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УДК 539.12:530.145 

V.A. Pletyukhov 
 
ON THE CONJOINT DESCRIPTION MASSIVE  
AND MASSLESS SPIN 0 AND 1 FIELDS  
 
In this work consideration is given to massless and massive gauge-invariant spin 0 and spin 1 fields 

(particles) within the scope of a theory of the generalized relativistic wave equations with an extended set of the 
Lorentz group representations. The results obtained may be useful as regards the application of a relativistic 
wave-equation theory in modern field models.   
 

1. Introduction 
One of the most extensively used ways to describe fundamental particles and fields is 

still a theory of relativistic wave equations (RWE), the foundations of which have been laid 
by Dirac [1], Fierz and Pauli [2; 3], Bhabha [4; 5], Harish-Chandra [6; 7], Gel’fand and Yag-
lom [8], Fedorov [9; 10]. This theory has been advanced proceeding from the assumption that 
a relativistic-invariant description of both massive and massless particles (fields) may always 
be reduced to a system of the first-order differential equations with constant factors, in the 
matrix form being given as follows:  
    0 0 1x     

 
 

     4  (1) 

Here  x  is multicomponent wave function transformed in terms of some reducible Lorentz 

group representation T ,   and 0  are square matrices.  

In the case when the matrix 0  is nonsingular  0det 0  , equation (1) describing a 

massive particle may be reduced to the following form by multiplication into 1
0m   :  

     0mI x       (2) 

where  is a parameter associated with mass, m I  is unity matrix.  
A choice of the matrices   in equations (1) and (2) is limited by the following re-

quirements (e.g., see [8; 9]):  
  i) invariance of the equation with respect to the transformations of its own Lorentz group;  
 ii) invariance with respect to reflections;  
iii) possibility for derivation of the equation from the variational principle.  

Equations of the form (2) meeting requirements i)–iii) are known as relativistic wave 
equations (RWE); equations of the form (1) with the same requirements are known as gener-
alized RWE [9].  

From requirement i) and from the condition of theory’s irreducibility with respect to 
the Lorentz group it follows that the function   must be transformed by some set of linking 
irreducible Lorentz-group representations, forming what is known as a scheme for linking. 
The representations  and  1 2l l �  1 2l l   �  are referred to as linking if 

1 1
1 21 22 2l ll l         

Aside from a choice of the wave function  , in definition of different spin and mass 

states possible for the particle described by equations (1) and (2) the matrices 4  and 0  are 

of particular importance. Properties of the matrix 4  are discussed comprehensively in [8]. 
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A structure of the matrix 0  is determined in [5; 9]. Specifically, requirement i) results in re-

ducibility of 0  to the diagonal form, the matrix being composed of independent scalar blocks 

corresponding to the irreducible representations of  . For 0det 0   some of these blocks are 

zero. As follows from requirement ii), nonzero elements a  of the matrix 0  satisfy the rela-

tion  
 a a  (3)   
where   is representation conjugate to   with respect to the spatial reflection, i.e., if 

, we have . In case of the finite-dimensional representations requirement 

iii) also leads to the relation of (3).  

 2 � 1l l  2l l 1 �

A distinctive feature of most well-known RWE of the form (2) (Dirac equation for 
spin 1

2 , Duffin-Kemmer equations for spins 0 and 1, Fierz-Pauli equation for spin 3
2 )  is the 

fact that they involve a set of the Lorentz group representations minimally necessary for fram-
ing of a theory of this spin.  

Such an approach in the case of 0det 0   results in equations for zero-mass particles 

(e.g., Maxwell equations). Because of this, selection of 0t 0de    (also including 0 0)   in a 

theory of RWE is associated with a description of massless particles [9; 11].  
It is known that, as distinct from the description of massive particles, in a theory of 

massless particle with integer spin some of the wave-function components are unobservable 
(potentials) and others - observable (intensities). In consequence, for the potentials one can 
define the gauge transformations and impose additional requirements excluding «superflu-
ous» components of  . But for the description of massive particles by RWE reducible to the 
form given by (2), the above-mentioned differentiation of the wave-function components is 
not the case. In other words, the notion of the gauge invariance of RWE (1) in the sense indi-
cated previously is usually used for massless theories.  

At the same time, there are papers, where so-called massive gauge-invariant 
theories are considered taking other approaches. Illustrative examples are furnished by 
Stückelberg’s approach to the description of a massive spin 1 particle (see [12] and ref-

erences herein) and by a -theory [13–16] claiming for the description of string 

interactions in 4-dimensional space and suggesting a mechanism (differing from Higgs’s) of 
the mass generation due to gauge-invariant mixing of electromagnetic and massless vector 
fields with zero helicity. In the literature this field is called the Kalb-Ramond field [15;16] 
and the notoph [17]. Because of this, one should clear the question concerning the status of 
massive gauge-invariant fields in the theory of RWE.  

B̂ F ˆ

Another feature of well-known RWE is the fact that on going from equation of the 
form (2) for a massive spin  particle to its massless analog of the form (1), by making the 
substitution 

S

0 00 detmI     , not all of the helicity values from S  to  are retained, a 

part of them is lost. This is the case when passing from the Duffin-Kemmer equation for spin 
1 to Maxwell equations with the dropped-out zero helicity. In some modern models there is a 
necessity for simultaneous description of different massless fields [18]. Within the scope of a 
theory of RWE, it seems possible to solve this problem by the development of a scheme for 
passage from (2) to (1) RWE with the singular matrix 

S

0  retaining not only maximal but also 

intermediate helicity values.  
By authors’ opinion, solution of the stated problems is important considering a possi-
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bility of using the well-developed apparatus of a theory based on RWE in modern theoretical 
field models including the phenomenological description of strings and superstrings in a space 
of the dimension .  4d 

 
2. Gauge-invariant theories for massive spin 0 and 1 particles 
Let us consider the following set of the Lorentz group irreducible representations in a 

space of the wave function   

      1 1
0 0 0 1 1 0

2 2
        
 

  (4) 

 
The most general form of the corresponding (4) tensor system of the first-order equa-

tions meeting the requirements i) – iii) is given by    
 0 0a        (5) 

 0 0b               (6) 

 0c        
 
 
       (7) 

 
Here 0  is scalar,   is vector,   is antisymmetric second-rank tensor;    are arbitrary 

dimensionless, generally speaking, complex parameters, and a b c   are real nonnegative pa-
rameters, the dimension of which on selection of 1c   is coincident with that of mass 
(massive parameters). Writing system (4) in the matrix form (1), we obtain in the basis  
 0 column     

 
 

     (8) 

for the matrix 0  the following expression:  

 0 4

6

a

bI

cI



 
 
 


 
 
 


   (9) 

(Matrices of the form   are not given as they are of no use for us in further consideration.)  

In the general case, when none of the parameters in (4) is zero, this system describes a 
particle with a set of spins 0, 1 and with two masses  

 1 2

ab bc
m m

 
     (10) 

the mass  being associated with spin 0 and  with spin 1. Omitting cumbersome calcula-

tions, we will verify this during analysis of special cases.  
1m 2m

Imposing on the parameters of system (4) the requirement  

 
a c

 
   (11) 

we obtain RWE for a particle with spins 0, 1 and one mass 1m m m2  . At 0 

2m

 system (4) 

goes to the Duffin-Kemmer equation of a particle with spin 1 and mass     m 

 0b         (12) 

 0c        
 
 
       (13) 
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Finally, by setting in (4) 0  , we arrive at the Duffin-Kemmer equation for a parti-

cle with spin 0 and mass :    1m m
 0 0a        (14) 

 0 0b        (15) 

 
Now we consider the case that is of great interest for us, when the parameters a b c   

determining a structure of the matrix 0  in (9) are selectively set to zero.  

In system (4) setting  
 0a    (16) 
we have the following system of equations:    
 0     (17) 

 0 0b               (18) 

 0c        
 
 
       (19) 

 
that, being written in the matrix form of (1), corresponds in basis (8) to the singular matrix 0   

 0 4

6

0

bI

cI



 
 



 
 
 



   (20) 

From system (16) one can easily derive the second-order equations  
 0 0 �  (21) 

 02 2 0
c bc

  
  
 



   �   (22) 

 
As regards the scalar function 0  governed by equation (21), the following aspects 

must be taken into account. System (16) is invariant with respect to the gauge transformations  

 0 0

1

b  
1   

        (23) 

where the gauge function  is limited by the constraint  
 0  �  (24) 
From comparison between (24) and (21) it follows that the function 0  acts as a gauge func-

tion and hence provides no description for a physical field. In other words, gauge transforma-
tions (23) and (24) make it possible to impose an additional condition  
 0 0    (25) 

In this case system (16) is transformed to system (11) describing a massive spin 1 particle, 
whereas equation (22), considered simultaneously with (17), goes to an ordinary Proca equa-
tion. In this way the gauge invariance of system (16), as compared to (4), leads to a decrease 
in physical degrees of freedom from four to three, exclusive of the spin 0 state.  

Note that a similar result may be obtained without the explicit use of the considera-
tions associated with the gauge invariance. By the introduction of  
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 0b  
 



     (26) 

system (16) may be directly reduced to the form    
 0b         (27) 

 0c        
 
 
      (28) 

 
coincident with (11).  

This variant of a gauge-invariant theory is known [12] as a Stueckelberg approach to 
the description of a massive spin 1 particle. We have considered this variant for a complete 
study of the possibilities given by system (4).  

In (4) we set  
 0c    (29) 
Then the initial system of equations (4) takes the form    
 0 0a        (30) 

 0 0b               (31) 

 0          (32) 

 

According to (10), it should describe a particle with the mass 1
abm   and with spin 

0. By convolution of equation (31) with the operator   we have  

 0 0
b

  
  �   (33) 

Comparing (33) with (30), we arrive at the equation  

 0 02 0
ab 


  �  (34) 

that provides support for all the afore-said.  
The states associated with spin 1, for the condition set by (29), disappear due to the 

invariance of system (29) with respect to the gauge transformations  

 
1

b

1
         

          (35) 

where an arbitrary choice of the gauge function   is constrained by  

 0               (36) 

On the other hand, as follows from equations (31), (32), a similar equation  
 0             (37) 

is satisfied by the tensor  . Consequently, a choice of   is arbitrary enough to impose an 

additional constraint  
 0    (38) 

that is in accord with (37). In this case system (29) takes the form of (14), i.e. it actually de-
scribes a massive spin 0 particle.  

Note also that system (29) may be reduced to the form    
 0 0a        (39) 
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 0 0b       (40) 

 
similar to (14) by introduction of the vector  

 
b  


 


     (41) 

 
Thus, the considered variant of a massive gauge-invariant theory is some kind of an 

analog for the Stückelberg approach but applicable to the description of a spin 0 particle. 
The authors have not found any mentioning of such a description in the literature available.  

In the formalism of RWE (1) this theory is consistent with the matrix 0  of the form  

 0 4

60

a

bI

 
 



 
 
 



   (42) 

 
Next we consider a set of the Lorentz group representations  

    1 1 1 1
0 1 1 0

2 2 2 2


            
   

  (43) 

where the representation  1 1
2 2


 conforms to the pseudovector or to the absolutely antisym-

metric third-rank tensor. The most general form of a tensor system of the first-order equations 
based on representation (43) and meeting the above-mentioned requirements i)–iii) is given 
by    
 0a         (44) 

 0b          (45) 

  (46) 0c             
 
 
       

 
Here 1 1

2 6                is the Levi-Civita tensor ( 1234 )i   ,   

is antisymmetric third-rank tensor,    are still arbitrary dimensionless, generally speaking, 
complex parameters, a b c   are mass parameters.  

Writing system (43) in the form (1), where   



    


 is column, for the ma-

trix 0  we get the expression  

 
4

0 4

6

aI

bI

cI



 
 



 
 
 



   (47) 

 
Now we elaborate on massive gauge-invariant theories obtainable from (43) by ma-

nipulations with the parameters .  a b c 
Let us take the case  

 0a    (48) 
In this case we have a system of equations    
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 0     (49) 

 0b          (50) 

  (51) 0c             
 
 
      

 
that, when formulated as (1), is associated with the singular matrix 0   

 
4

0 4

6

0

bI

cI



 
 



 
 
 



   (52) 

 
From (48) we can obtain the second-order equations  

 
2

( )
bc




0  
 

�  (53) 

 0     (54) 

 0        �  (55) 

 
Equations (53) and (54) denote that system (48) involves the description of a massive spin 1 
particle. As shown by equation (55), system (48) describes also a massless field with the po-
tential  . The latter allows for involvement of the gauge transformation  

         (56) 

(  is arbitrary function), with respect to which system (48) and equation (55) are invariant. 
The indicated invariance means that this massless field is a Maxwell-type field with helicity 


1 .  
In this manner the gauge-invariant system (48) irreducible with respect to the Lorentz 

group offers a simultaneous description of a massive spin 1 particle and of a massless field 
with helicity . In other words, here we deal with a massive-massless gauge-invariant theory 
rather than massive theory, as is the case for (16) and (29).  

1

A similar result may be obtained if we set in (48)  
 0b    (57) 
Then we have  

 
4

0 4

6

0

aI

cI



 
 



 
 
 



   (58) 

and the second-order equations following from the corresponding first-order system    
 0a         (59) 

 0     (60) 

  (61) 0c             
 
 
      

 
are of the form  

 
2( )

ac



0  �  (62) 
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 0     (63) 

 0        �  (64) 

 
Equation (64) and system (58) are invariant with respect to the gauge transformations  
         (65) 

Thus, here we deal again with a gauge-invariant massive-massless spin 1 theory.  
Let us consider another set of representations  

      1 1
0 0 0 1 1 0

2 2


         

 
  (66) 

where  is associated with the absolutely antisymmetric fourth-rank tensor  0 0
  . 

The most general tensor formulation of RWE based on the set of representations given in (66) 
takes the form    
   0a       



 (67) 

  (68)   0b            

 0c         (69) 

 
where the following notation is used:  
                     (70) 

                        (71) 

 
 

After introduction into system (66) of the dual conjugates      and pseudoscalar 
1

0 4      instead of the tensors       , it is conveniently rewritten to give    

 0 0a         (72) 

 0 0b               (73) 

   0c               (74) 

 
As seen from the comparison between (72) and (4), these systems are dual in that one may be 
derived from the other by the substitutions  
 0 0                 (75) 

 
Clearly, the use of system (72) with the aim of framing various gauge-invariant theo-

ries on its basis follows the same procedure and gives the same results as with system (4). 
So, when in (72) we set , a gauge-invariant theory for a pseudoscalar particle of the 

mass 

0a 
bc
  is put forward. But setting 0c  , we arrive at a gauge-invariant theory for a pseu-

doscalar particle of the mass ab
 .  

 
3. Simultaneous description of massless fields 
Returning to a set of representations (4) and to tensor system (4), we consider the case  
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 0b    (76) 
The following system is obtained:    
 0 0a        (77) 

 0 0            (78) 

 0c        
 
 
      (79) 

 
that in basis (8) is associated with the matrix 0  of the form  

 0 4

4

0

a

cI



 
 



 
 
 



   (80) 

From system (76) we get d’Alembert equation (21) for the scalar function 0  and the second-

order equation  

 
2

21
c

a
  


0 



 
     
 
 

 (81) 

for the vector  . From this it is inferred that we deal with a massless field. When consider-

ing the quantities 0  and   as potentials of this field, we treat equation (79) as a definition 

of the intensity   in terms of the potentials, (77) is additional constraint similar to the 

Feynman gauge. Then equation (78) acts as an equation of motion.  
With this treatment, system (76) and equation (81) is invariant with respect to the 

gauge transformation  
         (82) 

where an arbitrary choice of  is constrained by (24). Gauge transformations (82) and (24) in 
combination with an additional requirement (77) indicate that, among the four components of 
the potential 



 , only two components are independent. They describe a transverse compo-

nent of the field under study. One more, longitudinal, component of this field is described by 
the scalar function 0 . In this way a choice of (76) in system (4) leads to a theory of a mass-

less filed with three helicity values 1 0    This is one of the distinguishing features of system 
(4) as opposed to a theory of Duffin–Kemmer for spin 1, that on a similar passage to the limit 
results in a massless field with helicities 1    

Also, note that equation (81) with due regard for (77) may be rewritten as  

 
2

021
c a

a







 
0      

 
 

�  (83) 

from whence it follows that a gradient of the scalar component acts as an (internal) source of 
the transverse component of this massless field.  

Next we select the case when in system (4)  
 0a b 0     (84) 
The resultant system    
 0     (85) 
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 0 0            (86) 

 0c        
 
 
      (87) 

 
is distinguished from system (76) by the potential gauge requirement (compare (77) with 
(85)). In this case the matrix 0  is of the form  

 0 4

6

0

0

cI



 
 



 
 
 



   (88) 

From (84) one can obtain equation (21) for the function 0  and the second-order equation  

 02 0
c

 
 




  �  (89) 

for  that, similar to system (84), is invariant with respect to gauge transformations (82), 

(24). All this indicates that we deal again with two interrelated massless fields: vector field 
with helicity  and scalar field with helicity , the gradient of a scalar field acting as a 
source of the vector field.  

1 0

The other two massless analogs of system (4), when  
 0a c 0    (90) 
and  
 0b c 0   

b

 (91) 
are associated with the description of a massless field of zero helicity. Establishing this fact, 
we will not concern ourselves with the details.  

Considering the possibility for simultaneous description of different massless fields, 
we next analyze a set of the representations in (43) and the first-order system of (43).  

First, we take the case  
 0c a     (92) 
In this case system (43) is of the form    
 0a         (93) 

 0a          (94) 

  (95) 0             
 
 
      

 
and the matrix 0  (47) is transformed to the matrix  

 8
0

6

aI

O


 


 
 





   (96) 

In (92) we take components of the tensor   as potentials, assuming the vector   and the 

pseudovector   as intensities. Then equations (93) and (94) are the intensity definitions in 

terms of the potentials and (95) acts as an equation of motion.  
From system (92) we derive the second-order equation for the tensor-potential    

 0  �  (97) 

Equations (92) and (97) are invariant with respect to the gauge transformations  
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               (98) 

where an arbitrary choice of the functions   is constrained by  

 0         �  (99) 

Equation (97) and gauge transformations (98) and (99) indicate that a choice of (92) leads to a 
theory for a massless particle of zero helicity carrying spin 1 in the process of interactions.  

By the present time, two approaches to the description of such a particle have been 
known: (1) Ogievetsky and Polubarinov approach [17] in which an intensity is represented by 
the vector (in [17] this particle is called the notoph) and (2) Kalb-Ramond approach [13], 
where an intensity is represented by the antisymmetric third-rank tensor or pseudovector 
(Kalb-Ramond field). System (92) combines the description of both fields in one irreducible 
RWE.  

In a sense this pattern may be complemented if in (43) we set  
 0a b 0     (100) 
As a result, we have the following system:    
 0     (101) 

 0     (102) 

  (103) 0c             
 
 
      

 
that is associated with the matrix 0  of the form  

 8
0

6

O

cI


 


 
 





   (104) 

In system (100) the components   and   are naturally considered as potentials, and   

is taken as an intensity. Then it is invariant with the gauge transformations  
                (105) 

where an arbitrary choice of the gauge functions    is constrained by  

  (106) 0         
 
 
        

In other words, at 1    system (100) represents the well-known two-potential formula-
tion from electrodynamics (e.g., see [19]) for a massless spin 1 field with helicity 1.  
Thus, a reciprocal complementarity of the theories based on systems (92) and (100) is exhib-
ited in their mathematical structure, including that of the matrix 0 , and also in interpretations 

of the field components  ,  ,   as well as in properties (helicity) of the particles de-

scribed.  
Of particular interest is the case when in (43) we set  

 0a c 0     (107) 
This results in the system    
 0     (108) 

 0b          (109) 

  (110) 0             
 
 
     

 
and leads to the matrix  
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4

0 4

6

O

bI

O



 
 



 
 
 



   (111) 

For convenience, we rewrite (107) in the following form:    
 0     (112) 

  (113) 0b           
 
 
       

   0                  (114) 

 
where   is antisymmetric third-rank tensor dual with respect to the pseudovector  .  

According to the structure of system (111),   and   are potentials,   is inten-

sity. Then equation (113) is a definition of the intensity, and (112) acts as an additional con-
straint imposed on the tensor-potential   and included originally in the system itself. 

This constraint leaves for tensor   satisfying the second-order equation  

 
2

2 0
b

    


  










    �  (115) 

two independent components. As this takes place, system (111) is invariant with respect to 
relative gauge transformations (98), (99). Due to an arbitrary choice of the gauge function   

constraining by condition (99) we have only one independent component for   that is asso-

ciated with the state of a massless field with zero helicity.  
To elucidate a meaning of the term         in (115), we turn to the potential  . 

Apart from transformations (98), (99), system (111) is also invariant with respect to the gauge 
transformation  
         (116) 

where   is arbitrary function . From equation (114) for   we derive the second-order equation  

 0        �  (117) 

in combination with (99) indicating that the potential   gives description for the transverse 

component (helicity ) of the massless field under study. The expression  1
 F          (118) 

in equations (114) and (115) may be considered as an intensity associated with this transverse 
component. Then equation (114) rewritten with regard to the notation of (118) as  
 0F          (119) 

acts as an equation of motion in system (111).  
Thus, a choice (107) of mass parameters in the initial system (43) leads to a theory of 

the generalized massless field with polarizations 0,  1.  
Selection of the parameters  

 0b c 0     (120) 
in system (43) also results in a theory of the generalized massless field with helicities 0,  1 fea-
turing a dual conjugate of that obtainable in the case of (107). Details are beyond the scope of this 
paper.  
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4. Mass generation and rwe theory 
In 1974 in the works [13; 14] a mechanism of mass generation was proposed differing 

from the well-known Higgs mechanism. Later this mechanism has been identified as a gauge-
invariant field mixing. It’s essence is as follows. Two massless systems of equations are con-
sidered cooperatively as initial systems    
 0     (121) 

 0             (122) 

 
and    
 0     (123) 

 0                  (124) 

 
the first system describing an electromagnetic field and the second one describing field of 
Kalb-Ramond. In (123) and (124) tensor   is considered to be an intensity. Then into the 

Lagrangian of this system an additional term is included  
 intL m       (125) 

without violation of the gauge-invariance for the initial Lagrangian . This term may be 

formally treated as an interaction of the fields under study (so-called topological interaction). 
Varying the Lagrangian  and introducing the pseudovector 

0L

0 intL L L  1
3      , we 

have a system    
 0m        (126) 

 0m             (127) 

 0        (128) 

 0             (129) 

 
where  

 
1

2      


  (130) 

Now in system (125) we replace   and   by the quantities G  and G  using the formu-

lae    

 
1

G
m       (131) 

 
1

G
m      (132) 

 
Finally, system (125) is reduced to the following form:    
 0m        (133) 

 0m             (134) 

 0G     (135) 

 0G G         (136) 



Вучоныя запіскі      2014 • Вып. 10 
 Ч. 2 • Прыродазнаўчыя навукі 

 
 

 27

As seen, system (133) is reducible with respect to the Lorentz group into subsystems 
(133), (134) and (135), (136). The first of them describing a massive spin 1 particle is inter-
preted in [13] as an interaction transporter between open strings. Subsystem (135), (136) 
gives no description for a physical field, as it is associated with zero energy density. However, 
its presence is necessary to impart to the latter the status of a gauge-invariant theory.  

Using the formalism of generalized RWE, all the above may be interpreted as follows. 
Let us consider a set of representations  

 
1 1 1 1

2(1 0) 2(0 1)
2 2 2 2


            
   

  (137) 

associated with tensor system (4), (123).  
It is obvious that on the basis of (137) one can derive RWE (1) with the matrices  

 

4

6
0

6

4

DK

DK

O

I

O

I







 



 
 
               
 
 
 

   
   (138) 

where DK
  are 10-dimensional Duffin-Kemmer matrices. Introduction into the Lagrangian of 

a topological term (125) results in the changed form of the matrices   leaving the matrix 0  

unaltered. Substitutions of (130) are equivalent to the unitary transformation restoring the 
form of   matrix given in (138). As this is the case, the matrix 0  takes the form  

 10
0

10

mI

O


 


 
 





   (139) 

 
In this way we actually arrive at RWE reducible to the ordinary Duffin-Kemmer equa-

tion for a massive spin 1 particle and at the massless fermionic limit of this equation. Nontriv-
ial nature of the mass generation method, from the viewpoint of a theory of RWE, consists in 
the fact that on passage from the initial massless field(s) to the massive one neither the form 
of   matrices nor the rank of singular 0  matrix is affected, the procedure being reduced to 

permutation of zero and unity blocks of this matrix only. In the process the number of degrees 
of freedom (that is equal to three) for a field system is invariable; it seems as if the notoph 
passes its degree of freedom to the photon, that automatically leads to a massive spin 1 parti-
cle.  

 
5. Discussion and conclusions 
Based on the examples considered, the following important conclusions can be drawn.  
Conclusion 1. Generalized RWE (1) with the singular matrix  0   can describe not 

only massless but also massive fields (particles). Featuring the gauge invariance, these equa-
tions just form the class of massive gauge-invariant theories.  

As demonstrated in Sec. II using equations (48) and (58) as an example, a theory of 
generalized RWE suggests also a variant of the generalized description for massive and mass-
less fields based on RWE irreducible with respect to the Lorentz group. Thus, we arrive at the 
following conclusion.  

Conclusion 2.  RWE of the form (1) with the singular matrix  0  can describe the 



Вучоныя запіскі      2014 • Вып. 10 
 Ч. 2 • Прыродазнаўчыя навукі 

 
 

 28

fields involving both massive and massless components. In this case it is more correct to refer 
to massive-massless gauge-invariant theories rather than to the massive ones.   

As demonstrated in Sec. III, within the scope of RWE (1), on adequate selection of the 
Lorentz group representations in a space of the wave function   and interpretation of its 
components, one can give the description of a massless field not only with helicity 1 but 
also with helicity 0 as well as simultaneous description of the indicated fields. Generalizing 
this result for the case of arbitrary spin , we can make the following conclusion.  



S
Conclusion 3. A theory of the generalized RWE with the singular matrix 0  makes it 

possible to describe not only massless fields with maximal (for the given set of representa-
tions) helicity  , but also fields with intermediate helicity values as well as to offer a simul-
taneous description of these fields.   

S

It is clear that, all other things being equal, a character of the field described by equa-
tion (1) with the singular matrix 0  is dependent on the form of this matrix. To find when the 

singular matrix 0  leads to massless theories and when it results in massive or massive-

massless gauge-invariant theories, we examine the Lorentz structure of the «massive» term 

0   in the foregoing cases. It is observed that in the case of (8), (16), (20) associated with a 

massive gauge-invariant spin 1 theory the matrix 0  (20) affecting the wave function   (8) in 

the expression 0   retains (without reducing to zero) the Lorentz covariants    , on the 

basis of which an ordinary (of the form (2)) massive spin 1 theory can be framed. But in the 
case of a massless theory given by (8), (76), (80) the matrix 0  in the expression 0   retains 

the covariant  , on the basis of which it is impossible to frame RWE of the form (2) for a 

massive particle. A similar pattern is characteristic for the remaining cases: in all the massive 
(massive-massless) gauge-invariant theories the matrix 0  affecting the wave function   re-

tains its covariant components necessary for framing of an ordinary massive spin 1 or 0 the-
ory; provided the expression 0   doesn’t involve such a necessary set of covariants, massless 

theories can be framed only. This leads us to the fourth conclusion.  
Conclusion 4. Should the generalized RWE (1) with the singular matrix  0  in the 

product 0   retain a set of the Lorentz covariants sufficient to frame an ordinary (with det 

0 0   ) theory of a massive spin S particle, this RWE may be associated with a massive 

gauge-invariant spin S theory. Otherwise, when this requirement is not fulfilled for any S, 
RWE (1) can describe a massless field only.   

Proceeding from all the afore-said, we arrive at the following important though obvi-
ous conclusion.  

Conclusion 5. To frame both massive (massive-massless) gauge-invariant spin  the-
ory and massless theory with intermediate helicity values from 

S
S  to  we need an ex-

tended, in comparison with a minimally necessary for the description of this spin (helicity), 
set of the irreducible Lorentz group representations in a space of the wave function 

S

 .  
In the present work, when considering spin 1, the above-mentioned extension has been 

accomplished by the introduction of scalar representation  0 0  into a set of the representa-

tions given by (4) and of pseudoscalar representation  1 1
2 2


  – into a set given by (43). 

Greater potentialities are offered by the use of the multiple (recurrent) Lorentz group repre-
sentations.  
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В.А. Плетюхов О совместном описании массивных и безмассовых полей со спина-
ми 0 и 1 

 
Рассматриваются безмассовые и массивные калибровочно-инвариантные поля со спинами 

1 и 0 с точки зрения теории обобщенных релятивистских волновых уравнений. Получены новые 
уравнения, которые могут быть использованы в современных теоретико-полевых моделях. 
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