GROUPS WITH \mathfrak{A}^2 -SUBNORMAL SUBGROUPS

V. S. Monakhov, I. L. Sokhor

Francisk Skorina Gomel State University, Gomel, Belarus viktor.monakhov@gmail.com, irina.sokhor@gmail.com

We consider only finite groups. All notations and terminology are standard [1]. By \mathfrak{N} , \mathfrak{A} and \mathfrak{E} we denote the class of all abelian, nilpotent and all groups, respectively; F(G) denotes the Fitting subgroup of a group G.

Let \mathfrak{F} be a formation, G be a group. The subgroup $G^{\mathfrak{F}} = \bigcap \{N \lhd G : G/N \in \mathfrak{F}\}$ is the smallest normal subgroup of G with quotient in \mathfrak{F} , and it is called the \mathfrak{F} -residual of G. A subgroup H of a group G is called \mathfrak{F} -subnormal if there is a chain of subgroups

$$H = H_0 < \cdot H_1 < \cdot \ldots < \cdot H_n = G$$

such that $H_i/(H_{i-1})_{H_i} \in \mathfrak{F}$ for all i, that is equivalent to $H_i^{\mathfrak{F}} \leqslant (H_{i-1})_{H_i}$. Here $Y_X = \bigcap_{x \in X} Y^x$ denotes the core of Y in X, $H_{i-1} < \cdot H_i$ denotes that H_{i-1} is a maximal subgroup of H_i .

If \mathfrak{X} and \mathfrak{F} are s-closed formations, then the product

$$\mathfrak{XF} = \{ G \in \mathfrak{E} \mid G^{\mathfrak{F}} \in \mathfrak{X} \},$$

by [1, p. 337], is an s-closed formation. When $\mathfrak{X} = \mathfrak{F}$, we write \mathfrak{X}^2 instead of $\mathfrak{X}\mathfrak{F}$.

Groups with various collections of \mathfrak{F} -subnormal subgroups are investigated by many authors, see references of [2–4].

It is easy to prove that every Sylow subgroup of any soluble group is \mathfrak{AN} -subnormal. Therefore in the universe of all soluble groups the class of groups with \mathfrak{F} -subnormal Sylow subgroups should be investigated when \mathfrak{F} does not contain \mathfrak{AN} .

Theorem. In a group G every Sylow subgroup is \mathfrak{A}^2 -subnormal in G if and only if G is soluble and every Sylow subgroup of G/F(G) is abelian.

- 1. Doerk K., Hawkes T. Finite soluble groups. Berlin, New York: Walter de Gruyter, 1992, 891 p.
- 2. Vasil'ev A. F., Vasil'eva T. I. and Tyutyanov V. N. On the finite groups of supersoluble type. Sib. Math. J., 2010, Vol. 51, Issue 6, 1004–1012.
- 3. Monakhov V.S. Finite groups with abnormal and \$\mathcal{U}\$-subnormal subgroups. Sib. Math. J., 2016, Vol. 57, Issue 2, 352–363.
- 4. Semenchuk V. N., Skiba A. N. On one generalization of finite \U-critical groups. J. Algebra Appl., 2016, V. 15, Issue 4, 1650063 (11 pages).