А. И. СЕРЫЙ

К ВОПРОСУ О РАВЕНСТВЕ МЕЖДУ ДЛИНОЙ ТЕНИ И ВЫСОТОЙ ПРЕДМЕТА В АСТРОНОМИЧЕСКИЙ ПОЛДЕНЬ

В одной из лабораторных работ (ЛР), предусмотренных учебной программой по астрономии, присутствует задание следующего содержания. Найдите день года, в который в городе, соответствующем Вашему варианту, длина тени предмета равна его высоте в астрономический полдень. Значение склонения Солнца δ_S в разные дни года можно брать из справочных таблиц, значение широты города ϕ считайте известным.

Процесс выполнения задания можно разделить на этапы (таблица).

Таблица – Основные этапы выполнения задания

Этап	Содержание	Пояснения
1	Определяем значение высоты Солнца	Это следует обосновать геометрически и продемонстрировать преподавателю при сдаче ЛР
	h_S над горизонтом, которое соответствует условию, указанному в задании	
2	Выводим соотношение между h_s , φ и δ_s , где δ_s – склонение Солнца	а) Выполняем предварительные геометрические построения в плоскости небесного меридиана (сечение небесной сферы, отвесная линия, ось мира, полуденная линия, небесный экватор, суточная параллель Солнца); б) получаем искомое соотношение, которое выглядит по-разному в случае $\delta_S < \varphi$ и $\delta_S > \varphi$ (независимо от того, какие знаки у величин δ_S и φ — положительные или отрицательные)
4	Находим $\delta_{\scriptscriptstyle S}$	Подставляя значение $h_{\scriptscriptstyle S}$, найденное на этапе 1, в формулу, полученную на этапе 2, находим $\delta_{\scriptscriptstyle S}$
	Определяем день года, в который выполняется условие, указанное в задании	а) Используем справочные таблицы; б) если значение δ_S , найденное на предыдущем этапе, не попадает в диапазон $-23^{\circ}26' \le \delta_S \le +23^{\circ}26'$, то для города, соответствующего Вашему варианту, таких дней не существует; в противном случае таких дней в году должно быть 2 (или 1, если значение δ_S очень близко к $\pm 23^{\circ}26'$)