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Abstract—A comparative study of the total Mott and Bloch correction and the Lindhard−Sørensen correc-
tion in the point nucleus approximation to the Bethe stopping formula is performed for the ranges of a gamma
factor  and the ion nuclear charge number 6 ≤ Z ≤ 114. It is shown that the accurate calculation of
the Mott–Bloch correction based on the Mott exact cross section using a method previously proposed by one
of the authors gives excellent agreement between its values and the values of the Lindhard–Sørensen correc-
tion in the γ and Z ranges under consideration. It is also demonstrated that the results of stopping power cal-
culations obtained by the two above-mentioned rigorous methods provide the best agreement with experi-
mental data in contrast with the results of approximate methods, such as the methods of Ahlen, Jackson–
McCarthy, etc.
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INTRODUCTION
Research on the penetration of heavy ions in a

material and the material stopping power is of great
applied interest in the field of materials and surface
science, radiation medicine and biology, as well as for
medical, nuclear and aerospace engineering (in par-
ticular, in ion-beam therapy, ion implantation, ion
beam-analysis, and ion-beam modification of materi-
als) [1, 2].

Electronic stopping of a point relativistic heavy ion
in solids is described by the relativistic version of the
Bethe formula [3] that is obtained in the first-order
Born approximation. This formula, taking into
account the density effect, reads

or, in units MeV g–1 cm2, it can be rewritten as follows:

(1)

In these equations, x denotes the distance traveled
by a particle; L is the so-called “stopping number” and

 denotes the “Bethe logarithm”;  is the maxi-
mum transferrable energy to an electron of mass m and
classical radius  in a collision with the
particle of velocity ; I is the effective ionization
potential of the absorber atoms; Z is the charge number
of incident nucleus;  describes the density effect cor-
rection of Fermi; and  is the electron density of a
material that is either measured in electrons/g
( ) or in electrons/cm3 ( ),

where  is density of a material in g ,  denotes the
Avogadro number,  and A refer to the atomic num-
ber and weight of the absorber [4, 5].

The above expressions are applicable if ,
where  is the fine-structure constant. If this condi-
tion is not satisfied, the Bloch correction  [6] to
the  and the Mott correction  based on the Mott
exact cross section [7] are also introduced:

with the digamma function ψ and

(2)

Here,  is some energy above which the atomic
electron binding energy may be neglected, and

 are, respectively, the Mott and Born
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expressions for the scattering cross section of electrons
on nuclei. Switching in the expression (2) from inte-
gration over the energy E transferred to an electron to
integration over the center-of-mass scattering angle θ,
we can rewrite (2) in the form

(3)

where  denotes the scattering angle corresponding to
 and Ω is the scattering cross section solid angle.

In the range γ ≲ 10, the stopping power is well-
described by (1) including the stopping number

 with the sum of the above corrections,

(4)
The importance of this total “Mott–Bloch correc-

tion” was shown, in particular, for the interpretation of
the experiment at the GSI/SIS accelerator (γ ~ 2) [8]
and other experiments (e.q. [9–11]).

The Mott correction was first observed experimen-
tally by Tarle and Solarz [12] and later measured with
greater precision by Salamon et al. [13]. It was first cal-
culated by Eby and Morgan [14, 15] by numerical inte-
gration of (2) for several values of Z and . These cal-
culations demonstrated the significance of Mott’s cor-
rection to the Bethe–Bloch formula for incident
nuclei with Z ≥ 20.

Since the expressions (2) and (3) for  are
extremely inconvenient for practical application, the
analytical expressions for  in the second1 and third
order Born approximations were also proposed [15]
based on the relevant approximate McKinley–Fesh-
bach and Johnson–Weber–Mullin results for the
Mott exact cross section [17, 18]. A closed third-order
Born expression for  was also obtained by Ahlen
[19], and several other approximate expressions were
proposed for this correction (see e.g. [20]). The draw-
back of these approximate expressions is their
restricted range of application, roughly estimated by
the relation Z/ , and the essentially uncertain
accuracy. Moreover, the incorrect threshold (in the
limit ) behavior of these expressions precludes
their use for calculating the total ranges of relativistic
heavy ions in matter. Therefore, obtaining convenient
rigorous expressions for corrections to the Bethe loga-
rithm is very important.

In 1996 it was shown that computing the integrals (2),
(3) can be reduced to a summing the fast converging
infinite series whose terms are bilinear in the Mott
partial amplitudes and a question was raised regarding
the choice of an efficient method for numerical sum-

1 This result has been previously obtained by Jackson and
McCurthy [16].
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mation of these series [21]. In the same year, Lindhard
and Sørensen proposed a correction to the Bethe
equation, taking into account a finite size of the pro-
jectile nucleus at ultrarelativistic energies (  ≳ 10) [22]
and their prediction of the finite nuclear size effect was
confirmed at the CERN/SPS accelerator with the
160 GeV/u Pb beam ( ) [23]. As in the previous
period approximate methods for calculating the Mott
correction became widespread (the Jackson–McCurthy,
Ahlen methods and others), the Mott correction
began to be identified with its approximations and an
opinion began to form about the “approximate
nature” of this correction, as well as about replacing
the total Mott–Bloch correction with “more precise”
correction of Lindhard and Sørensen [22, 24, 25].

In this work, we will carry out a numerical investi-
gation which shows that at moderately relativistic
energies (  ≲ 10), when a projectile can be considered
as a point-like particle, the method based on calculat-
ing the Mott-exact cross section and the Lindhard–
Sørensen method give completely coinciding results,
while the results of approximate methods for calculat-
ing the Mott corrections and stopping power differ sig-
nificantly from these results. The outline of this paper
is as follows. We first consider the formulas that used
later in the calculation of the corrections to the Bethe
sopping power (Section 1). Then we present numeri-
cal results for these corrections (Sections 2–4) and the
stopping power (Section 5) based on them. Finally, we
short summarize our findings.

This paper is devoted to the memory of Alexan-
der Tarasov, who owns a decisive contribution to the
work [21].

1. BASIC FORMULAE

The Mott corrections were calculated by us with
the aid of the method [21] and using the approxima-
tions of Jackson and McCurthy (second Born approx-
imation) [16], Morgan and Eby (third-order Born
approximation) [15], Ahlen [19], and Matveev [20].

The second-order Born approximation to the Mott
correction obtained by Jackson and McCurthy [16]
and independently by Morgan and Eby [15], based on
the approximate McKinley–Feshbach results for the
Mott-exact cross section  [17], reads

(5)

From the approximate Johnson–Weber–Mullin
results for the Mott-exact cross section 
[18], Morgan and Eby [15] obtained the following
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closed analytical form for the third-order Born
approximation to the :

(6)

Here  is the Riemann Zeta function.

Ahlen [19] has taken advantage of the  expansion
derived by Curr [26] for the Mott cross section to
obtain an analytical expression for the Mott correc-
tion. The form recommended by Ahlen for  is as
follows:

(7)

The function  is defined by Doggett and
Spencer [27] and is tabulated in [28] for various values
of η.

An another convenient approximate expression for
 (with restriction Z ≤ 92 and γ ≤ 10) is proposed by

Matveev [20]:

(8)

The problem of calculating the Mott correction to
all orders in  was solved by authors of [21] for the
limit →0,

where  was expressed in terms of the rapidly con-
verging series,
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The Lindhard–Sørensen correction was derived by
authors [22] using the exact solution to the Dirac
equation with spherically symmetric potential. For
pointlike nuclei, it can be represented as [24]

(10)

Here,  is the Coulomb phase shifts and  is iden-

tical to the usual Lorentz factor .
The effect of finite nuclear size appears as a modi-

fication to the Coulomb phase shifts  in (11).
If we represent the Bloch correction as a series [22],

(11)

we can write the difference between the Lindhard–
Sørensen and Bloch corrections as follows:

(12)

2. NUMERICAL RESULTS 
FOR THE LINDHARD–SØRENSEN 

AND MOTT–BLOCH CORRECTIONS

The numerical values of the  and  correc-
tions were found by us by the methods [22] and [21]
over the Z and  ranges 6 ≤ Z ≤ 114 and 0.150 ≤  ≤
0.995 using the Wolfram Mathematica computing sys-
tem. These results were also compared with the total
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Fig. 1. Lindhard–Sørensen correction (A) in the point
nucleus approximation and the Mott–Bloch correction
obtained by the VSTT (B), MT (C), and ME (D) methods
over the range 0.15 ≤  ≤ 0.995 for Z = 6 (a), 52 (b), and 92 (c).
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Fig. 2. Dependence of the relative difference  between
the Lindhard–Sørensen and Mott–Bloch corrections on
the upper summation limit N (for Z = 118, β = 0.6).
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Mott–Bloch correction computed in [15] by numeri-
cally integrating the Mott cross section (see Table 1
and Fig. 1).

As can be seen, there is a remarkable agreement
between the Lindhard–Sørensen correction and the
total Mott–Bloch correction obtained by the method
[21]. In both cases, the summation was carried out up
to k = 5000. Since both results are based on the solu-
tion of the Dirac equation in the Coulomb field, this
agreement is explainable2.

For a number of values of Z and β, there are signif-
icant differences in the corrections  and

, which was already noted in [29]. The coinci-
dence of the calculation results for  and 
suggests that these discrepancies are related to the
typos or computational errors in [15].

The dependence of the  correction on the
factor in Fig. 1 exactly corresponds to the same

dependence presented in [22].

3. RELATIVE DIFFERENCE 
BETWEEN THE LINDHARD–SØRENSEN 

AND MOTT–BLOCH CORRECTIONS
We also evaluated the relative difference 

between the Lindhard–Sørensen and Mott–Bloch
corrections,

2 The authors of [21, 22] essentially consider one and the same
integral (4) [21], proportional to the difference of transport cross
sections (8) from [22], which is taken in different ways in these
works. Since this integral is the difference of two diverging inte-
grals, the result depends on the method of its finding. As a
result, the authors of [21] get only the Mott correction, which
must then be summed up with the Bloch correction, while the
authors of [22] immediately get this sum.
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Table 1. Lindhard–Sørensen ( ) correction in the point nucleus approximation and the Mott–Bloch ( ) correc-
tion obtained by the VSTT, MT, and ME methods over the Z and β ranges 6 ≤ Z ≤ 114 and 0.85 ≤  ≤ 0.99

β/Z 6 12 26 36 52

0.85 ΔLLS = 0.059
ΔLMBVSTT = 0.059
ΔLMBMT = 0.061
ΔLMBME = 0.065

ΔLLS = 0.120
ΔLMBVSTT = 0.120
ΔLMBMT = 0.110
ΔLMBME = 0.125

ΔLLS = 0.267
ΔLMBVSTT = 0.267
ΔLMBMT = 0.258
ΔLMBME = 0.269

ΔLLS = 0.377
ΔLMBVSTT = 0.377
ΔLMBMT = 0.380
ΔLMBME = 0.379

ΔLLS = 0.562
ΔLMBVSTT = 0.562
ΔLMBMT = 0.583
ΔLMBME = 0.564

0.90 ΔLLS = 0.063
ΔLMBVSTT = 0.063
ΔLMBMT = 0.065
ΔLMBME= 0.069

ΔLLS = 0.128
ΔLMBVSTT = 0.128
ΔLMBMT = 0.111
ΔLMBME= 0.125

ΔLLS = 0.288
ΔLMBVSTT = 0.288
ΔLMBMT = 0.273
ΔLMBME = 0.293

ΔLLS = 0.411
ΔLMBVSTT = 0.411
ΔLMBMT = 0.409
ΔLMBME= 0.413

ΔLLS = 0.621
ΔLMBVSTT = 0.621
ΔLMBMT = 0.644
ΔLMBME= 0.622

0.95 ΔLLS= 0.067
ΔLMBVSTT = 0.067
ΔLMBMT = 0.067
ΔLMBME = 0.073

ΔLLS = 0.136
ΔLMBVSTT = 0.136
ΔLMBMT = 0.118
ΔLMBME= 0.143

ΔLLS = 0.309
ΔLMBVSTT = 0.309
ΔLMBMT = 0.284
ΔLMBME= 0.313

ΔLLS = 0.443
ΔLMBVSTT = 0.443
ΔLMBMT = 0.434
ΔLMBME = 0.443

ΔLLS = 0.676
ΔLMBVSTT = 0.676
ΔLMBMT = 0.701
ΔLMBME = 0.675

0.97 ΔLLS = 0.068
ΔLMBVSTT = 0.068
ΔLMBME = 0.076

ΔLLS = 0.139
ΔLMBVSTT = 0.139
ΔLMBMT =0.119 
ΔLMBME = 0.146

ΔLLS = 0.317
ΔLMBVSTT = 0.317
ΔLMBMT = 0.288
ΔLMBME = 0.321

ΔLLS = 0.455
ΔLMBVSTT = 0.455
ΔLMBMT = 0.443
ΔLMBME = 0.457

ΔLLS = 0.698
ΔLMBVSTT = 0.698
ΔLMBMT= 0.723
ΔLMBME = 0.705

0.99 ΔLLS = 0.070
ΔLMBVSTT = 0.070
ΔLMBMT = 0.069
ΔLMBME = 0.112

ΔLLS = 0.142
ΔLMBVSTT = 0.142
ΔLMBMT = 0.120
ΔLMBME = 0.185

ΔLLS = 0.325
ΔLMBVSTT = 0.325
ΔLMBMT = 0.291
ΔLMBME = 0.367

ΔLLS = 0.467
ΔLMBVSTT = 0.467
ΔLMBMT = 0.451
ΔLMBME = 0.502

ΔLLS = 0.718
ΔLMBVSTT = 0.718
ΔLMBMT = 0.744
ΔLMBME = 0.752

β/Z 60 80 92 104 114

0.85 ΔLLS = 0.659
ΔLMBVSTT = 0.659
ΔLMBMT = 0.681
ΔLMBME = 0.662

ΔLLS = 0.903
ΔLMBVSTT = 0.903
ΔLMBMT = 0.912
ΔLMBME = 0.914

ΔLLS = 1.040
ΔLMBVSTT = 1.040
ΔLMBMT = 1.039
ΔLMBME = 1.051

ΔLLS = 1.145
ΔLMBVSTT = 1.145
ΔLMBMT = 1.157
ΔLMBME = 1.150

ΔLLS = 1.170
ΔLMBVSTT = 1.170
ΔLMBMT = 1.251
ΔLMBME = 1.17

0.90 ΔLLS = 0.733
ΔLMBVSTT = 0.733
ΔLMBMT = 0.762
ΔLMBME = 0.736

ΔLLS = 1.024
ΔLMBVSTT = 1.024
ΔLMBMT = 1.042
ΔLMBME = 1.033

ΔLLS = 1.196
ΔLMBVSTT = 1.196
ΔLMBMT = 1.199
ΔLMBME = 1.202

ΔLLS = 1.338
ΔLMBVSTT = 1.338
ΔLMBMT = 1.346
ΔLMBME = 1.343

ΔLLS = 1.392
ΔLMBVSTT = 1.392
ΔLMBMT = 1.462
ΔLMBME = 1.392

0.95 ΔLLS = 0.802
ΔLMBVSTT = 0.802
ΔLMBMT = 0.838
ΔLMBME = 0.804

ΔLLS = 1.140
ΔLMBVSTT = 1.140
ΔLMBMT = 1.169
ΔLMBME = 1.148

ΔLLS = 1.345
ΔLMBVSTT = 1.345
ΔLMBMT = 1.354
ΔLMBME = 1.354

ΔLLS = 1.527
ΔLMBVSTT = 1.527
ΔLMBMT = 1.529
ΔLMBME = 1.534

ΔLLS = 1.614
ΔLMBVSTT = 1.614
ΔLMBMT = 1.667
ΔLMBME = 1.613

0.97 ΔLLS = 0.829
ΔLMBVSTT = 0.829
ΔLMBMT = 0.867
ΔLMBME =0.831

ΔLLS = 1.184
ΔLMBVSTT = 1.184
ΔLMBMT = 1.218
ΔLMBME = 1.196

ΔLLS = 1.404
ΔLMBVSTT = 1.404
ΔLMBMT = 1.415
ΔLMBME = 1.419

ΔLLS = 1.601
ΔLMBVSTT = 1.601
ΔLMBMT = 1.600
ΔLMBME = 1.723

ΔLLS = 1.702
ΔLMBVSTT = 1.702
ΔLMBMT = 1.746
ΔLMBME = 1.723

0.99 ΔLLS = 0.855
ΔLMBVSTT = 0.855
ΔLMBMT = 0.896
ΔLMBME = 0.889

ΔLLS = 1.228
ΔLMBVSTT = 1.228
ΔLMBMT = 1.266
ΔLMBME = 1.262

ΔLLS = 1.461
ΔLMBVSTT = 1.461
ΔLMBMT = 1.474
ΔLMBME = 1.506

ΔLLS = 1.675
ΔLMBVSTT = 1.675
ΔLMBMT = 1.671
ΔLMBME = 1.719

ΔLLS = 1.789
ΔLMBVSTT = 1.789
ΔLMBMT = 1.825
ΔLMBME = 1.825

Δ LSL Δ MBL
β



272 KATS et al.

Fig. 3. Dependence of the relative difference between the
Lindhard–Sørensen and Mott–Bloch corrections on the
upper summation limit N (for Z = 118 and β = 0.6).
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Fig. 4. Difference between the Lindhard–Sørensen and
Bloch corrections (A) in the point nucleus approximation
and the Mott correction obtained by the VSTT (B), JM
(C), ME (D), and A (E) methods over the range 0.0500 ≤

 ≤ 0.9999 for Z = 6 (a), 52 (b), and 92 (c).
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as a function of the upper summation limit N. Figure 2
shows that the δΔL value becomes less than 1%
already at N = 100 for Z = 118 and β = 0.6. For smaller
Z, the value of δΔL = 1% is reached even faster. At
N > 600, the relative error when using  is less
than 0.1%.

When we represent this difference as a series using (11),

the modulus of its value becomes less than 0.05%
already at N = 65 (Fig. 3).

4. MOTT’S CORRECTION AND DIFFERENCE 
BETWEEN THE LINDHARD–SØRENSEN 

AND BLOCH CORRECTIONS
We also examined how closely the difference

between the Lindhard–Sørensen and Bloch correc-
tions  coincides with the Mott correction 
calculated by the method [21], which does not use
perturbation theory. In calculating the corrections (12)
and (9), summation to k = 5000 was performed using
the Wolfram Mathematica CAS. Table 2 shows the
results of these calculations for uranium (Z = 92). It
can be seen excellent agreement between the 
and  corrections with an accuracy of 6 signif-
icant digits. Thus,  is close to the exact in Z
correction , and not to its linear approximation
(5) as stated in some references.

Figure 4 shows the values of these corrections, as
well as the Mott correction calculated by the approxi-
mate methods of Jackson and McCurthy ),

Δ MBVSSTL

{
( )}

∞

=
=Δ

++

 + + ξ
 +η


× −

+ +
−

+ 
η


2

MBVSTT 2
0

2 2( ) ( )
M Z 2 2

1 1
1

( 1)

( 1

2
2 1

)
,

k

k k

L
k k

k

F k
kk

F

−Δ LS BL Δ ML

−Δ LS BL
Δ MVSTTL

−Δ LS BL α
Δ ML

Δ MJM( L
PHYSICS OF PARTIC
Morgan and Eby ), and Ahlen ) over the
range 0.0500 ≤  ≤ 0.9999 for a number of elements.

Figure 4a shows that for small Z, all approxima-
tions give a result close to that obtained in [22]. How-

Δ MME3( L Δ MA( L
β
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Table 2. Difference between the Lindhard–Sørensen correction in the point nucleus approximation and the Bloch correc-
tion,  (12), as well as the Mott correction (9) obtained by the VSTT method for Z = 92 over the β range 0.1 ≤ β ≤ 0.9

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0372735 0.139856 0.293763 0.485402 0.703029 0.936563 0.177409 1.418710 1.655487

0.0372735 0.139856 0.293763 0.485402 0.703029 0.936563 0.177409 1.418710 1.655487

−Δ LS BL

−Δ LS BL

Δ MVSTTL
ever, at medium and high values of Z, the method of
Jackson and McCarthy gives very underestimated val-
ues of Mott’s correction (Figs. 4b and 4c). The
method of Morgan and Eby provides the best result for
small Z. However, as can be seen from Fig. 4, this
method gives the incorrect behavior of the Mott cor-
rection at small  values, which is especially noticeable
at medium and high Z values. Equation (6) also pre-
dicts a nonzero value of Mott’s correction when 
tends to zero. Ahlen’s approximation gives a correc-
tion, , that is less than  correction by 8%
at Z = 52 (Fig. 4b) and more than  by 4% at

 and  (Figs. 4c), which is consistent
with the conclusions of [21]; in other words,  has
uncertain accuracy. At low energies, this approxima-
tion leads to non-physical negative values of ,
according to performed calculations. So, for example,
while  for  and

, the corresponding  value is .
Thus, the obtained results confirm the conclusion of
[21] about the incorrect behavior of some approxi-
mate results for Mott’s corrections at β → 0, as well
as about their limited range of applicability and uncer-
tain accuracy.

β

β

Δ MAL −Δ LS BL

−Δ LS BL
= 92Z β = 0.9999

Δ MAL

Δ MAL

−Δ = Δ =MVSTT LS B 0.125079L L = 52Z
β = 0.2 Δ MAL −0.772283
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Fig. 5. Ionization losses of relativistic (β = 0.839) Xe particles
in the Be, C, Al, Cu, and Pb targets (left to right): experimen-
tal (A) and calculated values with the corrections  (B),

 (C),  (D), and  (E).
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5. NUMERICAL RESULTS 
FOR STOPPING POWER

To compare various methods for calculating stop-
ping power between each other and with experiment,
we calculated the quantity  (1)
with the stopping numbers  and ,
where the  means the total Mott–Bloch correction

 (4)3, calculated using formulas (5), (7)–(9), and
the Lindhard–Sørensen correction  (10) (Tables
3.1, 3.2 and Fig. 5).

The results of calculations from [8] in the first-
order Born approximation (third column) and based
on the Mott exact cross section (seventh column),
when they are different from our results, are given in
brackets.

Tables 3.1 and 3.2 show that the results obtained by
the method [21] are close to those obtained in [8] by
integrating the Mott scattering cross section. Since the
calculations by the latter method are much simpler,
this demonstrated the efficiency of using this method
instead of the standard method of integrating the
Mott-exact scattering cross section in the case when
the lower integration limit tends to zero. Table 3 also
demonstrates that the results obtained by the latter
method coincide with the results of calculating the
stopping power by the method of Lindhard and
Sørensen up to the seventh significant digit. It is also
obvious from it that the results obtained by these
three methods [8, 21, 22] and the Matveev method
are consistent with the experimental ones within the
experimental error, whereas the Ahlen and Jackson–
McCarthy methods give understated values in com-
parison with the experiment (see Table 3.1 and Fig. 5).

The results obtained confirm the conclusions
made in [15] that the Bethe formula gives a large
error in the computing the ionization losses by heavy
ions in solids.

SUMMARY AND CONCLUSIONS

• In this work, numerical implementation of the
VSTT method [21] based on the calculation of the
Mott exact cross section is given and the preference for
using this method instead of the standard method of

3 The “Mott–Bloch–Ahlen correction” [24] was calculated
according to [30] to ensure its correct comparison with the
Mott–Bloch correction calculated by other methods.

( ) ( )≡ − ρ S E d E dx
0L = + Δ0L L L

ΔL
Δ MBL

Δ LS L
. 18  No. 3  2021
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Table 3. Electronic stopping power S(E) in MeV cm2 mg–1, calculated without , with the total Mott–Bloch corrections
, , , and , as well as with the Lindhard–Sørensen correction , in comparison with

experimental data from [8]

3.1. Low-Z particles

Projectile Target Experiment

690 MeV/u
(β = 0.819)

Be 0.125035 0.125933 0.126061 0.126004 0.126022 0.126022 0.125 ± 0.002

C 0.137066 0.138077 0.138220 0.138156 0.138178 0.138178 0.138 ± 0.004

Al 0.122963 0.123937 0.124076 0.124014 0.124035 0.124035 0.123 ± 0.004

Pb 0.082791 0.083591 0.083705 0.083655 0.083671 0.083671 0.084 ± 0.002

985 MeV/u
(β = 0.874)

Be 0.573850 0.582735 0.585039 0.583828 0.584732 0.584732 0.578 ± 0.016

C 0.628435
(0.629)

0.638435 0.641029 0.639665 0.640683 0.640683 0.640±0.019

Al 0.568963 0.578608 0.581110 0.579794 0.580776 0.580776 0.584 ± 0.019

Cu 0.494021 0.503157 0.505526 0.504280 0.505210 0.505210 0.494 ± 0.016

Pb 0.386315 0.394237 0.396292 0.395211 0.396018 0.396018 0.389 ± 0.012

3.2. Medium-Z particles

Projectile Target Experiment

900 MeV/u
(β = 0.861)

Be 2.34572 2.40567 2.43801 2.43794 2.43738 
(2.438) 2.43738 2.432 ± 0.037

780 MeV/u
(β = 0.839)

Be 5.48721
(5.812)

5.65418 5.70788 5.82166 5.81012 
(5.812)

5.81012 5.861 ± 0.076

C 6.01291
(6.014)

6.20084 6.26128 6.38934 6.37635
(6.378)

6.37635 6.524 ± 0.084

Al 5.40984
(5.404)

5.59110 5.64940 5.77291 5.76038
(5.755)

5.76038 5.806 ± 0.121

Cu 4.70236
(4.703)

4.87404 4.92926 5.04624 5.03438
(5.036)

5.03438 5.077 ± 0.066

ΔL
Δ MBJML Δ MBAL Δ MBMTL Δ MBVSTTL Δ LS L

0S MBJMS MBAS MBMTS MBVSSTS LSS

18
8O

40
18 Ar

0S MBJMS MBAS MBMTS MBVSSTS LSS

86
36Kr

136
54 Xe
integrating the Mott cross section is demonstrated for
the case when the lower integration limit tends to zero.

• Using the latter result, the Mott correction
 and the total Mott–Bloch corrections were

computed for the ranges of a gamma factor of approx-
imately 1 ≲  ≲ 10 and the ion nuclear charge number
6 ≤ Z ≤ 114.

• The Lindhard–Sørensen corrections in the point
nucleus approximation and also the difference
between the Lindhard–Sørensen and Bloch correc-
tions  were also calculated in the  and Z
ranges under consideration.

• It is shown that the difference between the Lind-
hard–Sørensen and Bloch corrections and the Mott

( )Δ ML

γ

( )−Δ LS BL γ
PHYSICS OF PARTIC
correction obtained by the exact in Z  VSTT method
coincide up to the seventh decimal digit over the range
of approximately 1 ≲  ≲ 15.

• In contrast by the two above-mentioned rigorous
methods, the approximate methods have a very lim-
ited range of applicability and either (i) give a large dif-
ference in the  values (as, for example, the Jack-
son–McCarthy method in the  range about from 1.01
to 15), or (ii) have an incorrect threshold behavior
(e.q. the Morgan–Eby method in the  range from 1
to 2), or (iii) are characterized by an uncertain accu-
racy (for example, Ahlen’s method in the  range
about from 1.01 to 15, which also gives non-physical
negative values at  less than 1.01) for medium- and
high-Z ions. For low-Z ions, these methods give the

α

γ

Δ ML
γ

γ

γ

γ
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 values rather close to those obtained by rigorous
methods.

• Calculation of the total Mott–Bloch correction
( ) by the VSTT methods and the Lindhard–
Sørensen correction  over the  and Z ranges
0.01 ≤  ≤ 10 and 6 ≤ Z ≤ 114 gives excellent agree-
ment. The relative difference between these two cor-
rections is less than 0.1% at the upper summation limit
N > 600.

• We also showed that the results of stopping power
calculations obtained by the LS and VSTT methods
coincide with each other also up to the seventh signif-
icant digit and provide the best agreement with exper-
imental data, while the approximate methods of Ahlen
and Jackson–McCarthy give understated values in
comparison with the experiment for medium-Z parti-
cles (Z = 36, 54).

Thus, we can conclude that at intermediate ener-
gies, when a heavy ion can be considered as a point-
like particle, both methods, the method based on cal-
culating the Mott exact cross section and the Lind-
hard–Sørensen method, can be successfully used in
electronic stopping calculations for relativistic heavy
ions.
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