

УДК 581.82+821+823+824

С.В. Зеркаль, С.Н. Волосюк, А.П. Колбас

СРАВНИТЕЛЬНЫЙ АНАЛИЗ АНАТОМИЧЕСКОГО СТРОЕНИЯ ЛИСТА ТИССА ЯГОДНОГО (Taxus baccata Lindl.) И ПСЕВДОТСУГИ ТИССОЛИСТНОЙ (Pseudotsuga taxifolia Lindl.) ПРИ РАЗЛИЧНОЙ СТЕПЕНИ ОСВЕЩЕННОСТИ

Изучено влияние различной степени освещенности на морфологические и анатомические признаки листа тисса ягодного и псевдотсуги тиссолистной первого, второго, третьего и пятого года жизни. Метод исследования — сравнительно-анатомический. Результаты измерений подвергались статистической обработке. Качественные анатомические признаки листа не подвержены воздействию различных условий освещенности. Основное влияние света испытывают только количественные анатомические признаки листа исследованных видов, что наиболее проявляется у листа первого и второго года.

Значение листа как бокового органа чрезвычайно велико [12]. Лист полифункционален, что обусловило такую его структуру, которая наряду с общими закономерностями развития и строения характеризуется многочисленными и очень ценными в диагностическом отношении особенностями. Многие авторы использовали структурные особенности листа для уточнения систематического положении видов растений [13]. В растительном покрове нашей планеты преобладают покрытосеменные растения, они и дают основную фитомассу. Эти два обстоятельства объясняют повышенный интерес анатомов и физиологов к листу этой группы растений. Можно отметить, что последнее тридцатилетие характеризуется появлением крупных обобщающих работ, посвященных листу покрытосеменных [1; 3; 8]. Это говорит о значительной изученности данной группы растений. Анализ работ исследователей позволяет говорить о многоаспектности в изучении этого органа: изучалась морфология, анатомическая структура (как листа в целом, так и отдельных тканей), онтогенез, особенности развития структуры в различных условиях обитания и т. д.

Голосеменные растения, значительная часть которых относится к семейству сосновых (по С.А. Шостаковскому – 250 видов из 800) [11], несмотря на довольно широкое распространение, оказались изученными в меньшей степени. Это касается всех вегетативных органов и особенно листа. Однако осевая часть растений семейства сосновых изучена достаточно детально [4; 7]. Лист как целостная структура подробно исследован [5], однако, несмотря на это, мало уделено внимания экологическим факторам, влияющим на его структуру. Цель нашего исследования — выявление степени влияния интенсивности освещения на качественные и количественные параметры анатомического строения листа выбранных объектов.

Материал и методика исследования

Объекты исследования

Для анатомического анализа нами выбрано два вида, относящихся к двум семействам: тисс ягодный — Taxus baccata Lindl. сем. Тиссовые (Taxaceae Lindl.), псевдотсуга тиссолистная — Pseudotsuga taxifolia Lindl. сем. Сосновые (Pinaceae Lindl.) [10]. Выбор объектов изучения был обусловлен в большей мере тем, что тисс ягодный и псевдотсуга тиссолистная характеризуются морфологическим сходством в строении листа, одинаковой требовательностью к экологическим факторам, являются теневыносливыми

растениями, малотребовательны к почвам и другим условиям произрастания. Начиная с 50-х годов IXX века очень часто выращиваются в садово-парковых композициях, в том числе и на территории Беларуси. В связи с этим имеют большую декоративную ценность и практическое значение.

Методика сбора полевого материала

Материал для исследования был собран в Агробиологическом центре БрГУ имени А.С. Пушкина. Образцы отбирали с деревьев в возрасте 25–40 лет из средней части кроны с южной и северной стороны. Отбор производили в период покоя (ноябрь 2002, 2003, 2004 гг.) с деревьев, не имевших явных признаков повреждения болезнями и вредителями. Хвою фиксировали в 96% этиловом спирте. Спустя 3–4 дня в этанол добавляли глицерин (25% по объему). Освещенность измеряли люксметром Ю 116. В полуденное время в безоблачный день интенсивность света с освещенной стороны колебалась от 75 000 до 80 000 люкс, при этом интенсивность освещения затененных листьев составляла 3 000–3 500 люкс, т. е. около 5% от полной.

Методика изготовления постоянных и временных препаратов

Поперечные и продольные срезы готовили из средней части хвои на санном микротоме с замораживающим столиком. Перед изготовлением срезов материал помещали на 30 минут в водную среду, после чего образцы лучше подвергаются заморозке, так как спирт диффундирует в воду. Часть срезов готовили от руки при помощи лезвия безопасной бритвы. Срезы окрашивали регрессивным способом, помещая в спиртовые растворы сафранина и нильского синего. После окраски срезы подвергали дегидратации в спирте разной концентрации (50%, 75%, 90% и абсолютный спирт). На следующем этапе их обрабатывали карболксилолом, после чего помещали в канадский бальзам. Таким образом, методика была общепринятой в анатомии растений [9].

Постоянные препараты готовили только из средней части хвои однолетнего, двулетнего, трехлетнего и пятилетнего возраста. Для сравнения структуры листа на верхушке и у основания, а также однолетней хвои использовали только временные препараты. Для изучения эпидермального комплекса листа эпидерму снимали при помощи лезвия безопасной бритвы, а также использовали метод отпечатков эпидермы [2].

Анализ и обработка материалов

Полученные результаты измерений подвергали статистической обработке методом вариационных рядов (для этой цели проводили 50 измерений). Обрабатывали вариационные ряды с вычислением средней арифметической, ошибки средней величины, среднего квадратичного отклонения, коэффициента вариации. Помимо названных величин, находили достоверность средней величины, показатель точности и в случаях обработки одного и того же признака у растений, обитающих в разных условиях, определяли достоверность различий между двумя средними [6].

Основной метод исследования – сравнительно-анатомический.

Результаты работы

Для единого подхода при проведении исследования был составлен кодекс диагностических признаков анатомического строения листа, по которым описывались виды (на поперечных и продольных срезах). На основании данных составлены таблицы для сравнения.

Строение листа Taxus baccata Lindl. (сем. Taxaceae Lindl.)

Хвоя тисса одиночная, очередная, плоская, короткочерешковая. Вершина заострена, края слегка загнуты вниз. Центральная жилка хорошо выражена как с нижней, так и с верхней стороны. С нижней стороны вдоль хвоинки проходят две полосы устыиц по одной с каждой стороны жилки, ширина полос 500–600 мкм. В полосе содержится 8–10 рядов устыиц.

Эпидерма, покрывающая лист, однослойная и несколько отличается на верхней и нижней сторонах листа. Клетки верхней эпидермы в поперечном сечении неправильно-пятиугольные с выпуклой внешней стенкой. Толщина оболочек равномерная. Клетки покрыты мощным слоем кутикулы до 6 мкм. Клетки нижней эпидермы эллипсовидные в поперечном сечении, кутикулярный слой значительно меньшей толщины, чем у клеток верхней эпидермы. Не строго унифицированное расположение устьиц. То есть, располагаясь продольными рядами, устьица не всегда образуют ряды в перпендикулярном направлении, в то же время их расположение не является шахматным. Выявлено различие в форме и размерах эпидермальных клеток, находящихся между рядами устьиц и между полосами. Если в полосе устьиц между рядами клетки более квадратные, то между полосами они вытянуты по оси хвоинки.

Нами обнаружены *устычные аппараты* трех типов: тетра-, пента- и гексацитные. У тисса ягодного ширина эпидермальных клеток однолетней хвои в тени составляет $10\pm0,5\,$ мкм, тогда как у пятилетней хвои эти параметры возрастают до $23\pm0,1\,$ мкм. Эти же показатели у однолетней хвои на свету $11\pm0,4\,$ мкм, у пятилетней – $15\pm0,4\,$ мкм. Высота эпидермальных клеток в тени у однолетней хвои $15\pm0,4\,$ мкм, у пятилетней – $22\pm0,2\,$ мкм. У хвоинок первого года, расположенных на свету, эти параметры достигают $13\pm0,2\,$ мкм, у пятилетних – $22\pm0,2\,$ мкм.

Из вышеприведенных данных очень хорошо видно, что с возрастом хвоинки происходит увеличение всех параметров эпидермальных клеток на поперечном срезе: в тени разница параметров между однолетней и пятилетней хвоей составляет 15—20 мкм, тогда как на свету эта разница достигает 45 мкм.

Гиподерма отсутствует, поэтому к эпидерме примыкает ассимиляционная ткань, четко дифференцированная на столбчатую и губчатую. Клетки столбчатого мезофилла расположены большей осью перпендикулярно поверхности листа (два ряда клеток), их высота составляет 100 мкм и более, ширина — 20—25 мкм. Губчатый мезофилл сложен рыхло овальными клетками, имеющими диаметр до 100 мкм в поперечном направлении хвоинки и до 50 мкм по высоте хвоинки. При общей толщине листовой пластинки 500 мкм на долю столбчатого мезофилла приходится примерно 1/3.

Клетки мезофилла в тени у хвоинок первого года по длине в тангентальном направлении достигают $63\pm1,5$ мкм, у многолетних $-88\pm1,5$ мкм, на свету эти параметры клеток идентичны и с возрастом хвоинки не изменяются в обоих случаях. Высота клеток мезофилла у хвоинки первого года в тени составляет $100\pm2,3$ мкм, у многолетней эти параметры достигают $125\pm5,0$ мкм, на свету у хвоинки первого года $-70\pm2,0$ мкм, у многолетней хвои $-114\pm4,0$ мкм.

Тангентальные размеры клеток ассимиляционного аппарата тисса на свету менее подвержены изменению количественных характеристик, что связано в первую очередь с его генетически обусловленной теневыносливостью.

Смоляных ходов в листе тисса ягодного не обнаружено.

Проводящая система представлена одним проводящим пучком, имеющим эллипсовидную форму поперечника с размерами по высоте хвоинки 120–125 мкм, по ширине

хвоинки -170–175 мкм и с возрастом почти не изменяется в размерах. Типичная эндодерма отсутствует, трансфузионной ткани очень мало, и она мелкоклеточная, к ней непосредственно примыкают клетки мезофилла (таблица 1).

Таблица 1 – Влияние освещенности на качественные и количественные признаки листа тисса ягодного

					Усло	овия							
	Паттого		С	вет		Тень							
	Признаки			В	озраст л	иста (ле	т)						
		1	2	3	5	1	2	3	5				
	1	2	3	4	5	6	7	8	9				
	Форма поперечного сечения основных клеток			непра	вильно-	пятиуго.	пьные						
	Тангентальный размер основных клеток, мкм	11±0,4	12±0,4	12±0,4	15±0,4	10±0,5	19±0,6	21±0,1	23±0,1				
	Радиальный раз- мер основных клеток, мкм	13±0,2	17±0,2	20±0,2	22±0,2	13±0,2	15±0,3	20±0,2	22±0,2				
ЭПИДЕРМА	Форма просвета основных клеток на поперечном срезе		каплевидная										
ПЄ	Характер утол- щения стенок основных клеток	внешняя утолщена больше											
	Толщина внешних стенок основных клеток, мкм	2,6±0,1	3,8±0,1	4,6±0,2	6,9±0,1	2,1±0,1	3,2±0,1	4,8±0,2	6,1±0,2				
	Характер внут- ренней поверх- ности оболочек основных клеток				ров	ные							
	Тип устьичного аппарата			тетра-	, пента-	и гексац	итные						
AIIIIAPAT	Расположение устьиц на гранях листа		с мој	рфологи	чески ни	ижней ст	гороны л	иста					
	Количество полос на каждой стороне от жилки	8–10	8–10	8–10	8–10	8–10	8–10	8–10	8–10				

Прод	олжение таблицы 1		1 -	Τ .	T -	1 - 1		T -	T -				
	1	2	3	4	5	6	7	8	9				
НЫЙ	Общая картина расположения устьиц			1	продолы	ные рядь	I						
УСТЬИЧНЫЙ	Расположение замыкающих клеток по отношению к околоустьичным				погрух	кенные							
	Число слоев склеренхимных волокон												
	Форма попереч- ного сечения клеток												
ДЕРМА	Толщина кле- точных оболо- чек, мкм		отсутствует										
ГИПОД	Форма просвета клеток на попе- речном срезе												
	Тангентальный размер клеток, мкм												
	Радиальный раз- мер клеток, мкм												
Тер Тер	Количество смоляных ходов на поперечном срезе												
SIE XC	Диаметр смоля- ных ходов, мкм				πο οδιτο	N VNCOVI I							
СМОЛЯНЫЕ ХОДЫ	Характер клеток обкладки смоля- ного хода		не обнаружены										
	Количество слоев клеток обкладки												

	1	2	3	4	5	6	7	8	9				
МЕЗОФИЛЛ	Характер кле- точных оболочек на поперечном срезе		ровный										
	Тангентальный размер клеток, мкм	45±2,0	47±2,0	72±2,3	81±2,0	63±1,5	67±2,0	76±2,0	88±1,5				
	Радиальный раз- мер клеток, мкм	70±2,0	76±2,0	88±2,0	114±4,0	100±2,3	102±2,3	116±5,0	125±5,0				
	Форма клеток субэпидермаль- ного слоя	продолговатая											
	Тангентальный размер субэпи- дермальных клеток, мкм	23±2,0	25±0,7	27±0,8	37±1,6	32±1,3	42±1,1	52±1,2	52±1,1				
	Радиальный раз- мер субэпидер- мальных клеток, мкм	63±1,7	65±2,0	66±2,0	75±2,7	57±0,7	63±1,7	67±1,9	81±2,0				
А ЭНДОДЕРМА	Форма поперечного сечения клеток Тангентальный размер клеток, мкм Радиальный размер клеток, мкм Характер эндодермы по величине поперечного сечения клеток Форма поперечноного сечения	не выражена											
CUCTEMA	пространства, ограниченного эндодермой Радиальный раз-												
	мер проводящего пучка, мкм	120±0,6	122±1,7	123±1,3	124±1,2	110±1,3	125±0,6	130±1,5	135±1,				

Окончание	таблицы	1

	иание таолицы 1 1	2	3	4	5	6	7	8	9			
	Радиальный раз- мер ксилемы, мкм	45±1,3	45±1,5	47±1,2	49±1,1	40±1,3	43±1,1	45±0,9	47±0,6			
	Количество тра- хеид в радиаль- ном ряду	4–5	4–5	4–5	4–5	4–5	4–5	4–5	4–5			
5	Радиальный раз- мер трахеид, мкм	9±0,2	10±0,1	11±0,2	11±0,2	8±0,25	8±0,1	10±0,2	10±0,1			
ПРОВОДЯЩАЯ	Радиальный раз- мер флоэмы, мкм	70±1,1	73±1,6	75±1,2	77±1,2	77±0,5	79±2,0	82±2,0	85±0,7			
IIPOB	Количество ситовидных клеток в радиальном ряду	6–7	6–7	6–7	6–7	7–8	7–8	7–8	7–8			
	Радиальный раз- мер ситовидных клеток, мкм	9±0,2	10±0,2	10±0,2	10±0,2	9±0,2	9±0,1	9±0,1	10±0,2			
	Расположение пучков в транс- фузионной ткани	в центре										

Строение листа Pseudotsuga taxifolia Lindl.(сем. Pinaceae Lindl.)

Хвоя лжетсуги тиссолистной линейная, одиночная, очередная, плоская, короткочерешковая. Вершина заостренная. В поперечном сечении хвоя выпукло-вогнутая, так как жилка выдается с морфологически нижней стороны, а с верхней над ней расположен желобок.

Эпидерма однослойная, клетки в продольном направлении до 300 мкм длиной. Их поперечные стенки или перпендикулярны к продольным, или наклонены, но односкатные. На поперечном сечении они округлые, квадратно-прямоугольные, их размер в радиальном направлении составляет 10–15 мкм, в тангентальном – 20–25 мкм. Толщина клеточной стенки – $2,6\pm0,1$ мкм, утолщение равномерное, хвоя мягкая, т. к. лигнификация слабая, что хорошо видно по степени окрашивания сафранином. Слой кутикулы примерно вдвое превышает толщину стенок клеток (4–5 мкм).

У псевдотсуги тиссолистной тангентальный размер эпидермальных клеток однолетней хвои в тени составляет 8 ± 0.5 мкм, тогда как у пятилетней хвои эти параметры возрастают до 18 ± 0.1 мкм. Эти же показатели у однолетней хвои на свету 8 ± 0.4 мкм, у многолетней -22 ± 0.4 мкм. Высота эпидермальных клеток в тени у однолетней хвои 15 ± 0.2 мкм, у многолетней -22 ± 0.2 мкм. У хвоинок, произрастающих на свету, эти параметры достигают у листа первого года 16 ± 0.2 мкм, у многолетних -21 ± 0.2 мкм. У псевдотсуги тиссолистной гиподермальные клетки на свету у хвоинок первого года

в ширину достигают $12\pm1,1$ мкм, у многолетней хвои $-19\pm0,8$ мкм. Эти параметры в тени составляют у хвоинок первого года $14\pm0,5$ мкм, у многолетних $-18\pm0,1$ мкм.

Только в нижней эпидерме, как и у тисса ягодного, между смоляными ходами и центральной жилкой (по обе стороны от нее) двумя полосами, по 6–8 рядов в каждой, расположены устьица. Устьичный аппарат представлен двумя типами: энциклотным и тетрацитным. Если с верхней стороны листа все клетки эпидермы однотипны, вытянуты по оси листа и имеют мощную вторичную оболочку, то с нижней стороны их можно дифференцировать на два типа:

- 1. Основные клетки в рядах устьиц и примыкающие к ним с боков. Они округлые, овальные, но сложены без межклетников. При этом в рядах устьиц их длина и ширина примерно равны, а примыкающие к ним клетки имеют длину вдвое большую ширины.
- 2. Клетки, разделяющие ряды устьиц. Их длина в 3–4 раза превышает ширину, и они выделяются, подобно лучам, расположены в 2 ряда.

Гиподерма не образует сплошного слоя, а представлена группами по 3–4 клетки. Хорошо развиты склеренхимные волокна над и под жилкой и в углах хвоинок. По форме поперечного сечения они не отличаются от эпидермальных клеток, имеют такую же толщину стенок и практически не лигнифицированы (не окрашиваются сафранином).

Mезофилл, заполняющий пространство между гиподермой и эндодермой, можно дифференцировать на три зоны:

- 1. Клетки средней части хвоинки. На поперечном срезе хорошо заметно, как в обе стороны от эндодермы по направлению к углам отходят 4–5 слоев клеток, имеющих в этом направлении длину до 200 мкм при высоте 30–40 мкм. По мере удаления от эндодермы длина их укорачивается, и они постепенно становятся изодиаметрическими. Клетки этой части хвоинки отличаются от других типов тремя особенностями: вопервых очень рыхлым сложением; во-вторых, незначительным содержанием хлоропластов; в-третьих, наличием в них большого количества слизи, занимающей больший объем, так что цитоплазма и хлоропласты расположены постенно.
- 2. Столбчатый мезофилл расположен под верхней эпидермой и сложен двумятремя рядами клеток, овально-многоугольными в поперечнике, но несколько меньшими по размерам, чем клетки мезофилла, окружающие эндодерму. Их размеры варьируют в радиальном направлении в пределах 80–90 мкм, а по ширине в 2 раза меньше. В этих клетках располагается наибольшее количество хлоропластов.
- 3. Клетки губчатого мезофилла округло-квадратные в поперечнике и сложены довольно плотно. Они составляют основную массу мезофилла. Их радиальный размер в 1,5–2 раза больше ширины, поэтому они хорошо выделяются.

В строении всех клеток мезофилла для листа лжетсуги тиссолистной характерно отсутствие в молодых листьях складчатости клеточных стенок, но с возрастом она появляется. Размеры клеток мезофилла у теневых хвоинок первого года в радиальном направлении достигают $55\pm2,3\,$ мкм, у многолетней — $92\pm5,0\,$ мкм. Эти же параметры клеток мезофилла у хвоинок первого года на свету составляют $53\pm2,0\,$ мкм, у многолетней эти размеры достигают $80\pm4,0\,$ мкм. На свету у хвоинок первого года тангентальные размеры достигают $24\pm2,0\,$ мкм, у многолетней — $31\pm2,0\,$ мкм. В тени эти размеры у однолетней хвои — $25\pm1,5\,$ мкм у многолетней — $32\pm1,5\,$ мкм. Среди клеток мезофилла встречаются типичные астросклереиды, выполняющие механическую роль и препятствующие сдавливанию клеток.

В мезофилле расположены *два смоляных хода* диаметром до 100 мкм, примыкающих к нижней эпидерме и удаленных от краев хвоинки на 100—150 мкм. Ход окружен клетками гиподермы и выстлан изнутри эпителиальными клетками. Снаружи смоляные ходы окружены однослойным кольцом склеренхимных волокон, которые смыкаются с волокнами гиподермы с абаксиальной стороны хвоинки.

В центральной части хвоинки эндодерма отграничивает пространство, цилиндрическое на поперечном срезе диаметром 300–350 мкм, с располагающимся в нем комплексом проводящих тканей. Клетки эндодермы овально-прямоугольные в поперечном сечении, с несколько утолщенной внешней стенкой и четко выражеными пояскими Каспари. Диаметр клеток варьирует от условий в следующих пределах: на свету у хвоинок первого года — 23 ± 0 ,5 мкм, у многолетней — 30 ± 2 ,0 мкм. В тени — 23 ± 0 ,8 мкм у первого года и 32 ± 0 ,6 мкм у многолетней хвои. Высота эндодермальных клеток на свету у хвои первого года равна 9 ± 0 ,4 мкм, у многолетней хвои — 18 ± 0 ,5 мкм. В тени у однолетней — 12 ± 0 ,6 мкм, у многолетней хвоинки — 23 ± 0 ,4 мкм.

Среди клеток *трансфузионной ткани*, представленной живыми клетками со стороны флоэмы и мертвыми со стороны ксилемы, располагается сдвоенный проводящий пучок. Имея общую округлую форму, он разделен на две части клиновидным участком из паренхимных клеток, проходящим через флоэмную и ксилемную части пучка. За пределами ксилемной группы клетки луча в поперечном сечении в 2–3 раза превышают поперечник трахеид и имеют более утолщенные и лигнифицированные клеточные стенки.

Из полученных нами данных видно, что количественные характеристики клеток как на свету, так и в тени в процессе онтогенеза листа возрастают. Например, ширина клеток гиподермы хвоинки первого года на свету равна $12\pm1,1$ мкм, эти же параметры у многолетней хвои равны $19\pm0,8$ мкм. Высота клеток гиподермы у хвоинки первого года на свету $-6\pm0,2$ мкм, эти же параметры у многолетней хвои достигают $11\pm0,2$ мкм (таблица 2).

Таблица 2 – Влияние освещенности на качественные и количественные признаки листа псевдотсуги тиссолистной

					Усл	ОВИЯ					
	Прионови	Свет				Тень					
	Признаки	Возраст листа (лет)									
		1	2	3	5	1	2	3	5		
	1	2	3	4	5	6	7	8	9		
Ι.	Форма поперечного сечения основных клеток	округлые									
ЭПИДЕРМА	Тангентальный размер основных клеток, мкм	8±0,4	11±0,4	14±0,4	22±0,4	8±0,5	12±0,6	15±0,1	18±0,1		
<u> </u>	Радиальный размер основных клеток, мкм	16±0,2	18±0,2	20±0,2	21±0,2	15±0,2	19±0,3	21±0,2	22±0,2		

Про	одолжение таблицы 2		_										
	1	2	3	4	5	6	7	8	9				
	Форма просвета основных клеток на поперечном срезе				овал	ъная							
	Характер утолщения стенок основных клеток		внешняя утолщена больше										
	Толщина внешних стенок основных клеток, мкм	2±0,1	2,6±0,1	3,4±0,2	4,1±0,1	2,1±0,1	3,2±0,1	3,8±0,2	5,1±0,2				
	Характер внутренней поверхности оболо-чек основных клеток	ровные											
	Тип устьичного аппарата	энциклотный, тетрацитный											
PAT	Расположение усть- иц на гранях листа		только с морфологически нижней стороны листа										
УСТЬИЧНЫЙ АППАРАТ	Количество полос на каждой стороне от жилки	6–8	6–8	6–8	6–8	6–8	6–8	6–8	6–8				
MHH	Общая картина рас- положения устьиц	продольные ряды											
YCTE	Расположение замы- кающих клеток по отношению к околоустьичным				погруж	кенные							
	Число слоев скле- ренхимы				од	ин							
	Форма поперечного сечения клеток				овал	ьная							
MA	Характер располо- жения			не обр	разует сп	ілошног	о слоя						
ГИПОДЕРМА	Толщина клеточных оболочек, мкм	2±0,1	3±0,2	4±02	5±0,3	3±0,2	4±0,2	5±0,1	6±0,2				
ГИП	Форма просвета клеток на поперечном срезе				овал	ъная							
	Тангентальный раз- мер клеток, мкм	12±1,1	15±0,8	15±0,9	19±0,8	14±0,5	16±0,6	17±0,1	18±0,1				
	Радиальный размер клеток, мкм	6±0,2	8±0,3	10±0,3	11±0,2	7±0,1	9±0,3	10±0,5	12±0,4				

Про	Іродолжение таблицы 2												
	1	2	3	4	5	6	7	8	9				
	Количество смоля- ных ходов	2	2	2	2	1	2	2	2				
ходы	Диаметр смоляных ходов, мкм	81±0,5	84±2,3	87±3,0	92±2,0	83±0,8	91±1,0	94±1,0	99±0,9				
	Расположение смо- ляных ходов	субгиподермально											
СМОЛЯНЫЕ	Характер оболочек клеток обкладки				тонкос	тенные							
	Количество слоев клеток обкладки				од	ин							
	Характер клеточных оболочек		извилистый										
	Тангентальный раз- мер клеток, мкм	24±2,0	25±2,0	28±2,3	31±2,0	25±1,5	27±2,0	28±2,0	32±1,5				
ПП	Радиальный размер клеток, мкм	53±2,0	61±2,0	72±2,0	80±4,0	55±2,3	63±2,3	74±5,0	92±5,0				
30ФИЈ	Форма клеток субги- подермаль ного слоя	овальная											
, ,	Тангентальный раз- мер субгиподермаль ных клеток, мкм	23±2,0	25±0,7	27±0,8	37±1,6	32±1,3	42±1,1	52±1,2	52±1,1				
	Радиальный размер субгиподермаль ных клеток, мкм	73±1,7	75±2,0	76±2,0	77±2,7	67±0,7	73±1,7	77±1,9	91±2,0				
	Форма поперечного сечения клеток				овал	ьная							
	Тангентальный раз- мер клеток, мкм	23±0,5	25±2,0	27±0,9	30±2,0	23±0,8	26±0,9	28±0,8	32±0,6				
ЦЕРМА	Радиальный размер клеток, мкм	9±0,4	12±0,5	15±0,6	18±0,5	12±0,6	15±0,6	18±0,3	23±0,4				
ДО,	Характер эндодермы по величине попе- речного сечения кле- ток				гомог	енная							
	Характер утолщения оболочек клеток			внеш	няя утол	іщена бо	льше						
	Степень выраженно- сти пояска Каспари				чет	гко							

Окончание т	аблицы	2
-------------	--------	---

	энчание таолицы 2 1	2	3	4	5	6	7	8	9				
	Форма поперечного сечения пространства, ограниченного эндодермой		овальная										
	Диаметр пространства, ограниченного эндодермой, мкм	307±2,6	310±2,7	320±3,1	325±3,5	198±3,1	211±2,5	299±3,2	303±2,5				
	Радиальный размер проводящего пучка, мкм	85±1,6	98±1,7	106±2,3	111±2,2	67±1,3	83±1,6	94±1,8	96±1,9				
CUCTEMA	Радиальный размер ксилемы, мкм	27±1,3	35±1,5	40±1,2	44±1,1	24±1,3	30±1,1	40±0,9	41±0,6				
IJASI (Количество трахеид в радиальном ряду	3	3–4	3–4	3–4	3	3–4	3–4	3–4				
ПРОВОДЯЩАЯ	Радиальный размер трахеид, мкм	9±0,2	10±0,1	11±0,2	11±0,2	8±0,25	8±0,1	10±0,2	10±0,1				
POB	Радиальный размер флоэмы, мкм	57±1,1	65±1,6	66±1,2	66±1,2	42±0,5	53±2,0	55±2,0	55±0,7				
	Количество ситовидных клеток в радиальном ряду	6–7	6–7	6–7	6–7	5–6	6–7	6–7	6–7				
	Радиальный размер ситовидных клеток, мкм	9±0,2	10±0,2	10±0,2	10±0,2	7±0,2	8±0,1	8±0,1	8±0,2				
	Расположение пуч- ков относительно эн- додермы		в центре										

Выволы

- 1. Свет как экологический фактор влияет только на количественные характеристики клеток тканей как в однолетней, так и в пятилетней хвое. Качественные признаки анатомического строения не подвергаются воздействию различной степени освещенности.
- 2. Количественные параметры клеток всех тканей увеличиваются с возрастом хвои как на свету, так и в тени. Это характерно для обоих исследуемых видов.
- 3. Наиболее значительно с возрастом хвоинки изменяются параметры клеток эпидермы и мезофилла в различных условиях освещенности.
- 4. У обоих исследованных видов происходит утолщение внешней стенки эпидермальных клеток и у однолетней хвои, и у пятилетней как на освещенной стороне, так и при недостаточном освещении.
- 5. Клетки мезофилла тисса ягодного и лжетсуги тиссолистной на свету и в тени у однолетней и многолетней хвои обладают одинаковой тенденцией изменения параметров клеток и наиболее подвержены влиянию степени освещенности из всех исследованных признаков. Возможно, это связано с тем, что оба вида являются, по определе-

нию, теневыносливыми растениями [5].

Как показали наши исследования строения листа тисса ягодного и лжетсуги тиссолистной, он очень лабилен в зависимости от условий освещения и обладает большим приспособительным спектром. Это является одной из причин использования с давних времен этих видов в озеленении дендропарков, ландшафтных композиций и других зеленых насаждений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Анели, Н.А. Атлас эпидермы листа / Н.А. Анели. Тбилиси : Мецниереба, 1975. 108 с.
- 2. Анели, Дж.Н. Способ получения микроструктурных отпечатков эпидермы различных органов растений / Дж.Н. Анели, Н.А. Анели // Сообщ. АН ГССР. 1986. 122, № 3. С. 589–592.
- 3. Гамалей, Ю.В. Развитие хлоренхимы листа / Ю.В. Гамалей, Г.В. Куликов Л. : Наука, 1978.-192 с.
- 4. Еремин, В.М. Атлас анатомического строения коры сосновых СССР / В.М. Еремин М. : Министерство юстиции СССР, 1978. 202 с.
- 5. Еремин, В.М. Сравнительная анатомия листа Сосновых : монография / В.М.Еремин, С.В. Зеркаль. Брест : Изд-во БрГУ, 2002. 182 с.
- 6. Зайцев, Г.Н. Математика в экспериментальной ботанике / Г.Н. Зайцев. М. : Наука, 1990.-295 с.
- 7. Лотова, Л.И. Анатомия коры хвойных / Л.И. Лотова. М. : Наука. 1987. 152 с.
- 8. Мирославов, Е.А. Структура и функция эпидермиса листа покрытосеменных растений / Е.А. Мирославов. Л. : Наука, 1974. 119 с.
- 9. Прозина, М.Н. Ботаническая микротехника / М.Н. Прозина. М. : Высшая школа, 1960.-130 с.
- 10. Черепанов, С.К. Сосудистые растения России и сопредельных государств / С.К. Черепанов. СПб. : Мир и семья 95, 1990. 990 с.
- 11.Шостаковский, С.А. Систематика высших растений / С.А. Шостаковский. М.: Высшая школа. 1971. 352 с.
 - 12. Esau, K. Plant Anatomy / K. Esau. New-York London, 1965. 565 p.
- 13. Solereder, H. Systematische Anatomie der Dicotyledone / H. Solereder. Stuttgart, 1908. 422 S.

S.V. Zerkal, S.N. Volosiuk, A.P. Kolbas. The Comparative Analysis of Anatomical Structure of a Leaf of a Taxus baccata Lindl. and Pseudotsuga taxifolia Lindl. of Different Degrees of Illumination

The influence of the illumination on anatomical structure of a leaf of a Taxus baccata Lindl. and Pseudotsuga taxifolia Lindl.is studied. The influence of different degrees of illumination on anatomical features of a first and second-year-old leaf is examined. The method of research is comparative-anatomical. The results of the measurements have been subjected to statistics analysis. It has been discovered that the quantitative anatomical features of a leaf of a Taxus baccata Lindl. and Pseudotsuga taxifolia Lindl. are influenced by the illumination, while the qualitative features are not subjected to any changes.