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Abstract—An intercomparison is carried out for some earlier approaches to the calculation of the normalized
Mott cross section, as well as the approach proposed by the authors of the present work. It is demonstrated
that applying the proposed method, along with the method of Lijian et al., is preferable for relevant calcu-
lations.
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INTRODUCTION
Knowledge of the energy loss of ions in matter,

commonly described as stopping power (the ion mean
energy loss per unit travelled path length), is funda-
mental to many applications dependent on the trans-
port of ions in matter, particularly ion implantation,
ion-beam modification of materials, ion beam-analy-
sis, and ion-beam therapy [1–3].

The electronic stopping power of a material is
described by the Bethe formula (the so-called Bethe’s
stopping power formula) [4, 5]. It is applicable if

, where  is the fine-structure constant. If
this condition is not satisfied, the Bloch corrections

 [6] and the Mott corrections  [7, 8] are also
introduced:

(1)

with the digamma function  and

(2)

Here, Z is the charge number of incident nucleus,
 is the electron density of a material in electrons/g,
 denotes the Avogadro number,  and A refer to

the atomic number and weight of the absorber,  is
some energy above which the atomic electron binding

energy may be neglected,  is the maximum transfer-
rable energy to an electron of mass m and classical
radius r in a collision with the particle of velocity ,
and  are, respectively, the Mott and Born
expressions for the scattering cross section of electrons
on nuclei.

Switching in the expression (2) from integration
over the energy E transferred to an electron to integra-
tion over the center-of-mass scattering angle θ, we can
rewrite (2) in the form

(3)

where  denotes the scattering angle corresponding to
 and Ω is the usual scattering cross section solid

angle.
The Mott correction was first calculated by Eby

and Morgan [9, 10] by numerical integration of (2) for
several values of Z and . These calculations demon-
strated the importance of taking account of Mott’s
correction to the Bethe–Bloch formula for incident
nuclei with Z ≥ 20. Since the expressions (2), (3) for

 are extremely inconvenient for practical applica-
tion, the analytical expressions for  in the second
and third order Born approximations were also pro-
posed in [10]. Significant simplification of computing
the Mott corrections is provided by a method of [11]
that reduces the problem to the numerical summation
of an infinite series.
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This paper presents an adaptation of the approach
[11] to the calculation of the Mott differential cross
section (MDCS) normalized with respect to the Ruth-
erford differential cross section (RDCS), as well as a
comparison of this adopted method with some other
rigorous and approximate methods for relevant calcu-
lations. The communication is organized as follows.
Section 1 considers some preliminaries that used later
in Section 2, i.e. a standard description of the (nor-
malized) MDCS (Section 1.1) and the different
approximations to the normalized Mott cross section
(Section 1.2). Section 2 presents an another exact rep-
resentation for the normalized MDCS (Section 2.1)
and an intercomparison of applying all the mentioned
methods (Section 2.2). Section 3 contains a summary
of our results and conclusions.

1. PRELIMINARIES
1.1. Mott’s Differential Cross Section

In 1911 Rutherford calculated the differential cross
section for scattering of electrons by the Coulomb
potential in the framework of classical mechanics [12],
obtaining the well-known Rutherford formula:

(4)

Within the framework of nonrelativistic quantum
mechanics, a solution to this problem was found inde-
pendently by Gordon [13] and Mott [14] in 1928. Six
months later, a simpler solution was proposed by Tem-
ple [15].

An expression for the scattering cross section of rel-
ativistic electrons through the Coulomb potential
(Eq. (5)) was provided by Mott in 1929–1932 [7, 8].
This expression cannot be given in analytical form and
contains slowly converging infinite series of Legendre
polynomials ( ):

(5)
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with

Here,  and  are two complex func-
tions,

(6)

with

where the functions  and  are as follows:

Hence, the functions  and  may be writ-
ten as

(7)

Formula (5) is also referred to as an exact formula
for the differential cross section, because no Born
approximation of any order is used in its derivation.

The first numerical summation of above series was
performed by Mott himself [8] for scattering of elec-
trons with relative velocity β from 0.1 to 1.0 by gold
nuclei (Z = 79) at 90 degrees. Starting from this work,
in such calculations began to introduce a quantity
equal to the ratio of the MDCS ( ) to the modified
RDCS ( ),

(8)

i.e., the normalized Mott cross section (NMCS). In
[8], the indicated quantity has the form:

(9)

Since the “exact” MDCS (5) and NMCS (9) are
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polynomial series, their application to calculate inte-
grals (2), (3) is a difficult problem. In this regard, the
use of analytical approximations to them and getting
other their representations becomes important.

1.2. Some Approximations 
to the Normalized Mott Differential Cross Section
One way to obtain such approximations is to

expand the exact NMCS in terms of power series in
. We will present below such results for the above

function .
The first such expansion was obtained by the author

of the exact solution to the scattering problem [8]:

(10)

Further approximations were obtained by McKinley
and Feshbach,

(11)

as well as Johnson, Weber, and Mullin [16, 17],

(12)

where  denotes Euler’s dilogarithm defined by

Another approach was proposed by Lijian, Qing,
and Zhengming [18], where the exact NMCS is
approximated by the following expression:

(13)

The authors calculated 30 coefficients  for
90 elements of the Periodic System with target atomic
number Z from 1 to 90 in a wide range of energy.
Investigations in this direction were continued by
Boschini, Consolandi, Gervasi et al. in the work [19],
where the coefficients  were obtained for
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118 elements of the Periodic Table of Elements both
for electrons and positrons.

2. RESULTS AND DISCUSSIONS
2.1. Another Representation 

for the Normalized Mott Cross Section
In [11] we got the following representation for the

exact Mott differential cross section:

(14)

This representation reduces computing the inte-
grals (2), (3) to a summing the fast converging infinite
series whose terms are bilinear in the Mott partial
amplitudes and can be simply implemented using the
numerical summation methods of converging series
for a given level of precision.

It leads to the following exact expression for the
normalized Mott cross section:

(15)

Taking into account (6), (7), we can rewrite  in
terms of functions  and ,

Our calculations show that elimination from (5) of
the slowest converging function  provides a con-
vergence of these series comparable to that obtained by
the so-called “reduction method” [20].
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Table 1. Comparison of the R(θ) values obtained by different methods for the scattering of electrons with an energy of
10 МeV on nuclei of charge number Z = 47

15 30 45 60 75 90 105 120 135 150 165 180

RM 1.116 1.215 1.256 1.225 1.122 0.958 0.753 0.533 0.324 0.154 0.042 0.0032
RKHV 1.116 1.215 1.256 1.225 1.122 0.958 0.753 0.533 0.324 0.154 0.042 0.0032
RLQZ 1.118 1.214 1.255 1.225 1.123 0.959 0.753 0.532 0.323 0.153 0.043 0.0041
RJWM 1.143 1.228 1.240 1.171 1.042 0.867 0.667 0.463 0.278 0.131 0.036 0.0028
RMF 1.105 1.140 1.108 1.020 0.887 0.724 0.549 0.377 0.224 0.105 0.029 0.0024
RB 0.983 0.933 0.854 0.751 0.630 0.501 0.372 0.252 0.148 0.069 0.019 0.0024

θR
2.2. Comparison of Methods
In this section we present the results of calculating

the normalized Mott cross section R(θ) by the above
methods using the Wolfram Mathematica computer
algebra system. The expression (9) was calculated by
the “method of reduced series” [20] that can be repre-
sented in the following way.

Let us represent a function f ( ) by

(16)

Then the mth ‘reduced’ series is defined as

(17)

Using the recurrence relations for Legendre poly-
nomials, we find:

(18)

For large l, it turns out that

(19)

so that after a few reductions the series converges quite
rapidly.

Table 1 lists the results of calculations performed
and shows an excellent agreement between the results
obtained from Eqs. (15) and (9) as well as an increas-
ing deviation from these results in the transition from
(13) to (10). This allows us to carry out further com-
parison with respect to the results obtained on the
basis of (15).

Figure 1 compares the results obtained on the basis
of Eqs. (10)–(13), (15) for scattering of electrons with
energies of 0.005, 1, and 10 МeV on nuclei of charge
number Z = 13, 47, and 92.

From this Figure it can be seen that the results of
Lijian et al. and Boschini et al. [18, 19] obtained from
Eq. (13) significantly differ from the exact ones only in
the area of low energies and high charge numbers (e.g.
for Z = 92, 0.005 MeV). In other cases, they are close
to rigorous results. For light elements, all approxima-
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tions give fairly accurate results. For elements with
moderately high values of Z at medium and high ener-
gies, the approximation (12) gives higher accuracy
than (11) and (10). For heavy elements, the approxi-
mate methods based on Eqs. (10)–(12) are not appli-
cable.

Additionally we evaluated relative difference
between the ratios  and  obtained by the
methods of works [18, 19] and [11] as a function of the
scattering angle for electrons with energies from 0.005
to 10 МeV on nuclei with charge number from 13 to 92
(Fig. 2):

Figure 2 shows that at low energies (e.g.
0.005 MeV), the maximum value of the relative differ-
ence modulus  increases from 0.04 to 16
percent in the transition from nucleus charge number
Z = 13 to Z = 92. From Fig. 2 also follows that at
medium energies (1 MeV), this value varies between
0.07–3.5 percent for nucleus with a Z value of 13 to 92.
At high energies1 (e.g. 10 MeV), the approximation
(13) differs significantly (up to 70 percent) from the
exact expression (15) only in the range of scattering
angles from 160 to 180 deg, where the values of the
ratios  and  are very small, while over the θ
range from 0 to 150 deg, where the relative difference
between  and  is almost zero.

3. SUMMARY AND CONCLUSIONS
▪ In the present work, an new exact representation

for the normalized MDCS is proposed that reduces
the calculation of the NMCS in terms of the Mott
series  and  to its calculation in terms of

 alone, exсluding the most slowly converging
series in the NMCS computation.

▪ Numerical results are obtained on the basis of the
obtained formula and the following exact and approx-

1 At energies higher than 10 MeV, the results are very close to those
of 10 MeV, according to [18], since β in this case is close to 1.
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Fig. 1. (Color online) Cross section ratio, R(θ), as function of scattering angle obtained from Eqs. 15 (A), 13 (B), 12 (C), 11 (D),
10 (E) for scattering of electrons with energies of 0.005, 1, and 10 МeV on nuclei of charge number Z equal to 13, 47, and 92.
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imate expressions for the normalized Mott cross sec-
tion: (i) the conventional Mott-exact ‘phase-shift’ for-
mula (point-charge nucleus, no screening) [8], (ii) the
approximate Lijian–Qing–Zhengming expression
[18], (iii) the Johnson–Weber–Mullin formula [17],
(iv) the McKinley–Feshbach expression [16], and (v)
the Mott–Born result [8].

▪ An intercomparison of the obtained numerical
results is presented in the range of nucleus charge
number from Z = 13 to Z = 92 for electron energies
from 0.005 MeV to 10 МeV and scattering angles over
the range of 0–180 deg.

• It is shown that while all the approaches dis-
cussed give sufficiently accurate results for low-Z
nuclei in the entire range of energies, the approximate
Mott–Born, McKinley–Feshbach, and Johnson–
PHYSICS OF PARTICLES AND NUCLEI LETTERS  Vol
Weber–Mullin methods are not applicable for high-Z
nuclei at the same energies.

• The approximate Lijian–Qing–Zhengming
approach gives fairly accurate results in the entire
range of charge numbers and electron energies, except
for the area of low energies and high charge numbers.

• The results of the rigorous methods considered
are remarkably consistent.

• The accuracy was estimated, and the range of
applicability was established for the Lijian–Qing–
Zhengming method, which gives the best approxima-
tion to rigorous results.

• We managed to show that for Z < 90, this method
can be applied with an error of less than 1%, in accor-
dance with [18], but only over the θ range from 0 to
150 deg at high energies.
. 18  No. 3  2021
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Fig. 2. Relative difference between the ratios  and  obtained from Eqs. (13) and (15) as function of scattering angle

(in degrees) for electrons with energies of 0.005, 1, and 10 МeV scattered on nuclei of charge number Z = 13, 47, and 92.
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• In the case of Z ≥ 90, the specified method can
also be applied with the same error, however also only
in the θ range of 0–150 deg for high and medium
energies.

• Outside of the specified ranges, the error can
increase up to 16 percent (for Z = 92, 0.005 MeV) and
even up to 70% (for Z = 92, 10 MeV, and θ = 180 deg).

▪ Thus, we can conclude that both the rigorous
approach suggested in this work and the approximate
Lijian–Qing–Zhengming approach can be recom-
mended for practical calculations of the normalized
Mott cross section R(θ).

• Although the second method has somewhat lim-
ited accuracy, its advantage compared to first method
is the ability to perform integration with a given lower
integration limit.
PHYSICS OF PARTIC
• The advantage of the first method over the sec-
ond one is its greater accuracy, as well as the possibility
of its use beyond the applicability of the approximate
method by Lijian, Qing, and Zhengming.

• Therefore, each of these approaches is preferred
in its application area for relevant calculations of the
NMCS.
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