛЕНИИ

Экспорт образовательных услуг является одним из приобретённых
направлений обучения в системе образования Республики Беларусь.
Обучение иностранных граждан имеет ряд ключевых аспектов: эконо-
мическая выгода; международное признание, репутация, создание ими-
джа страны; культурный обмен; инновационное развитие; создание дол-
госрочных партнерств. Согласно статистическим данным [1], в настоя-
щее время в учреждениях высшего образования Республике Беларусь
обучаются 18 838 иностранных граждан из 87 стран мира.

Обучение иностранных граждан является достаточно сложным
и трудоемким процессом. Трудности, с которыми сталкиваются как ино-
странные граждане, так и преподаватели, обусловлены рядом факторов,
основными среди которых являются языковой барьер, низкий уровень
подготовки по общетеоретическим дисциплинам (в том числе и по мате-
матике), культурные и религиозные различия.

Учитывая современные тенденции глобализации образования и необ-
ходимость адаптации учебных материалов под разные культурные и язы-
ковые особенности, использование информационных технологий
при обучении математике иностранных граждан играет важную роль.
Рассмотрим основные направления эффективного применения информа-
ционных технологий при обучении математике иностранных граждан.

Онлайн-курсы и платформы
Многие университеты и образовательные организации предлагают

онлайн-курсы математики для слушателей-иностранцев из разных стран.
Примеры платформ: Kahoot!, Coursera, edX, Stepik, OpenEdu. Мы пред-
лагаем в условиях смешанного обучения использовать систему электронно-
образовательного ресурса на базе Moodle (abiturientu.bstu.by). Online
курс «Математика» включает словари (представленные на нескольких
языках), лекции (в pdf-формате), математические подкасты, интерак-
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тивные задания, обучающие тесты, тесты на входе и на выходе, адапти-
рованные под различные уровни подготовки учащихся [2].

Интерактивные программы
Электронные учебники предоставляют возможность использовать муль-

тимедийные элементы: анимации, графики, аудиообъяснения, которые
помогают иностранным студентам лучше понимать материал даже при
недостаточном знании языка. Например:

– Geogebra – программа для визуального изучения геометрии и ал-
гебры, а также изучения «математического» русского языка [3].

– Mathematica, Maple, Matlab – мощные математические среды для
выполнения сложных вычислений и моделирования.

Системы виртуальных репетиторов и тьюторов
Для иностранных слушателей, которым сложно изучать математику

на «неродном» языке, целесообразно использовать в обучении
искусственный интеллект. Например, такие виртуальные помощники, как
Photomath, Wolfram Alpha, Mathway, могут решать уравнения, преобра-
зовывать выражения, давать пошаговые объяснения. Данные калькуля-
торы позволяют осуществлять самопроверку.

Игровые методы обучения (геймификация)
Геймифицированные приложения и игры мотивируют слушателей-

иностранцев к изучению математики через увлекательные задания, на-
грады и достижения. Примером таких проектов являются DragonBox –
серия игр, помогающих освоить основы алгебры через головоломки;
Prodigy Math Game – образовательная игра, интегрированная с учебной
программой.

Автоматизированные системытестированияиобратной связи
Тестирование помогает оценить уровень знаний студента, а также

оперативно выявить пробелы в знаниях. Современные платформы могут
автоматически анализировать результаты тестов и предлагать персона-
лизированный учебный план. Примеры:

– Moodle – система управления обучением, включающая инструмен-
ты для проведения тестов и анализа результатов.

– Kahoot – платформа для создания викторин и игровых тестов.
Облачные решения и совместная работа
Использование таких облачных сервисов, как Яндекс Телемост,

Google Meet, Moodle, Google Classroom, Microsoft Teams позволяет
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организовывать коллективную работу над проектами, проводить веби-
нары и обсуждения, обмениваться материалами и взаимодействовать
в режиме реального времени. При проведении индивидуальных и груп-
повых занятий можно использовать онлайн-доски (например, Miro).

Мультимедиаресурсы
При проведении практических занятий на подготовительном отде-

лении целесообразно использовать наглядность, что возможно реализо-
вать, используя презентации Microsoft Powerpoint [4].

Реализация инфографики и системы интегрированных заданий
по математике осуществляется средствами конструктора H5P, который
легко встраивается в Moodle [5].

Математические подкасты, лекции и анимация помогают слушате-
лям-иностранцам визуально воспринимать математический материал,
особенно когда речь идет о концепциях, трудных для понимания на слух
(например, математические подкасты из YouTube, Khan Academy).
Применение современных информационных технологий существенно рас-
ширяет возможности преподавателей и студентов в изучении математи-
ки. Вышеперечисленные инструменты помогают сделать процесс обуче-
ния более гибким, доступным и эффективным.
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МЕТОДИКА ИСПОЛЬЗОВАНИЯ
ТЕХНОЛОГИИ ИНТЕГРАТИВНОГО ОБУЧЕНИЯ
ПРИ ИЗУЧЕНИИ МАТЕМАТИКИ В СРЕДНЕЙ ШКОЛЕ

Интеграция в образовании – это процесс усвоения учениками всей
совокупности знаний в их развитии, овладение общенаучным мировоз-
зрением, формирующимся на знании всех предметов в их взаимосвязи.

Проблема интеграции является актуальной на современном этапе
развития образования. Термин «интеграция» (от лат. integration – ‘вос-
становление, восполнение целого’) в толковом словаре трактуется как
«объединение в целое каких-либо частей».

При реализации принципа интеграции в обучении обогащается содер-
жание каждого из видов деятельности учащегося, усложняются спосо-
бы его действий, более успешно вырабатываются оценочные суждения,
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усиливаются коммуникативные связи в процессе применения учащими-
ся знаний. «Взаимосвязь всех видов деятельности, включенных в учеб-
ный процесс, должна содействовать не только приобретению знаний, но
и воспитанию, развитию многих необходимых качеств учащихся» [1].

Результатом интегрированного обучения являются различные аспек-
ты. Например, у многих учащихся повышается уровень знаний, появля-
ется интерес к предмету, формируется устойчивая мотивация [2].

Выделяют два вида интеграции: вертикальную и горизонтальную.
Суть вертикальной интеграции – объединить в одном предмете мате-
риал, тематически повторяющийся в разные годы обучения на разном
уровне сложности. В то время как горизонтальная интеграция связыва-
ет между собой различные учебные предметы.

Рассмотрим применение технологии интегративного обучения
в процессе изучения школьной математики. Изучение математики как
науки в школе должно строиться не только на основе формирования
у учащихся определенных математических знаний, но и должно пока-
зывать применение данных знаний для решения практических задач.
Межпредметные связи на уроках математики можно реализовать по-
средством решения задач с физическим, химическим, географическим и
другим содержанием. Такие задачи помогут учащимся понять важность
полученных знаний.

Изучение темы «Масштаб» предполагает интеграцию математики
с географией. Взаимодействие с географией используется и в теме
«Диаграммы». В теме «Пропорции» задачи на растворы дают возмож-
ность прикоснуться к такому еще незнакомому для шестиклассников
предмету, как химия. Очень хорошо сочетаются физика и математика
при изучении темы «Графики функций». С помощью графиков демон-
стрируется зависимость двух физических величин: скорость и расстоя-
ние, время и температура, масса и объем и т. д. Примеры можно приво-
дить бесконечно.

Математика и физика являются одними из самых сложных школь-
ных предметов. Наблюдения показывают, что сложности в каком-либо
вопросе из курса физики часто связаны с непониманием зависимостей,
сложностями в составлении и решении математических уравнений, неуме-
нием проводить преобразования и геометрические построения. Также
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и в математике: некоторые задачи с точки зрения физики, знание
и правильное применение физического материала позволяет эффектив-
нее их решать. Например, при изучении законов движения можно
использовать уравнения для расчета скорости, времени и расстояния.

Рассмотрим несколько примеров интеграции математики и физики
по теме «Физический смысл производной».

1. В тонком неоднородном стержне длиной 30 см его масса (в г)
распределена по закону m = 2l2 + 7l, где l – длина стержня, отсчиты-
ваемая от его начала. Найти линейную плотность в точке: a) отстоящей
от начала стержня на 3 см; b) в конце стержня.

Решение.

a) ρ(l) = m′(l) = 4l + 7, ρ(3) = 19 г/см. b) ρ(30) = 127 г/см.

Ответ: 19 г/см; 127 г/см.
2. Точка движется прямолинейно по закону x(t) = 5t2 + 3t− 12, где

x(t) – перемещение в сантиметрах, t – время в секундах. В какой момент
времени скорость точки будет равна 33 см/с?

Решение.

v(t) = x′(t) = 10t+ 3; 10t+ 3 = 33; 10t = 30; t = 3.

Ответ: 3 с.
3. Количество электричества, протекающее через проводник, начи-

ная с момента t = 0, задается формулой q = 3t2 + 2t + 2. Найдите силу
тока в момент времени t = 5.

Решение.

I(t) = q′(t) = 6t+ 2, I(5) = 32A.

Ответ: 32 А.
Использование интеграции на уроках математики представляет

собой важный и эффективный подход к обучению, который значитель-
но обогащает образовательный процесс и способствует более глубоко-
му усвоению знаний. Интеграция позволяет создать целостную карти-
ну мира, в которой математика не воспринимается как изолированная
дисциплина, а рассматривается в контексте других предметов и реаль-
ных жизненных ситуаций.
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ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ МЕТОДА СЕЧЕНИЙ
В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

Организация и проведение уроков, ориентированных на построение
сечений многогранников, имеют особое значение, так как являются фун-
даментальной основой для решения задач на построение сечений, нахож-
дение их площадей и периметров, углов между сечениями и плоскостями,
расстояний между плоскостями сечений и другими элементами.

Метод сечений играет ключевую роль в образовательном процессе,
особенно в преподавании геометрии. Уроки, ориентированные на постро-
ение сечений многогранников, являются основой для решения задач,
связанных с нахождением площадей, периметров, углов между сечени-
ями и плоскостями, а также расстояний между плоскостями. Основной
целью таких уроков является освоение учащимися методов построения
сечений, что достигается через планирование личностных, предметных
и метапредметных результатов.

Личностные результаты включают в себя:
• умение распознавать логически некорректные высказывания;
• развитие критического мышления;
• готовность к сотрудничеству и взаимопомощи;
• способность к самообразованию.
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Предметные результаты:
• понимание аксиоматического построения математических теорий;
• владение информационно-коммуникационными технологиями

для решения задач;
• умение применять методы доказательства и алгоритмы;
• проведение доказательных рассуждений в ходе выполнения учеб-

ных заданий.
Метапредметные результаты:
• самостоятельное определение плана действий и целей;
• корректировка и контроль своей деятельности;
• поиск методов решения практических задач;
• владение языковыми средствами.
Эти результаты могут корректироваться в зависимости от целей

обучения и темы занятия.
На уроках геометрии применяются различные методы продуктивного

обучения, такие как метод учебного познания, метод сравнения, эвристи-
ческие вопросы и другие [1]. Эти методы способствуют формированию
представлений о сечении и развитию навыков его построения. К таким
методам продуктивного обучения также относятся:

• метод учебного познания;
• метод сравнения;
• метод эвристических вопросов;
• метод исследования;
• метод конструирования предписаний;
• методы организации учения;
• метод ученического целеполагания;
• метод ученического планирования;
• метод взаимного обучения;
• метод нормотворчества;
• метод рецензий;
• метод контроля, рефлексии и самооценки [1].
Форма организации учебной деятельности также может быть раз-

личной, например: фронтальная, индивидуальная или групповая работа.
Чаще всего учителем применяется фронтальная работа при организа-
ции внимания учащихся, объяснения им новой информации и проработ-
ки задания по алгоритму в совместной деятельности со всем классным
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коллективом. Групповая работа чаще всего используется для отработки
алгоритма метода сечения, проработки заданий по алгоритму или задан-
ному образцу. Индивидуальная работа применяется в том случае, когда
учащиеся успешно усвоили тему и способны к индивидуальной работе [2].

Реализация данных методов на уроках по формированию и разви-
тию умения работать с методом сечения позволяет успешно формиро-
вать представление о сечении, его возможностях, а также способствует
развитию умения строить сечения, определять их площадь и периметр
и выполнять другие учебные задачи. Данные методы могут быть исполь-
зованы как единолично, так и комбинированно.

Организация и проведение уроков, ориентированных на построение
сечений многогранников, имеют особое значение, так как они являют-
ся фундаментальной основой для решения задач на построение сечений,
нахождения их площадей и периметров, углов между сечениями и плос-
костями, расстояний между плоскостями сечений и другими элементами.

Метод сечений является важным инструментом в обучении геомет-
рии, способствующим развитию пространственного мышления и навы-
ков работы с геометрическими фигурами. Эффективная организация
уроков, использование разнообразных методов и задач, а также систе-
матическое применение разработанных комплексов заданий позволяют
достигать высоких результатов в обучении.

Таким образом, последовательная работа при построении сечений
с использованием различных методов позволяет развивать умения ра-
ботать с данными методами и устранять недостатки ранее полученных
учебно-познавательных знаний по данным темам.
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УПРАВЛЯЕМАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА
СТУДЕНТОВ КАК ОДНО ИЗ УСЛОВИЙ ПОДГОТОВКИ
СПЕЦИАЛИСТА

Перед современной высшей школой стоят следующие проблемы.
Во-первых, важно уменьшить время и трудозатраты преподавателя
и студента по подготовке к традиционным лекционным, семинарским,
практическим и другим занятиям. Во-вторых, надо тем не менее обеспе-
чить качество образования. В-третьих, очень важно вписаться в между-
народное образовательное пространство.

Решение этих задач невозможно без повышения роли управляемой
самостоятельной работы студентов (УСРС), усиления ответственности
преподавателя за развитие навыков самостоятельной работы, за стиму-
лирование профессионального роста студентов, воспитание их творче-
ской активности и инициативы, стремления к пополнению и обновлению
знаний, к творческому использованию их на практике, в сферах буду-
щей профессиональной деятельности [1]. Студента следует рассматри-
вать как активный субъект учебного процесса, а не как пассивный объ-
ект обучения и включать его в активную учебную деятельность, «учить
учиться», оказывать ему помощь в приобретении знаний.

В вузе основной формой организации обучения является лекция, пред-
ставляющая собой устное изложение преподавателем учебного материа-
ла, сопровождаемое при необходимости демонстрацией иллюстративных
материалов и записями на доске. На лекции за сравнительно
короткое время можно дать объемный материал, а благодаря системно-
сти его подачи создать целостное представление об изучаемом объекте.

Однако у преподавателя и студента возникают некоторые трудности:
1) лектору, излагающему теоретический материал на высоком науч-

ном и методическом уровне, трудно обеспечить активное внимание всех
студентов на протяжении всего лекционного занятия;

2) студент, еще вчерашний школьник, сталкивается с данной формой
изложения учебного материала впервые, что приводит к его быстрой
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утомляемости на лекционном занятии при прослушивании монологиче-
ской речи преподавателя;

3) неосвоенная техника конспектирования не позволяет обучаемому
отражать в своих конспектах необходимый для усвоения материал;

4) новизна в подаче учебного материала, несформировавшиеся
умения его конспектирования отвлекают студента от осмысления содер-
жания лекции.

Применение информационно-компьютерных технологий в обучении
предоставляет вариант решения одной из актуальных проблем препо-
давания математических дисциплин в университете – невозможности
в отведенные учебным планом часы лекций изложить темы дисципли-
ны в достаточно полном объеме, с обоснованиями основных выводов.
При этом начальная подготовка большинства студентов требует суще-
ственной компенсации, поэтому часто наблюдается невозможность вос-
приятия аудиторией многих вопросов математических дисциплин с об-
щепринятой в математике строгостью.

С целью повышения качества профессиональной подготовки студен-
тов, активизации их работы на учебных занятиях, организации УСРС
и подготовки конкурентоспособного саморазвивающегося педагога нами
разработаны учебно-методические комплексы (УМК) по математике и
на их базе электронные учебно-методические комплексы (ЭУМК), вклю-
чающие в себя типовую учебную программу, конспекты лекций, планы
практических занятий с решенными типовыми примерами, c подбором
задач для самостоятельного решения, контрольные вопросы по теории,
индивидуальные задания, вопросы и задания, выносимые на экзамен.
Имеющаяся в ЭУМК система гиперссылок позволяет быстро найти нуж-
ный материал. ЭУМК содержат тесты как по теории, так и по решению
практических примеров.

Итак, наличие учебно-методического комплекса позволяет педагогу:
– сократить объем конспектирования лекционного материала,
– использовать интерактивные методы обучения,
– увеличить скорость подачи материала,
– стимулировать активность и самостоятельность студентов,
– создать условия для профессионального развития и саморазвития

студентов,
– взять на себя роль организатора среды обучения, консультанта.
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Творчество в педагогической деятельности проявляется по-разному:
в нестандартном подходе к решению проблем, в эффективном примене-
нии имеющегося опыта в новых условиях, в умении видеть множество ва-
риантов решения одной и той же проблемы, в умении трансформировать
теоретические положения в конкретные педагогические действия и т. д.

В подготовке специалиста, владеющего данными умениями, боль-
шую роль играет самостоятельная работа студентов, которая сегодня
стала важным компонентом педагогического процесса. Роль самостоя-
тельной работы в развитии творческих способностей возросла и в связи
с тем, что она интегрирует разные виды индивидуальной и групповой
учебной деятельности во время аудиторных и внеаудиторных занятий,
под руководством преподавателя или без непосредственного его участия.
А это важно еще и потому, что особенностью педагогического творчества
является то, что оно всегда выступает как сотворчество.

Главную роль в организации самостоятельной работы студентов
играет их умение работать с книгой. К сожалению, сегодня преподавате-
ли высшей школы столкнулись с двумя проблемами. С одной стороны,
у многих первокурсников слабо сформированы навыки самостоятель-
ной работы с книгой (культура чтения, культура краткой и рациональ-
ной записи, приемы поиска дополнительной информации), а с другой –
свободный доступ к сети Интернет (получение любой информации) у
ряда студентов формирует нежелание работать с книгой. Познаватель-
ная же деятельность студента в вузе требует сформированности умений
не только грамотно устно и письменно излагать свои мысли, но и слу-
шать и одновременно мысленно обрабатывать услышанное, выделяя ос-
новные положения лекции, прочитанного источника. Таким образом, пе-
ред преподавателями встала задача – помочь студентам овладеть тех-
нологией учебной деятельности в высшей школе, сформировать у них
методологические знания, умение анализировать, сравнивать, обобщать
полученную информацию и т. д.

Невысокий уровень методологических знаний студентов, как пока-
зывает повседневная практика, проявляется в неумении установить свя-
зи между явлениями и процессами, образующими одну систему; найти
причинно-следственные отношения; осознать глубокие сущностные осно-
вания, по которым он делает то или иное умозаключение; сформулиро-
вать соответствующее обобщение, результат сравнения [2].
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Совместная деятельность преподавателя и студентов способствует
тому, что и те и другие постоянно находятся в курсе достижений
педагогической науки, ориентируются на новые идеи в современном че-
ловекознании, используют в своей деятельности диагностический под-
ход, анализируют ее, аргументируют предложенные выводы. Все это спо-
собствует формированию творческих способностей студентов.
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ТЕХНИЧЕСКИЕ АСПЕКТЫ РАЗРАБОТКИ
И ПРИМЕНЕНИЯ ИНТЕЛЛЕКТУАЛЬНОГО КОНТЕНТА

В статье обсуждаются методические и технические решения, вопросы
интеграции средств LMS Moodle и системы Wolfram Mathematica при со-
здании и сопровождении адаптивного интеллектуального контента, ум-
ной информационно-образовательной среды, применяемой при препода-
вании дисциплин компьютерного моделирования, когнитивной графики,
интеллектуального анализа данных.

В статье будут детализированы новые апробированные методиче-
ские, алгоритмические и технические решения, приемы адаптации
компьютерных средств, методы и инструменты наполнения и редакти-
рования интерактивных интеллектуальных образовательных ресурсов.
Примерами будут проиллюстрированы варианты применения предлагае-
мого подхода создания умной образовательной среды, при очно-виртуаль-
ном преподавании в БГУ таких дисциплин, как когнитивная визуали-
зация (для специальности «Прикладная математика»), компьютерный
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анализ и визуализация (для специальности «Прикладная информати-
ка»), технологии интерактивной визуализации (для специальности
«Информатика») на факультете прикладной математики и информати-
ки и компьютерные системы и визуализация данных (для специальности
«Механика и математическое моделирование») на механико-математи-
ческом факультете.

Методические вопросы, особенности организации занятий.
Использование электронных образовательных ресурсов стало нормой
на всех этапах и для всех видов обучения. Программное обеспечение
интеллектуальных образовательных технологий предоставляет разные
эффективные инструменты создания и сопровождения контента, мно-
гие из которых с дружественным интерфейсом, но сейчас этого уже
недостаточно. Нужны инструменты интеллектуальной адаптации, кото-
рые давали бы желающим возможности маневра, свободного выбора ин-
дивидуальной траектории обучения, причем (что принципиально важ-
но), при минимальном вмешательстве преподавателя. Знаковые позиции
технологии реализованы при преподавании упомянутых выше дисци-
плин. Базовые элементы технологии (вопросы развития и адаптации ин-
терактивной технологии обучения типа eLearning в среде дистанцион-
ного обучения Moodle; варианты расширения базовых функциональных
возможностей Moodle путем включения дополнительных сервисов, ин-
терактивных ресурсов формата вычисляемых документов CDF), как они
технически реализуются пояснено в [1–5].

Несколько обязательных позиций регламента проведения за-
нятий, применения, настройки, адаптации интеллектуальных
средств обучения. Лекции и лабораторные занятия проводятся один
раз в неделю в компьютерном классе. Лабораторные занятия проводятся
согласно расписанию сразу за лекционными. Все занятия поддержива-
ются системой электронного обучения (далее – СЭО) Moodle. В каж-
дом конкретном ресурсе СЭО «Курс» в первом блоке «Общее» разме-
щены элементы: «Объявления», форум «Вопросы и ответы по заданиям
лекций, тестов», страница «О дисциплине». Далее размещаются блоки
«К лекции, практике N (дд.мм)», причем с сортировкой «Новый вверху»,
предыдущие блоки визуализируются в режиме «Свернуть». Содержание
таких блоков поясняется отдельно. Фактически все студенты работают
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на личных компьютерах, доступ к Сети – университетский или от своих
провайдеров (предпочтения у большинства именно такие).

В течение всего времени изучения курса для оценки текущих дости-
жений действует рейтинговая система, каждый студент имеет индиви-
дуальный рейтинг, который отслеживается в стандартном модуле СЭО
и размещаемом на странице элемента «Форум» Moodle в XLS докумен-
те – доступная всем обучаемым сводная таблица рейтингов, которая об-
новляется не реже одного раза в неделю. В сводной таблице по итогам
каждой пары занятий (лекция и лабораторная) отражаются баллы:

• призовые за правильные ответы на блиц-вопросы на лекциях
(3–4 вопроса/задания на каждой лекции, 3–5 баллов за правильный
ответ);

• штрафные (−3 балла) за каждый не отправленный на лекции ответ
(пропуск лекции, в случае уважительных причин такие обнуляются);

• призовые (30–80 баллов) за правильно выполненные эвристические
задания (не обязательные, «избранные задачи для избранных»), выкла-
дываются и подлежат сдаче на проверку в период 2–3 дня до очередного
занятия, проверяются преподавателем;

• по итогам тестов (в каждом – 12–14 заданий, большинство – функ-
циональное программирование; в каждом курсе 15 тестов; все задания
проверяются и оцениваются автоматически; 40 минут на выполнение);

• призовые за инициативные предложения уточнений материалов
лекций и тестовых вопросов/заданий (если таковые «по делу» и опуб-
ликованы студентами на форуме, повторы игнорируются);

• итоговый показатель накопленного индекса успешности.
Заключение. Целью доклада является обсуждение инструментов

подготовки интеллектуального контента, его распространения и исполь-
зования без ограниченийв любыхсетях коммуникаций и на любых устрой-
ствах; контента, создаваемого и сопровождаемого на основе предложен-
ной методики интеграции средств системы Mathematica, формата вычис-
ляемых документов, в том числе в среде Moodle.
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СПОСОБЫ ПРИМЕНЕНИЯ МЕХАНИЗМА
«ЛЮБЫЕ КОМПОНЕНТНЫЕ БЛОКИ»
В APP INVENTOR

В последнее время в учреждениях образования стали популярны
визуализированные языки программирования (Scratch, APP Inventor
и проч.) для изучения технологий программирования. С их помощью
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удается в легкой игровой форме развивать логическое и алгоритмическое
мышление обучающихся. При этом визуализированные языки содержат
многие понятия классического программирования. Онлайн-платформа
APP Inventor позволяет создавать приложения для телефонов
или планшетов, используя визуальные блоки и другие инструменты ви-
зуализированных языков.

При написании приложений на визуальных языках программирова-
ния возникает необходимость создания однотипного кода для несколь-
ких одинакового типа компонентов. Например, на сцене располагается
девять кнопок Кнопка1 – Кнопка9. При щелчке на каждой кнопке ее
цвет должен стать красным. Конечно, можно создать один обработчик
события Кнопка1.Щелчок (рисунок 1), а затем продублировать его 8 раз,
изменяя входящие в него ссылки Кнопка1 на ссылки на другие Кнопки.

Рисунок 1 – Примеры однотипных блоков программного кода
для одинаковых компонентов

Однако в APP Inventor использован механизм «Любые компонентные
блоки», реализующий принцип «Не повторяйся». Эти блоки позволяют
обратиться к компонентам не по имени, а по признаку отношения их к
одному классу (например, ко всем кнопкам сразу) или вхождения их в
один список.

Вместо того, чтобы создавать много повторяющегося кода, можно
использовать специальные блоки, называемые блоками «Любой компо-
нент». Чтобы получить доступ к блокам Любого компонента, нужно
в режиме Блоки нажать на кнопку «+» слева от названия «Любой ком-
понент», затем выбрать компонент, например, ДругаяКнопка.

В раскрывшемся списке можно получить доступ к компонентам
одного и того же класса (кнопки, акселерометры, изображения), а также
к любым блокам этих компонентов, реализующим свойства, методы, со-
бытия компонентов. Каждому из трех основных типов блоков компонен-
тов, т. е. событиям, методам и свойствам, соответствуют блоки из раз-
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дела «Любой компонент». Рассмотрим несколько способов применения
механизма «Любые компонентные блоки».

1. Применение одного программного кода одновременно ко всем
компонентам определенного класса, располагающимся на сцене.

Пусть, например, при изменении выбора Флажка1 все кнопки,
расположенные на сцене, должны стать зеленого цвета. В этом случае в
обработчике события Флажок1.Изменено вместо обращения к каждой
из кнопок по отдельности можно воспользоваться блоком «Для каждого
элемента в списке» из Управления (рисунок 2).

Рисунок 2 – Использование механизма «Любые компонентные блоки»
для всех кнопок на сцене одновременно

Вместо ссылки на список в блок «Для каждого элемента в спис-
ке» в этом случае помещается ссылка на любую кнопку «every Кнопка».
Блок «every Кнопка» находится в перечне блоков «Любой компонент» –
«ДругаяКнопка». Параметр «элемент» внутри блока «Для каждого эле-
мента в списке» является ссылкой на Кнопку, с которой сейчас работает
блок, то есть в результате на каждую кнопку на сцене.

В результате применения блока «Для каждого элемента в списке» с
параметром «every Кнопка» программный код после слова «выполнить»
будет применен одновременно ко всем компонентам одного вида (напри-
мер, кнопкам), расположенным на сцене.

2. Применение одного программного кода к любому компоненту опре-
деленного класса, расположенному на сцене.

Такой метод опирается на использование обработчиков событий
компонента. Создается один обработчик события, например, щелчок по
кнопке, где в качестве ссылки на компонент указывается не конкрет-
ный компонент Кнопка1, а общее название компонентов данного класса
Кнопка (рисунок 3).

Программный код, прописанный в обработчике события, срабатыва-
ет не одновременно для всех компонентов одного класса, а только тогда,
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когда наступает соответствующее событие. Таким образом программный
код не применяется одновременно для всех компонентов.

Рисунок 3 – Использование механизма «Любые компонентные блоки»
для тех кнопок на сцене, для которых наступило событие Щелчок

3. Применение одного программного кода к компонентам определен-
ного класса, перечисленным в Списке.

В случае, если программный код должен быть применен лишь к неко-
торым компонентам определенного класса на сцене, такие компоненты
необходимо перечислить в списке (рисунок 4). В приведенном на рисун-
ке 4 примере список создается как глобальная переменная Некоторые-
Кнопки. Элементами списка являются блоки-ссылки на соответствую-
щие компоненты.

Рисунок 4 – Использование механизма «Любые компонентные блоки»
для тех кнопок на сцене, которые перечислены в списке

Каждый исполняемый блок компонента состоит из трех частей:
изменяемый компонент, часть компонента, которой манипулируют, и вхо-
ды. Вместо того, чтобы привязывать блок к определенному компоненту,
они позволяют сделать код более общим, предоставляя любой компо-
нент одного и того же типа в качестве входа. Это позволяет, например,
создать список кнопок НекоторыеКнопки и изменить ЦветФона только
определенным кнопкам одновременно с помощью цикла «Для каждого
элемента в списке» (рисунок 4).
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Таким образом, в APP Inventor механизм «Любые компонентные
блоки» реализует инкапсуляцию логики в некоторой конструкции
программирования. Такая конструкция заменяет дублированный код для
нескольких компонентов, что является эффективным по многим пара-
метрам, в том числе и при необходимости внесения изменения в код
программы.

УДК 004.4:519.17

Л. А. ЯРМОЛИК, В. А. ШЕИНА, А. И. ЖУК,
Е. Н. ЗАЩУК
Беларусь, Брест, БрГТУ

ОСОБЕННОСТИ ИЗУЧЕНИЯ ТЕОРИИ ГРАФОВ
В СИСТЕМЕ WOLFRAM MATHEMATICA

Целью настоящей работы является практическая реализация
теории графов в одной из универсальных математических систем Wolfram
Mathematica. Рассматриваются способы представления и задания гра-
фов, встроенные функции для работы с графами и их тестирования,
способы нахождения кратчайшего пути [1]. Приведены рекомендации по
использованию Mathematica при обучении теории графов [2, 3].

Визуально граф может быть представлен в виде конечного множе-
ства вершин, которые могут быть изображены точкой, и конечного мно-
жества их парных связей – линий, соединяющих соответствующие вер-
шины (ребра). В пакете предусмотрены встроенные функции Graph
и RandomGraph, которые позволяют изменять цвет, форму и размер
вершин, цвет и стиль линии ребер, указывать вес ребер и отображать
его на графе [2].

Например, на рисунке 1 сформирован следующий граф из шести
вершин, при наведении курсора на который появляется информацион-
ное табло, которое позволяет без непосредственного введения встроен-
ных функций вывести информацию о графе на экран. Например, прове-
рить, является ли граф связным или гамильтоновым, содержит ли петли
и циклы, вывести степени входа и выхода вершин и список ребер, мат-
рицу смежности и инцидентности и др.
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Рисунок 1 – Сгенерированный граф из шести вершин

Рассмотрим задачу о Кенигсбергских мостах: имеются четыре части
суши и семь мостов. Необходимо обойти все части суши, пройдя по каж-
дому мосту ровно один раз, и вернуться в исходную точку. Для решения
построим граф кенигсбергских мостов с помощью матрицы смежности,
используя функцию AdjacencyGraph. На языке графов задача форми-
руется следующим образом: существует ли в графе простой цикл, со-
держащий все ребра графа (эйлеров цикл)? Для ответа на этот вопрос
воспользуемся встроенной функцией FindEulerianCycle.

G1=AdjacencyGraph[0, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, VertexLabels
-> Table[i -> Subscript[v, i], i, 4]]

FindEulerianCycle[G1]
На рисунке 2 показан пример графа, который не является эйлеровым.

Следовательно, нельзя обойти все части суши, пройдя по каждому мосту
ровно один раз.

Рассмотрим следующую прикладную задачу. Пусть вершины графа
– населенные пункты, а связывающие их грунтовые дороги – его ребра,
расстояния между населенными пунктами – вес соответствующего реб-
ра. Требуется спланировать наиболее экономичную сеть дорог с твердым
покрытием, заменяющих часть грунтовых дорог и связывающую все на-
селенные пункты. Решение этой задачи сводится к построению мини-
мального остовного дерева. Для поиска минимального остовного дере-
ва в системе Mathematica воспользуемся функцией FindSpanningTree и
выделим его в исходном графе, используя функцию HighlightGraph, и
найдем длину полученной дорожной сети.
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Рисунок 2 – Граф, сформированный по заданной матрице смежности

На рисунке 3 построен минимальный путь по ребрам с указанными
весами и найдена его длина, равная 13.

Ou t [ ] =

93

25

3

v2

v4

v5

Рисунок 3 – Построение минимального остовного дерева

Следует отметить, что при использовании встроенной функции
FindSpanningTree метод поиска выбирается автоматически и зависит от
типа и вида графа; если необходимо выбрать метод поиска вручную,
можно использовать следующую опцию:
FindSpanningTree[g,Method?"Prim"("Kruskal MinimumCostArborescence)]
и задать нужный алгоритм. При решении некоторых прикладных задач
существует необходимость найти максимальное остовное дерево, в этом
случае также применяется встроенная функция FindSpanningTree, толь-
ко перед ее применением вес каждого ребра умножается на -1. Построим
для того же графа, что и на рисунке 3, максимальное остовное дерево
(рисунок 4).
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Рисунок 4 – Построение максимального остовного дерева

В ходе проведения исследования были изучены основные встроенные
функции в рассматриваемом пакете Mathematica для работы с графа-
ми и решены некоторые классические задачи элементов теории графов.
В перспективе на основании проведенного исследования можно соста-
вить методическую разработку для проведения со студентами лаборатор-
ных работ по соответствующей дисциплине, что обеспечит более углуб-
ленное и осознанное ее понимание.
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